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ABSTRACT

A multi-level, global, spectral transform model! of the atmosphere, based upon spherical harmonics, has
been developed at GFDL. The ‘basic model has nine sigma levels in the vertical and rhomboidal spectral
truncation at wavenumber 30. However, finer spectral or vertical resolution versions are available as well.
The model’s efficient semi-implicit time differencing scheme does not appear to adversely affect medium
range predictions. The model has physical processes commonly associated with grid point GCM’s. Two
unique features are a linearized virtual temperature correction and an optional, spectrally-computed non-
linear horizontal diffusion scheme. A parameterization of vertical mixing based upon the turbulent closure

method is also optional.

The GFDL spectral model has been widely utilized at GFDL for extended range weather prediction
experiments. In addition, it has been adapted and applied to climate studies, four-dimensional data assim-
ilation experiments and even to the atmosphere of Venus. These applications are briefly reviewed.

1. Introduction

Models used for numerical weather prediction or
climate simulation must often meet rather stringent
computational efficiency as well as accuracy require-
ments. For many applications, global/hemispheric
spectral transform models can satisfy this pair of
requirements. In such models, scalar variables are
represented on the sphere by a truncated series of
spherical harmonics. Finite differences are usually
employed in the sigma-coordinate direction, al-
though finite elements have been used by Staniforth
and Daley (1977). In contrast, three-dimensional
spectral representations, as in Machenhauer and
Daley (1972), have not met with much success.

The spectral transform method, proposed by Or-
szag (1970) and refined by Eliasen er al. (1970),
Orszag (1971) and Bourke (1972) is an essential
element of the above models. This method is much
more efficient than the ‘“interaction coefficient”
method at calculating nonlinear advection terms, as
shown by Bourke (1972). Also, it has the versatility
to compute grid point physical processes, which the
“interaction coefficient” method lacks.

The relative merits of spectral transform models
vs second-order accurate, energy conserving, non-
staggered grid point models of comparable overall
accuracy are fairly well established (Daley et al.,
1976; Baede and Hansen, 1977). Spectral transform
models have the following advantages: 1) Their more
compact representation results in a significant re-
duction in computer memory; 2) they have compet-
itive, if not somewhat improved computational effi-

ciency at low to moderate horizontal resolution; 3)
less effort is required to implement and less overhead
to use efficient semi-implicit time differencing
schemes; 4) there is no need for polar filtering; 5)
the geopotential height gradient terms can be eval-
uvated directly on sigma-coordinate surfaces without
special treatment to insure computational stability;
6) phase lag errors of midlatitude synoptic distur-
bances are reduced noticeably (Daley et al., 1976);
and 7) the spectral representation and transforma-
tion algorithms can readily exploit the potential of
so-called vector super-computers.

On the other hand, spectral models have some
disadvantages: 1) They may resolve smaller scale
features such as midlatitude fronts less sharply than
grid point models (Simmons and Hoskins, 1975); 2)
the truncated spectral representation of water vapor
is not positive definite and a more elaborate negative
borrowing scheme is required for extended integra-
tions (see Section 6); 3) spherical harmonics are not
suitable for limited domains, except for applications
where a sector with periodic boundary conditions is
justified; and 4) the number of arithmetic operations
increases faster in spectral transform models than in
finite difference models as the horizontal resolution
is refined.

Several spectral models suitable for short and/or
medium range weather prediction have already been
described in various degrees of detail including: the
Australian National Meteorological Research Centre
(ANMRC) model (Bourke, 1974); a preliminary
Geophysical Fluid Dynamics Laboratory (GFDL)
spectral model developed by Gordon and Stern
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(1974); the Canadian Meteorological Centre model
(Daley et al., 1976); the European Centre for Me-
dium Range Weather Forecasts (ECMWF) model
(Baede and Hansen, 1977) based upon the Hoskins
and Simmons (1975) Reading University model; the
National Meteorological Center model (Sela, 1980);
and the Naval Post Graduate School model (Lubeck
et al., 1977). In addition, Bourke et al. (1977), Man-
abe et al. (1979), and Boer and McFarlane (1978)
have constructed low to moderate resolution spectral
models for carrying out climate simulation and re-
lated studies.

The GFDL global spectral model was developed
in response to a suggestion by Machenhauer and
Robert to Miyakoda in 1971. Bourke’s (1972) for-
mulation of the spectral transform method was
adopted due to its simplicity. The computer code for
Bourke’s (1972) barotropic spectral model was kindly
provided to us during the initial stage of model de-
velopment. Thus, the spectral aspects of the Bourke
(1974) and GFDL spectral models are very similar.
However, we emphasize that the GFDL multilevel
spectral prediction model including the physical pro-
cesses and semi-implicit time differencing scheme
has been developed independently.

Since 1974, extensive improvements have been
made to the GFDL spectral prediction model, trans-
forming it into a respectable extended range predic-
tion model. For example, the rhomboidal spectral
resolution has been increased from 15 to 30 waves
and many more physical processes have been incor-
porated. The latter are essentially of the type found
in grid point general circulation models (GCM’s) at
GFDL. A variety of options, including finer spectral
or vertical resolution and more advanced parame-
terizations of physical processes are available as well.

Two apparently unique features of the GFDL
spectral model are a linearized virtual temperature
correction and an optional, spectrally-computed non-
linear horizontal diffusion scheme. The Mellor-Ya-

mada (1974) turbulent closure parameterization of

. turbulent vertical mixing which was previously in-
corporated into the GFDL grid point prediction
model by Miyakoda and Sirutis (1977), is a partic-
ularly promising option.

Since 1974, the GFDL spectral prediction model
has been adapted and applied, within GFDL, to a
wide range of research activities. These include ex-
tended and long range prediction experiments, four-
dimensional assimilation of atmospheric data, cli-
mate simulation and sensitivity studies, and simu-
lation of the Venusian atmosphere. Without the
development of the GFDL spectral model, these ac-
tivities would have been delayed considerably and
the four-dimensional assimilation of FGGE data may
not have been attempted by GFDL.

For the above reasons, a more definitive and ac-
cessible documentation of the present GFDL spectral
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model than that given by Gordon and Stern (1974)
would be useful. This will be the primary objective
of the present paper. In addition, a brief review of
the applications of spectral models at GFDL will be
given.

The partial differential equations and auxiliary
equations that govern the model are specified in Sec-
tion 2. The notation for finite differences in the ver-
tical is introduced in Section 3, and the governing
equations are developed somewhat further. The dis-
cussions in Section 4 and Section 5 focus on the
model’s spectral aspects and semi-implicit time dif-
ferencing scheme. Any overlap here with derivations
by previous authors, notably Bourke (1974), is for
the sake of completeness. The model’s grid point
physical processes and orography are treated in Sec-
tions 6 and 7, while its computational efficiency is
discussed in Section 8. The applications of the spec- -
tral model at GFDL are briefly reviewed in Sec-
tion 9. Finally, concluding remarks are given in Sec-
tion 10.

2. The governing equations

The equations are formulated for a thin spherical
shell, using ¢ as the vertical coordinate. The prog-
nostic equations consist of the equations of motion
in vector form

aV/at = —(¢+ kX V —-V(V-V/2)

- 60V/ds —V® — RTVq +F,, (1)
the thermodynamics equation
9T /dt = =V -VT' — 68T /do ,
+%3+F1+Q—gﬂ+%’, )
the water vapor equation
or/ot = =V -Vr — gdr/de + F, + C, (3)
and the surface pressure equation
dg/ot=-V.-Vqg-V.V. 4)

The auxilliary diagnostic equations include the hy-
drostatic relation

4%
= —RT,, 5
d Ino )
the virtual temperature relation
T,=T+0.61Tr, (6)

an expression for the vertical pressure velocity, i.e.,
w=p[g+(V—V)-Vq~V-V:|, @)
g

and the continuity equation
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g = —f (V-V—=V.-V)do
o

—f: (V= V)-Vado. (8)

Above, () denotes the vertical averaging operator
I (‘)( )de. Also, V is the horizontal wind vector with
components 4 and v, T the temperature, r the water
vapor mixing ratio, g the natural logarithm of the
surface pressure p,, ® the geopotential, 7', the virtual
‘emperature, ¢ the vertical coordinate (¢ = p/p,,
where p is the pressure), w the vertical pressure ve-
iocity, o the vertical sigma velocity, ¢ the time; V the
herizontal gradient operator, A, ¥ the longitude and
ictitude, ¢ the vertical component of relative vortic-
ity, D the horizontal divergence, f the Coriolis pa-
rameter, K is a unit vector normal to the sphere, R
is the gas constant, C, the specific heat capacity at
constant pressure, 7T is a reference temperature and
T, is a reference virtual temperature which depend
onlyong, T'=T—Tand T, = T, — T,, Qraa is
the rate of radiative heating, Q. the rate of conden-
sational heating, C the rate of condensation of water
vapor, and F,, F; and F, represent the diffusion of
momentum, temperature and water vapor, respec-
tively.

Egs. (1)-(8) are rather standard, except perhaps
for the virtual temperature relation. In principie, its
inclusion makes the model more realistic. The virtual
temperature directly affects only the hydrostatic
equation and the geopotential gradient terms in
the equation of motion, just as in Miyakoda (1973).

However, Miyakoda’s formula for T, ie., T(1°

+ 1.617)/(1 + r) has been simplified to an expression
that is linear with respect to T and r. Since r < 1
and (T — T)/T < 0.2, our linearized virtual tem-
perature correction (T, — T = 0.617Tr) should gen-
erally agree with Miyakoda’s to within 20%. The
linearized form is computationally more efficient,
requires less computer memory and is more conve-
nient if semi-implicit time differencing is applied.

3. The vertical representation

The notation Z, indicates that the arbitrary vari-
able Z is evaluated at the full sigma level oy, k
=1, 2, - -+ kx. Similarly, Z,.,,, is evaluated at the
half level oy.1/,. If the variable in question, e.g.,
T,, already has a subscript, then the alternate no-
tation T(k) is used.
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The full and half sigma levels are the same as in
the nine-level GFDL grid point model (see Table 1).
The variables u, v, T, T, and r as well as {, D and
® are evaluated at the full levels o4, k= 1,2, - -
kx. In contrast, ¢ and w are evaluated at the half
levels 044172, k=1, 2, « - + kx — 1. At the top bound-
ary (o1 = 0) and at the bottom boundary (oyx+1/2
= 1), ¢ = 0. Variables at adjacent half levels are
linearly averaged to obtain estimates at full levels
and vice versa. For example,

ox = (Oksrj2 + Oa-172)/2.
Simmilarly,
Zywiyr = (Zi + Zi11)/2,

where Z represents u cos®, v cos®, T, r, etc.

The vertical advection term ¢dZ/dc at level k is
approximated by the second-order accurate finite
difference operator W,(a, Z), where

. _ l . Zin — Zg
Wk(U, Z) = 2 |:0k+1/2 _(_Aa')k+l/2
. Zk — Zk—l]
+ ok ———— 9
Te-iyz (AU)k~|/2 ( )

and (A¢)i+1/2 = 01 — ox The values of Z at k
= 0 and at kK = kx + 1 are not needed since a,,,
=0 and &kx+l/2 = 0.
The vertical average finite difference operator ap-
plied to the divergence D is
. kx
D= kz Dk(AO’)k . (10)
=1
This operator is applied to V cos® as well.
The variable ¢ is conveniently expressed as the
sum of g, + oy, Where g, is linear with respect to

the divergence and oy is a nonlinear function of V
cos® and g. The finite difference formulas

k
o(k + 1) = ]Z:l (D — D)(Ac) (1)
and
. 1 1 {<
an(k + 1) = — e {y=1 [(V cos®),

-V cos®] - cos‘PVq(Aa),,} , (12)

atlevelsk =1, -+ - , kx — 1, correspond to the first
and second integrals on the right-hand side of Eq.
(8). Also, o, and oy are set equal to zero at the top

TABLE 1. The GFDL ¢ levels and half levels for the nine-level model

k 0 1 2 3 5 6 7 8 9
ay — 0.0089 0.074 0.189 0.336 0.500 0.664 0.811 0.926 0.991
Ok+1/2 0.0 0.0343 0.126 0.259 0.417 0.583 0.741 0.874 0.966 1.000
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and bottom boundaries. The linear averaging pro-
cedure is applied to Egs. (11) and (12) to calculate
or(k) and op(k).

The prognostic equations and hydrostatic relation
are now rewritten incorporating the vertical finite
difference notation and the finite difference operator
W,. Their form has been modified somewhat in order
to apply Bourke’s (1972) efficient spectral transform
method. For the same reason, the vorticity { and
divergence D ultimately replace the wind components
u and v as prognostic variables. Therefore a vorticity
equation and a divergence equation are needed. They
are easily derived if we first introduce the vector

Sk = —(& + Nk X (V cos®)x — Wila, V cos®)
— RT'(k) cosPVq + Fyp(k) cos?, (13)

with components S} and S§, and the kinetic energy
density
(u cosP),? + (v cos?P)?

cos’¢

E, = (14)
Substitution of S; and E, into the equations of mo-
tion, i.e., Eq. (1) at levels k = 1, 2, - - - kx, yields
the equation
v, S,
h_ 2k _yg, -
gt cos¥ k
Above, Fy; and F,, represent the linear and nonlin-
ear contributions to Fy. Similarly, F; and F, will be
decomposed later into linear contributions F;; and
F.; and nonlinear components Fry and F,y. In Eq.
(15) T(k) = T:(1 + 0.617), where 7, is a reference
mixing ratio. After applying the k-VX and V- lin-
ear differential operators to Eq. (1 5), we obtain the
vorticity equation

aﬁ'k/(')t = -V'(A

— V(@ + RT.q)i + Fy (k). (15)

Sk 5 :
s?’) + k-V X Fy (k) (16)

and the divergence equation

S ) )
v (cos‘P VE.

- V2(¢ + RTvq)k + V 'FVL(k).

aDk/at =

(17)

These equations contain essentially the same infor-
mation as Eq. (15) since no terms have been dis-
carded. Yet their form is simple, since the equations
of motion [Eq. (1)] have not been differentiated term
by term. The equations of motion are still used in
the sense that S, and E, are calculated from Eg.
(13) and Eq. (14) as an intermediate step. The latter
terms are closely related to the nonlinear terms S,/
cos® and VE, of Eq. (15).

Next, the form of the thermodynamic equation
(2) is modified. First, using Eq. (7), w is expressed
as a function of o, D and nonlinear terms in Eq.
(2). Secondly, since ¢ = o6, + 6yand T = T + T,
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the quadratic form T¢ may be set equal to To,
+ (Toy + T'¢) in Eq. (2). Thirdly, the horizontal
thermal advection term is differentiated by parts, i.e.,
—V.VT'is written as —V - T'V + T'D. At this point,
nonlinear and linear terms on the right-hand side of
Eq. (2) are regrouped separately. The nonlinear
terms are consolidated into (k) — V- T, V., where

On(k) = TiDy — [Wi(onT) + Wi(a, T')]

+R [Tk o) T’k(f-" - ﬁ)]
G, oy ox

R [(V cos®), — V cos®P] - cosPVq
+ — Tk D)
C, cos’¥
+ & 4y 4 p). (18)
P

The terms which are linear with respect to o, and
D can be expressed as —[W,(oy, T) — RT,/
Cla(k)/ox — D)] or equivalently as the product
of a matrix A and a column vector D of divergences

D, k=1, , kx. In other words,
kx
2 ApwDy = _[Wk(&L, T)
k=1
- E(E’L(,IQ _ D‘)] . (19)
Cp O

To derive an explicit formula for the matrix ele-
ments Ay, the operator W, and variables D and
o, are eliminatcd using Egs. (9), (10) and (11), re-

spectively and 2 (Ao)y is set equal to o4y . After
lengthy mampulatlons, we obtain
(@ — Jk)(Aa')I( »
Aew = (Ek - ak)(Aa)k' ’
_Jk(AU e s

K<k
K=k,
K>k

(20)

where

. (-

ay

Okjx) [Tk+l - T, _

2 (AU)k+l/2

u—mo[ — Tien  RTy
2 (AU)k—l/z Cpﬂk

1 — Sepx) [(Tkﬂ — T RTk]
? - , (21b
2 (A(T)kﬂ/z CpUk ( )

RT,

P

RT‘k]
C Oy

+ :l, (éla)

Bk=(

Jk = dk"k—l/Z + Ek(AU)k + (Zlc)

“and § is the Kronecker delta function. The matrix

A is generally nonsymmetric.
Substitution of Egs. (18) and (19) into Eq. (2)
yields the thermodynamic equation
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aTk/at = eN(k) -V. Tk’Vk
kx

+ 2 AxxDy + Fr (k). (22)
k=1

Differentiating the horizontal advection terms by
parts in Eq. (3), we obtain the water vapor equation
ark/ét = Mr — V'rka +F,L(k) (23)

Most of the nonlinear terms have been consoli-
dated into

ure = 1Dy — Wila, r) + F.p(k). (24)

Also, the surface pressure equation is rewritten as

8q/dt = M — D, (25)
where . v
M= (v cos‘P)-Scos‘P q). (26)
cos’®

Condensation induces changes in T, and r, which
are calculated after Egs. (22) and (23) have been
solved, using a convective adjustment large-scale
condensation scheme (see Sections 4¢ and 6f). There-
fore, Q. and C do not appear in Egs. (22) and (23).

The hydrostatic Eq. (5) is integrated upwards from
the surface. The half layer between o4, and gixr1)2
is treated specially to obtain ®,,. The relevant finite
difference approximations to Eq. (5) are

= B, + aT(kx) + fT(kx — 1) (27a)
and

®, = B4iy + o T(k) + BT (k + 1), (27b)

for

k=kx—1,kx—-2,---,1,

where &, is the geopotential evaluated at the surface.
The weights o, and 8, are chosen such that the mean
virtual temperature of the interior layer between
o and o4y, is V[T (k) + T,(k + 1)]. Consequently,
for k < kx

R
a == In(oy+1/04), (28a)

R
B = 3 ln(a'kﬂ/ﬂk)- (28b)
Similarly, the mean virtual temperature of the half
layer between o4, and ou.r1/2 is Y2[T(kx) + T(kx
+ 4)]. However, T, (kx + ') is itself extrapolated
in Ino space from T,(kx) and T,(kx — 1). Therefore
the coefficients

ln[akx-k(l(z)]

a== 1n[———L"’;"*“ ”] 24— 2

2 ln(—-———ak" )
Ogx—1

Okx

(29a)
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and
ln[akx+(l(2)
[-f _ B ln[akx+(l/2):| Thx (29b)
2 Okx

ln( Okx )
Okx—1
are more complicated than oy and B;.

4. Development of the spectral equations

The essential spectral aspects of the GFDL spec-
tral model are the spherical harmonics representa-
tion, the transformation of the equations to the spec-
tral domain, and the computation of nonlinear terms
by the spectral-grid transform method.

a. The spectral representation

The scalar variables ¢, D, T, r, g, and & as well
as u cos?, v cos® and cos¥Vq are expanded in series
of spherical harmonics. The arbitrary variable Z has
the expansion
M ml+J
2 2z

m=—M n=im|

Z = (30)

where the time-dependent spectral coefficients Z,™
are complex. The notation Z,”(k) will indicate that
Z,™ is evaluated at sigma level k. The reference to
k may be suppressed, if no ambiguity arises. The
ordinary spherical harmonic Y,” is a function of A
and ¢. Furthermore, Y, = P,”(sin®)e™, where P,™
is an associated Legendre polynomial of degree n and
zonal wavenumber (rank) m. The P,” are normal-
ized, i.e.,
x/2
PP, cosPd®P = b,,
-n/2
and
Pn_m = (—l)man-

In Eq. (30), J = J + 1 for u cos®, v cos¥ and cosPdg/
8%, and J = J for the other variables. The effective
meridional wave number is n — |m].

The basic GFDL spectral model version is called
R30L09. Here, R30 denotes rhomboidal truncation
at wavenumber 30, i.e., M = J = 30, while L09
indicates that the model has nine sigma levels. If
triangular truncation were imposed, the integer n
would lie within the range |m| < n < M. For example,
a T40L15 spectral model would denote triangular
truncation at zonal wavenumber M = 40 and 15
sigma levels. Rhomboidal truncation was chosen over
triangular primarily for its greater potential for vec-
torization on the Texas Instruments Advanced Sci-
entific Computer (the ASC). In principle, the pa-
rameters M and J and hence the spectral resolution
are easily varied. Of course, the maximum resolution
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is constrained by core and cpu time limitations. The
ASC computer can accommodate an R45L09 or
R30L 18 global spectral model or an R72L09 hemi-
spheric model. The resolution characteristics of the
various models are summarized in Table 2.

Since V=k X V¢ + Vx, { = V¥ and D = V%x
(where ¢ is the streamfunction, x the velocity po-
tential and V2 the Laplacian on the sphere), the spec-
tral coefficients of # cos® and v cos¥ may be com-
puted from the spectral coefficients of { and D. Fol-
lowing Bourke (1972),

()=o)

+(n+ 2)e,,+.'"( sh”“m) + im(?":)] , (31)

m
Dn-H n

m (nz _ mz)llz
& =\ .
4n* — 1

By convention, {_,” = 0 and D_,” = 0.

where

b. Transformation of the equations to the spectrc}l
domain

Consider the partial differential equation dZ/dt
= L + N. Here, Z is a prognostic variable (dZ/at
= 0 if the equation is diagnostic), whose spectral
coefficients Z,™ are known at time ¢. The linear terms
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are each evaluated in the spectral domain and L de-
notes their sum. Linear differential operators present
no difficulty since Y, /d\ = imY,”™ while cos?dY,”/
0¥ projects onto Y,.,” and Y,_,”. The nonlinear -
terms, whose sum is denoted by X, are evaluated by
the transform method (see Section 4c). Substituting
the spectral expansions of Z, L and N into the above
partial differential equation, multiplying by the com-
plex conjugate (Y,™)*, integrating over the globe,
and applying the orthogonality relation
1 2% /2

Y,(Y,")* cosPdPAN = 8,08 pm »

2rdo Jxp2

yields the ordinary differential equation dZ,”/dt
= L/ + N,” for the time-varying spectral coeffi-
cients Z,™.

¢. Transform method

Bourke’s (1972, 1974) transform method is used
instead of the interaction coefficient method to eval-
uate nonlinear dynamics terms and grid point phys-
ical processes. Its main virtues are computational
efficiency and compatibility with existing formula-
tions of physical processes. The transform method
is subdivided into three steps:

StEP 1

The spectral coefficients for §; + f, Dy, (u cos®);,
(v cos®),, ri, g and cos¥Vg are transformed to a

TABLE 2. Resolution characteristics of the GFDL spectral models and N48 grid point model.

Number of spectral

Model Domain® degrees of freedom® Ny /AN Np/AP? Application
R15 G, H 496 48/8.0° 40/4.8° Mainly for checkout, climate studies,
simulation of Venusian atmosphere.
R21 G, H 946 64/5.7° 54/3.4° For checkout, experimental prediction
studies, climate studies.
R30 G, H 1891 96/4.0" 80/2.4° Extensive use for extended and long
range experimental prediction
studies, climate studies; 4-
dimensional analysis.
T42 H 1849 128/2.9° 64/2.9°
R42 G, H 3655 128/2.9° 106/1.7° Very limited use for extended range
R45 G 4186 138/2.7° 114/1.6° experimental prediction studies.
R60 H 7381 184/2.0° 152/1.2°
N48° G — 192/1.9° 96/1.9° For extended range and long-range
(tropics) experimental prediction studies.

decreasing to
36/10° (polar)

* G = global, H = hemispheric.

® Number of spectral degrees of freedom = (2M + 1) (M + 1) for rhomboidal, (M + 1)? for triangular global spectral models.
¢ N, = number of longitudes. A, = approximate nominal longitudinal increment of transform grid = 3M for spectral models or

longitudinal increment of the modified Kurihara grid.

4 N = number of (Gaussian) latitudes. A, = approximate nominal latitudinal increment of transform grid = 5M/2 for rhomboidal
or 3M/2 for triangular global spectral models or latitudinal increment of the modified Kurihara grid.
¢ N48 denotes the number of grid points between pole and equator.
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Gaussian latitude-longitude grid with K latitudes
and L equi-spaced longitudes. The numerical values
of K and L depend upon the model’s resolution. The
transformation is carried out in two stages. First, a
Legendre transform is evaluated for each spectral
variable at Gaussian latitude ¥;, i.e., the latitude
corresponding to the jth root of the associated Le-
gendre polynomial P,°. For a particular variable Z,
the Legendre transform has the form

|ml+J
Z,,m i Z(m)(‘oj', t) = z Z,,mP,,m.

n=|m|

(32a)

The resulting Fourier harmonics Z,,, are then Fou-

rier-transformed to longitudes N\, = 2#l//L, 1 < [
< L. Symbolically,
M
Ziy— Z\, P53 1) = 2 Zme™ . (32b)
m=—M

Note that the Legendre transforms are evaluated
only once per latitude. This helps render the process
efficient. As a rule, fast Fourier transform (FFT)
algorithms should accelerate the calculation of Eq.
(32b). But on the ASC computer, the ordinary trans-
form was computationally more efficient than the
currently available FFT algorithms for L < 256
points. The inability of the latter to fully vectorize
on this vector supercomputer apparently more than
compensates for their intrinsic efficiency.

STEP 2

Nonlinear dynamics and physical process terms
of each prognostic equation can now be calculated
at the equi-spaced grid points along latitude circle
¥,. The variables transformed in step 1 provide the
necessary information to compute ox, gx+1/2, on(K),
UN(k + 1/2)7 Wk(&, A/ COS(P), Wk(&N’ T)v Wk(&’ T!),
Wo, r), TV, and r,V,, and ultimately S;, E,,
OMk), u and M at latitude ¥; and longitudes A,
= 2wxl/L, 1 = 1, 2, - -+ L. The evaluation of the
auxiliary nonlinear variables S, Oy, 1 and M reduces
the number of transformations back to the spectral
domain.

STEP 3

The appropriate nonlinear terms in Egs. (16), (17),
(22), (23) and (25) are transformed back to the spec-
tral domain in two stages. First, Fourier transforms
of Ey, Op(k), i and M, as well as dSE/OA and S},
8S3/0\ and S, aT (1 cos®), /N and T'(v cos®)y,
and dri(u cos?),/o\ and ri(v cosP), are computed
at latitude ¥, The latter four pairs of terms are
needed to obtain divergences. During the second
stage, inverse Legendre transformations are built up
one latitude at a time using Gaussian quadrature.
The procedure is most straightforward for the scalars
E, Op(k), 1, and M. Denoting the Fourier transform
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of any of these by Z,,,(¥;), the Gaussian quadrature
formula is

X
Z"m = z WJK(‘pJ)Z(m)(<pj)an(Sin‘pj).

J=1

(33)

Here, the jth of K Gaussian weights wy is the ef-
fective area weight at latitude ¥; and K is the total
number of Gaussian latitudes. Gaussian quadrature
preserves the orthogonality Igelations for associated

Legendre polynomials, i.e., 2 Wy PP, = 8,,.. Ac-

=1
cording to Elsaesser (19661), the Gaussian weights
were actually proposed by Neumann in 1838. In any
case, Elsaesser (1966) and Eliasen ez al. (1970) were
apparently the first to use the quadrature formula
(33) to spectrally analyze meteorological data and
to integrate a spectral model, respectively.

A more complicated formula is needed for the
divergences. Denoting —k X S;/cos®, S,/cos?,

TV, or r,V, by the vector Z (with components Z*
and Z%)

_ 1
a cos*P

V-Z I:;—A (Z* cos®)

a
+ cos¥ o (z*# cosSD)] , (34a)

in spherical coordinates. In analogy with Eq. (33),
it might appear that the quadrature formula for
V-.Z should involve (8Z* cos®/d¥)P,". But this
expression is differentiated by parts since dZ* cos®/
d® is not known at latitude ¥; whereas Z* cos¥ and
cosPdP,” [d¥ are. Therefore

m 1 g wi(P)
(V-2)." = a E. cos’®

— (Z% cosP)m(cosPdP,™]dP)).

[im(Z* cos®)myP."

(34b)

Every factor in Eq. (34b) is evaluated at latitudes
¢j,j=1,2, AR K.

In the above manner, one obtains the spectral rep-
resentation of the time rate of change due to non-
linear terms in Egs. (16), (17), (22), (23) and (25).
Given two arbitrary variables 4 and B, no aliasing
of the elementary quadratic expressions A+B, VA
VB, or the Jacobian J(A, B) occurs when evaluated
by the spectral interaction coefficient method (Mer-
ilees, 1968). Furthermore, the horizontal advection
terms can be decomposed into elementary quadratic
expressions of the above forms. These properties are
preserved in our rhomboidally truncated, spectral
model, provided K > J + (3/2)M and L > 3M. In
practice, K and L are set equal to 80 and 96, re-
spectively in the R30L09 model.

Convective adjustment/large scale condensation
and nonlinear horizontal diffusion cause complica-
tions by requiring that a second set of transforma-
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tions be carried out before those discussed above.
The process is similar in that spectral arrays are
transformed to the grid point domain one latitude
at a time, calculations are made in the grid point
domain, and the results are transformed back to the
spectral domain. For example, spectral arrays for the
unadjusted temperature T, and unadjusted mixing
ratio r, are transformed to the grid point domain
where the convective adjustment/large scale con-
densation algorithms of Manabe et al. (1965) are
applied. Transforming the adjusted fields back to the
spectral domain yields the desired variables 7 and
r. But due to spectral truncation, adjustment in ver-
tical columns is not necessarily preserved, when T
and r are later transformed back to the grid point
domain.

In parallel with the above computations, spectral
variables such as {, D, u cos®, v cos®, T, r and ¢
from the previous time step are transformed to the
grid domain. Then deformation-related variables are
calculated and transformed back to the spectral do-
main. These intermediate spectral variables are
available for step 1 of the main body of transfor-
mations. Thus the nonlinear horizontal diffusion
terms can be calculated in the grid point domain
during step 2. More details are provided in Sec-
tion 6.

d. The spectral equations

The prognostic vorticity Eq. (16), divergence Eq.
(17), thermodynamics Eq. (22), water vapor Eq. (23)
and surface pressure Eq. (25) as well as the hydro-
static equations (27a) and (27b) are readily trans-
formed to the spectral domain by the above proce-
dures. The form of the spectral equations is simpli-
fied if terms which are not linear with respect to D,
®, or g are added together to form the auxiliary
variables

k
3

cos®¥ (35)

Me = V° 0s? (36)

I = px — V- Vi — F(k), (38)

in Egs. (16), (17), (23) and (25), respectively. Note
that —V2E; is not included in Eq. (36). In practice,
E, is transformed separately to the spectral domain.
Since (V2E), = —[n(n + 1)/a*]1E,™, the spectral coef-
ficients %, are replaced by
N n(n+1

2R = 3,000 + "D . (39)
Incidentally, the linear diffusion terms are added to
& Tk Oy and II, in the spectral domain. Also, it is
convenient to introduce the variable
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P, = &+ RT(k)q (40)

into the spectral divergence Eq. (17). All terms that
are linear with respect to P, and D, are now placed
on the left-hand side of the prognostic equations.
Finally, we obtain

df,,

=2 (k) = £m(K), (41)
dg;’” k) — n(n + 1) P.m(k) = n,(k), (42)
dT 4T ey - z"l AexDym(k) = ©,7(k),  (43)
d’" (k) = IL"(k), (44)
dz; + Dym = M,™. (45)

—7”’ notation over a variable indicates that it
is to be evaluated implicitly. These prognostic spec-
tral equations are evaluated at the full ¢ levels &
=1, 2, - - - kx. The dependence of the spectral coef-
ficients upon k is indicated by the notation *“(k)”,
while their dependence upon time ¢ is understood.
Note that the spectral vorticity Eq. (41) and spectral
water vapor Eq. (44) are fully explicit, whereas the
spectral divergence Eq. (42), spectral thermodynam-
ics Eq. (43) and spectral surface pressure Eq. (45)
contain both explicit and implicit terms. The matrix
coefficients A, , are independent of time and the spec-
tral indices n and m.

The spectral hydrostatic equations have the same
form as Egs. (27a) and (27b). One merely replaces
®, by ®,"(k), T,(k) by T,(k), etc. ®,"(k) can be
calculated explicitly from T, "(k) or implicitly as
described in the next section.

5. Semi-implicit time differencing scheme

A leapfrog semi-implicit time differencing scheme
is used to approximate the time derivatives on the
left-hand side of the spectral equations. We devel-
oped it independently, but it is very similar to
Bourke’s (1974) scheme. Analogous terms are treated
implicitly in each scheme and a set of algebraic
equations is solved for the spectral divergence coef-

ficients D_;’"(k). Relatively minor modifications arise
due to the inclusion of the linearized virtual tem-
perature.
For each value of n and m, there are kx coupled
equations to be solved, of the form
kx —r
2> By xD,"(k') = Jy, (46)
=1
at levels k = 1, - kx. Here J, is an element of
a column vector J which depends upon spectral co-



JuLy 1982

efficients with subscripts n and m at time ¢ and ¢
— At. Also, the B, are elements of a matrix B of
dimension kx by kx. The functional form of B, is
derived in Appendix B. The B matrix and its inverse
B ' depend upon the A matrix of Eq. (20) and upon
the spectral index n, but not m. There are 61 distinct
B matrices for the R30L09 spectral model, corre-
sponding to the 61 values of n,i.e.,0,1 -+ 60. B
is independent of time as well, unless the time dif-
ferencing scheme and/or time step are changed dur-
ing the integration. In practice, leapfrog time dif-
ferencing is used exclusively, except for a single Euler
backward time step at the beginning of the integra-
tion. The standard time step for the R30L09 model
is 20 minutes.

The inverse of the B matrices must be calculated
only twice, i.e., during the Euler backward time step
and during the first leapfrog time step. A Texas In-
struments subroutine package is used for this pur-
pose. Every time step, the right-hand side of Eq. (46)

is multiplied by B~ to obtain D,”(k). The overhead
for these computations is negligible.

Once 13;'"(k) are known for k =1, - - - kx, 5;"‘
is readily calculated using Eq. (10). Also, D{¢

+ Af) = 25,: — 2D, (t — At), by definition of the
semi-implicit operator. Moreover, knowledge of

D;"'(k) and D,™ enables us to calculate 7,”(k) in Eq.
(43) and ¢, in Eq. (45) at time ¢ + At. In contrast,
&,"(k) and r,"(k) are determined at time ¢ + At by
explicitly marching Eqgs. (41) and (44) ahead in time.

After convectively adjusting Ti(z + Az) and ri(z
+ At), a Robert time filter is applied in the spectral
domain to all the prognostic variables to prevent the
solutions at even and odd time steps from decoupling.
The filter has the form

ZAt) = (1 —2a)Z(t) + o[ Z(t + A1)
+ Z{t — Ar)], (47)

where the subscript f denotes a filtered value. Setting
a = 0.03, low frequency modes were only slightly
damped (0.8% per day for At = 15 minutes and a
mode with a period of 1 day).

The semi-implicit time differencing scheme with
At = 20 min is obviously more efficient than the
explicit leapfrog scheme with At = 4.8 min. However,
we sought some assurance that the former would not
adversely affect medium-range predictions. There-
fore, comparative 10-day integrations were made
with an hemispheric version of the R30L09 spectral
model with full physics (similar to the “A2” package
described in Section 6). All parameters were held
fixed except the time differencing scheme and/or
time step Ar. Three integrations were carried out:
the standard 7-I integration (semi-implicit leapfrog
time differencing and Ar = 20 min); 7-II (semi-im-
plicit leapfrog and At = 4.8 min); and 7-III (explicit
leapfrog and At = 4.8 min).
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F1G. 1. Inter-model rms differences of zs, predictions from 1
January 1977 initial conditions vs time. The verification domain
is 29-90°N. Model 7-I = semi-implicit, Az = 20 min; r-II = semi-
implicit, At = 4.8 min; 7-III = explicit, At = 4.8 min.

The sensitivity of the medium-range prediction to
the 7-1, 7-II and 7-II1 integrations was monitored.
The results illustrated below are based on 1 January
1977 initial conditions. However, earlier integrations
of an R30L09 global model with linear V* (instead
of V*) horizontal diffusion from 1 March 1965 initial
conditions yielded qualitatively similar results.

Fig. 1 shows the time variation of the 7-I vs r-I1I,
7-I vs 7-II and 7-1II vs 7-III rms differences of pre-
dicted 500 mb geopotential height (z500). The rms
difference between 7-1I and 7-1II (semi-implicit, Az
= 4.8 min vs explicit, Ar = 4.8 min) is generally
smaller than that between 7-1 and 7-II or 7-I and
7-1I1 for several days. This result is encouraging but
does not prove that the two time-differencing schemes
would converge for a very small time step. When
verified against observations, 7-1II had an rms error
of 160 m at day 10 or ~10 m less than 7-I (semi-
implicit, At = 20 min). This difference is probably
within the noise level. The model’s natural variability
level, i.e., the asymptotic rms difference between so-
lutions corresponding to two randomly-chosen initial
states, is ~190 m.

The map comparison in Fig. 2 may be more in-
formative. It shows that local differences between the
7-1 and 7-III predictions of zsy are still very subtle:
at day 4, but not by day 10. However, the semi-
implicit result is apparently no worse than the ex-
plicit, overall. In fact, the former may be regionally
better. For example, on day 10, 7-I’s ridge off the
west coast of North America bears a closer resem-
blance to observation and its Hudson’s Bay vortex
is slightly more intense than 7-1I’'s. The z,400 pre-
diction at day 10 exhibited comparable sensitivity as
the zsg0.

A comparison of day 5-day 10 time-averaged pre-
cipitation (Fig. 3) is of some interest since the time
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Fi1G. 2. Northern Hemisphere stereographic maps of zs,0 NMC observation (left), -1 forecast (center) and r-111 forecast
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F1G. 3. Northern Hemisphere stereographic maps of r-I (top) and 7-1II (bottom) time-averaged precipitation rate r,, for day 5-10,
i.e., 6 January-11 January 1977.r,<0.1,0.1 <r,<0.5,0.5 <7, < 2.0 and 2.0 < r, cm day™' in dotted, unshaded, hatched and cross-

hatched regions, respectively.

intervals between convective adjustments and the
numerical treatment of gravity-wave propagation are
different in integrations r-I and 7-III. Local differ-
ences between the 7-I and 7-111 precipitation patterns
can be detected in the tropics as well as extratropics.
For example, the 7-III integration generates slightly

_more precipitation near the equator. Nonetheless,
both precipitation patterns are quite similar.

In short, semi-implicit time differencing coupled
with a 20 min time step did not appear to adversely
affect the Jan 1977 (or March 1965) atmospheric
prediction out to 10 days. Admittedly, the geopoten-
tial height prediction at day 10 was more sensitive
to the time differencing scheme than we had envi-
sioned. Yet, the 10 day prediction was considerably
less sensitive to the time differencing scheme than
to the domain (hemispheric vs global), horizontal
resolution or sub-grid scale physics (E4 vs. A2, as
defined in the next section), Perhaps the sensitivity
to the time differencing scheme could be reduced by
initializing the gravity wave modes more carefully.

6. Grid point physical processes

The physical processes of versions of the GFDL
2° resolution nine-level grid point model discussed
by Miyakoda (1973) and Miyakoda and Sirutis
(1977) have been adapted for the R30L09 spectral
model. These versions are known as “A1”, “A2” and
“E4” physics, in order of increasing complexity. The
“E4” physics option has only recently been incor-

porated into the spectral model. All three versions
include horizontal diffusion, some form of vertical
diffusion in the surface and planetary boundary lay-
ers, land-sea contrast, long- and shortwave radiative
transfer, moist convective adjustment and treatment
of soil moisture, and orography. Version “Al1” is
identical to “A2” except that in “A1”, land-sea con-
trast does not include separate values of the surface
drag coefficient for land and sea and the fractional
surface wetness D, is fixed at 0.5 over land instead
of being predicted. As explained later, the essential
difference between “A1” or “A2” physics and “E4”
physics relates to the parameterization of vertical
mixing in the surface boundary layer and above.

a. Horizontal diffusion

Enstrophy and kinetic energy are conserved by the
spectral barotropic vorticity equation and approxi-
mately conserved by a multi-level, adiabatic, inviscid
spectral model. This might suggest that there is less
need for horizontal diffusion in spectral models than
in certain grid point models when physical processes
are incorporated. However, we have found that with
horizontal diffusion, the medium range prediction of
geopotential height is improved and the predicted
spectral distributions of enstrophy and kinetic energy
are more realistic. ,

In the GFDL spectral model, the standard scheme
is a linear V* type of diffusion, i.e., the spectral V2
operator is applied twice and a negative sign is placed
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in front of the result. The (optional) linear V? scheme
itself is based upon the analytic formulation on the
sphere used by Bryan (1969). But the V? operator
is spectrally computed and the k- VX and V- oper-
ators have been applied to the momentum diffusion.
The coefficients of eddy diffusion for V? and V* were
determined by trial and error, using the quality of
the medium range S00 mb geopotential height fore-
cast as a criterion.

Another option is a spectrally-computed nonlinear
horizontal diffusion scheme. The Smagorinsky non-
linear scheme (Smagorinsky, 1963; Smagorinsky et
al., 1965) has handled the baroclinic scales quite
successfully in moderate to high resolution finite dif-
ference models. It is somewhat less scale selective
than the V* scheme but more selective than V2, By
the following analogy, it would seem that nonlinear
horizontal diffusion would have a firmer physical
basis than linear V* diffusion. Namely, nonlinear
vertical diffusion, in contrast to linear 8*/dz*, can be
shown (Mellor and Yamada, 1974) to belong to a
hierarchy of turbulent closure schemes.

In Smagorinsky’s formulation, the horizontal eddy
diffusion coefficient is proportional to the horizontal
grid length and to the local deformation field. Al-
though the spectral model’s nonlinear diffusion
scheme is conceptually similar to the GFDL grid
point model scheme, horizontal finite differences are
replaced by differentiation in the spectral domain.
Thus the spectral character of the model is preserved.
For simplicity, the spectral formulation is described
on sigma levels. It has been generalized, however, to
handle diffusion of heat and water vapor on pressure
levels, by computing correction terms to the 9/9A
and §/9%¥ derivatives of Egs. (51) and (52) below.
For example,

O] -[mo]-

In the spectral model, this approach is more conve-
nient and efficient than the (grid point model) tech-
nique of interpolating values from sigma levels to
pressure levels.

The nonlinear horizontal diffusion terms common
to both the spectral and grid point models at GFDL
may be written as follows

3g [A( )

114 .
F,ucosp = — [; an (exddy)

pp——tr (qudd cos2<P)] (49)

11
v s =—|-— s
F,y cos o [a an (exdd,)

—_ 2,
T 2 oosP 39 (c¢ddT cos ‘P)] (50)
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™ Y1Ps L.a cos®P A * a cos® A\
¢] ~cos® T
acos«pw(c“’d a 35)]’ G
s et CC PPty
& v.Ds La cos® oA M a cos® A

1 i) . COs® Or
a cos® 9P (C"d a 5‘;)] - 652

For simplicity, all reference to k has been suppressed
for the variables Fy, F,y, dr, d.,d, T and r. But F,
= F,(k), etc. The symbols in the above equations
are as follows: F,y and F,, are the longitudinal and
meridional components of the nonlinear horizontal
diffusion of momentum F,y, F;4 and F,; are the
nonlinear horizontal diffusion of heat and water va-
por, dr and d, are the tangential and shear defor-
mation, 4 is the product of the surface pressure p,
with the vector magnitude of the tangential and shear
deformation, the factors ¢, and ¢, are proportional
to the square of the respective grid increments AX
and A® on the transform grid and to an empirical
constant k,, and vy, and v, are Prandtl numbers for
sensible heat and water vapor transport.

The deformation-related variables d, and dr may
be expressed in terms of the vorticity, divergence,
and horizontal velocity components, i.e.,

d, = ¢ + L,(u cos¥)/cos*® (53) .
and
dr = D — L,(v cosP)/cos*P (54)
where the linear differential operator
cos® 8 sin®
L )= [ 2 3% a ] ’
Also, .
d= p:(dsz + de)i/z- (55)
Meanwhile, the factors ¢, and ¢, are given by
ko )2
¢y = | —= a cosPAX (56a
A (VE )
and
Co = (ﬁ aA‘F’)2 (56b)
[ VE .

Since AM is a constant and since A® is approximated
by one, ¢, is a constant, whereas c, varies as cos*®.
By trial and error, 0.20 is thought to be a reasonable
value of k, for the R30L09 spectral model. In com-
parison, ko = 0.25 is used in the GFDL 2° resolution
nine-level global grid point model. In practice, the
Prandtl numbers v, and v, are set equal to unity as
in Miyakoda (1973).

As previously mentioned, an intermediate set of
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transformations is carried out. First, the linear dif-
ferential operator .L, is applied to the known spectral
representations of u cos® and v cos®. Next, .L(u
cos®), L,(v cos®), ¢, D, cos?VT and cosPVr at levels

k=1, + kx and g at time ¢ — At, (which are still
in computer memory), are transformed to latitude
¢ = ¢, and longitudes \, = 2xl/L, | = -« L.
There, the products D, = dd, and Dy = ddT, as
well as
~_ s fadT s ¢ oT A)
T=d-\——X+ 0sP —
(a ) %50 ¢
and
. s fodr. ar )
=d-[2=\+ Y —
' (a N cosp 5@

are computed (X and ¥ are unit vectors in the A and
¢ directions) and p, is obtained by exponentiating
q. Truncated spectral representations for the defor-
mation-related variables D,, Dr, V+(T/cos®) and
V- (#/cos¥) are obtained at levels k = 1, 2, - -, kx
at the completion of the grid to spectral transfor-
mation process.

The next step is to apply the linear differential
operators

1
L) = {a cos¥ @ [cos*#( )]}

_[cos®a( ) 2sin®
_[a ¢ a ¢ )]

- [y

to D; and Dy in the spectral domain. This yields
spectral coefficients for p,F,y cos®/c, and pF.y
cos®/ce. At this point, the main body of spectral to
grid transformations are ready to be carried out. The
spectral coeflicients for p.F,, cosP/ce, pFoy cosP/
Co, Vo (T/cos‘P) V. (f/cos®) and q are transformed
to the grid point domain as well. After multiplying
the first two variables by c¢,/e?, we have

and

F,y cos® = g [Ly(Dy) + L(Dy)], (57)
Funcos$ = % [Ly(D)) — L{Dp).  (58)
Similarly, the equations
V- (T/cos®
Fry = "( /q ) (59)
Yré
V.(f
Fop = ._glcq@ , (60)
e

are formally equivalent to Eqgs. (51) and (52), re-
spcctlvely This may be shown by substituting the
expressions for T and # into the latter equations and

CHARLES T. GORDON AND WILLIAM F. STERN

637

expanding the divergences in the manner of Eq.
(34a). The grid point values of F,; and F,; and hence
Fu (k) contributes to Fy (k). Likewise, Fry contrib-
utes to Fra(k) and F,4 to F,p(k). These contributions
are added to the other nonlinear terms which affect
Siin Eq. (13), O(k) in Eq. (18) and u, in Eq. (24).
_Some higher-order aliasing is anticipated since D,
Dr, T and f are not elementary quadratic products
of two spectrally truncated variables. But higher-or-
der aliasing is generally negligible (Bourke et al.
1977).

One desirable property of the nonlinear horizontal
diffusion scheme is that it generates no frictional
torques when applied to a uniformly rotating flow.
The proof involves showing that d; = 0 in Eq. (53)
and d; = 0 in Eq. (54) and hence d = 0. Secondly,
although the derived deformation fields d; and d do
not have spherical harmonics representations in
closed form, they are finite at the pole. To prove this,
one expresses dy and d; in terms of the streamfunc-
tion ¥ and velocity potential x, and P,” as a linear
combination of the elementary trigonometric func-
tions cos"!¢ sin""=2¢, j < n — |m|/2. Then, if one
differentiates the finite spectral expansions of ¥ and
x term by term, the apparent singularity at the poles
due to the cos™¢ factor in Eqgs. (53) and (54) van-
ishes.

Ten day comparative integrations were performed
to see if any of the horizontal diffusion schemes, i.e.,
nonlinear, linear V* or linear V? was clearly superior
to the others. The preliminary indications were in-
conclusive. In any case, V* diffusion was selected as
the standard scheme for its scale selectivity and com-
putational efficiency.

b. Surface exchange

In model versions “Al1” and “A2”, vertical dif-
fusion in the surface boundary layer beneath level
kx is governed by bulk aerodynamic drag laws, i.e.,
the wind stress is —cp|Vi.|Vis, the surface sensible
heat flux —cp|V,,{(f:x — 6,) and the surface evapo-
ration —cpD, Vi l[rix — ol Ts)). Here, ¢p is the sur-
face drag coefficient, D, is the fractional surface
wetness, § is the potential temperature, the “s” sub-
script denotes surface values and r, is the surface
saturation mixing ratio.

Meanwhile, in the “E4” physics version, the ver-
tical diffusion is governed by the Monin-Obukhov
formulation, as in Delsol et al. (1971). The latter
formulation is based upon the similarity hypothesis
and is dependent upon static stability. The Monin-
Obukhov length is currently solved by an iterative
method. Heat conduction through the soil is included
in the surface heat balance and the surface roughness
z, over the ocean is calculated by Charnock’s for-
mula z, = 0.032 u,/g, where u, is the so-called
friction velocity.
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c. Vertical diffusion in the planetary boundary layer

In the “A” physics packages, momentum and wa-
ter vapor are diffused vertically in the planetary
boundary layer in accordance with mixing length
theory for a neutrally stratified atmosphere. Thus,
the eddy coefficients K,, and K, for vertical diffusion
of momentum and water vapor are proportional to
the magnitude of the local vertical wind shear and
to the mixing length. The latter decreases linearly
from ~30 m at level oy to zero at level os,,,,. Fol-
lowing Miyakoda (1973), we set K, equal to K,,.
Meanwhile, Kr = 0, i.e., the vertical subgrid-scale
sensible heat transport is accomplished entirely by
convective adjustment. In other words, it is com-
pletely suppressed if the stratification is stable.

“E4” physics has two distinctive facets in the plan-

etary boundary layer (and free atmosphere). First,.

dry convective adjustment is suppressed. Second, ver-
tical diffusion is calculated in accordance with the
Mellor-Yamada (1974) level 2.5 turbulent closure
scheme, which is Richardson-number-dependent.
Accordingly, to obtain the eddy diffusion coeffi-
cients, a prognostic equation is solved for the tur-
bulent kinetic energy only, whereas the other second-
order moments are calculated diagnostically. Further
details of the scheme may be found in Miyakoda and
Sirutis (1977).

d. Land-sea contrast

This refers to the different specifications of surface
temperature and different values of surface drag over
land, sea and sea ice. Monthly mean sea-surface tem-
perature data prepared by the Rand Corporation and
coastlines consistent with topography data prepared
by the Scripps Institution of Oceanography are in-
terpolated directly from a 1 X 1° latitude-longitude
grid to the model’s transform grid. The surface tem-
perature over land is determined by solving a surface
heat balance equation which includes short- and
long wave radiative fluxes, sensible heat flux and la-
tent heat flux. If the calculated surface temperature
over snow-covered land exceeds 273.2 K, the excess
heat is used to melt snow. Unless otherwise indicated,
the surface temperature over sea ice is calculated
from a surface heat balance equation which includes
heat conduction through a specified ice thickness
(currently 2 m) in addition to the various fluxes com-
puted over land. The surface drag coefficient in the
““A2” physics version is set to 0.0043 over land and
0.0011 over the water and sea ice, while the Prandtl
number equals 1.0 everywhere. In the “A1” physics
version, ¢, = 0.0020 everywhere. Although surface
temperature is formally an untruncated grid point
field, the surface heat flux contribution to the spectral
temperature tendency is, in effect, spectrally trun-
cated.
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e. Radiation

The standard Manabe-Strickler (1964) long- and
shortwave radiative transfer algorithms of the GFDL
2° resolution grid point model have been incorpo-
rated into the spectral model. The standard speci-
fication for the radiatively active constituents consists
of climatological zonal mean values. A different cli-
matology is available each season for ozone, water
vapor and cloudiness, whereas the carbon dioxide
climatology is fixed. Seasonal means of the latitude-
dependent solar zenith angle are specified as well.
However, the following options may be selected: 1)
seasonal variation of ozone, water vapor, cloudiness
and solar zenith angle; 2) diurnal variation of the
incoming solar radiation; 3) use of model-predicted
‘water vapor in the radiation calculation; and 4) the
more efficient and supposedly more accurate radia-
tive transfer algorithms developed by Fels and
Schwarzkopf (1975). Miyakoda et al. (1982) sum-
marize the highlights of the Fels-Schwarzkopf
scheme. .

f. Convective adjustment and hydrologic cycle

The hydrologic aspects of the spectral model are
taken from the GFDL grid point model. For example,
convective and large-scale precipitation are pa-
rameterized on the transform grid using the Manabe
et al. (1965) dry and moist convective adjustment/
large scale condensation scheme with an 80% satu-
ration criterion for condensation. In both the “A2”
and “E4” physics version, evaporation, precipitation
and snow melt affect soil moisture in the ground
branch of the hydrologic cycle. In turn, the fractional
surface wetness and hence surface evaporation are
influenced by the soil moisture (Manabe, 1969).

Whereas regions of negative mixing ratio are gen-
erated and must be controlled even in the grid point
model, they pose a somewhat greater nuisance in the
spectral model. First, the spectral truncation process
itself generates negative values, particularly in low
resolution models. Also, regions of negative mixing
ratio may expand, apparently as a consequence of
spectral truncation.

In the grid point model, the negative mixing ratio
problem is controlled by vertical borrowing and re-
sidual borrowing. Vertical borrowing is performed
at a grid point if its mixing ratio is negative and the
combined mixing ratio of its nearest vertical neigh-
bors equals or exceeds the deficit. In this case, the
negative value is reset to zero and the borrowed
amount is subtracted from the donors so as to con-
serve the total water in the vertical column. All re-
maining negative mixing ratios are simply reset to
zero without regard to local conservation of water
vapor on horizontal surfaces. This residual borrowing
process creates a spurious but rather negligible
source of water vapor in the 2° resolution grid point
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model. Unfortunately, the spurious source is ap-
proximately a factor of 30 greater in the R30 spectral
model. An undesirable side effect of residual bor-
rowing pointed out to us by S. Manabe (personal
communication, 1978) is the generation of excess
water vapor and hence excess precipitation in the
polar region. This problem is not alleviated by im-
posing conservation of the global mean mixing ratio
during the residual borrowing process.

Consequently, residual borrowing was replaced by
local horizontal borrowing based upon the same prin-
ciples as the vertical borrowing scheme. In particular,
remaining negative mixing ratios are left alone unless
the nearest east-west neighbors have enough water
vapor to make up the deficit. It appears that the
excessive rate of precipitation near the poles is some-
what reduced, whereas the areal extent of weakly
negative mixing ratios is slightly larger. Such a trade-
off would be favorable.

7. Orography

Spherical harmonic spectral coefficients of the
earth’s topography are computed from grid point
surface elevation data. Two data sets were available,
i.e., topography on a 1° resolution latitude-longitude
grid prepared by the Scripps Institution of Ocean-
ography and the GFDL grid point model’s topog-
raphy on the 2° resolution modified Kurihara grid.
The Scripps topography was chosen because it con-
tains more variance. Local smoothing with a Gauss-
ian distribution was applied to the Scripps data in
the course of interpolating it to the desired transform
grid. The smoothing parameters were dependent
upon the resolution of the transform grid.

Although the smoothing procedure is rather ad
hoc, we were guided by two principles: 1) the vari-
ance of the smoothed data should be as faithful as
possible to the observations without generating ex-
cessive amplitude gravity waves. 2) Local smoothing
of the original data is preferable to post-filtering of
the spherical harmonic spectral coefficients. The final
re-synthesized R30 spectral topography field con-
tains negative values which are as large as 200 m
near the Antarctic coast. Weaker amplitude noise
patterns are found over the oceanic regions as well.

8. Computational requirements

Computational efficiency is very sensitive to the
per cent of vectorized code on the ASC computer.
Therefore, considerable effort was made to vectorize
the GFDL spectral model code as well as specify the
do-loop parameters at compilation time. On the other
hand, we have not written any machine language
code. Fig. 4 illustrates the cpu time requirements on
the ASC computer for various components of the
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R30L09 spectral model. The estimates apply to a 1-
day run with semi-implicit time differencing and
At = 20 min. We see that the Fourier and Legendre-
related transforms for the dynamics take little time
relative to the grid point physical processes—espe-
cially diffusion and radiation. The adiabatic and in-
viscid R30L09 global model, including transforms
and grid point dynamics, requires 7.5 min of ASC
CPU time for a one day forecast. The twice-daily
standard Manabe-Strickler radiation code consumes
~10 min of CPU time [in contrast to 3 min by the
Fels-Schwarzkopf (1975) scheme]. Meanwhile, the
“A2” physics package including surface heat balance
requires over 2 min, dry and moist convective ad-
justment over 4 min, and optional nonlinear hori-
zontal diffusion 6.5 min. It takes 16 min of CPU
time more per model day to compute “E4” physics
than “A2” physics in the R30L09 model. However,
more efficient algorithms for “E4” are being devel-
oped. Integration of the R30L09 model with “A2”
physics (including V* horizontal diffusion and the
Manabe-Strickler radiation code) requires ~25 min
of CPU time per model day. The corresponding fig-
ure for the R30L09 model with “E4” physics and
nonlinear horizontal diffusion is 47 min. Explicit time
differencing would increase the R30L09, “A2”, V*
model’s running time to 64 min. A 1-day integration
of the R60L0O9 hemispheric spectral model with
“A2” physics, V* horizontal diffusion, standard ra-
diation code and At = 10 min requires 95 min of
CPU time.

9. Applications of spectral models at GFDL

Post-1974 versions of the GFDL spectral predic-
tion model have recently been adapted and applied,
within GFDL to research in such diverse areas as
extended and long range atmospheric prediction,
four-dimensional assimilation of data, climate, and
planetary atmospheres. In fact, the feasibility of var-
ious studies hinged upon the spectral model’s com-
putational efficiency combined with its reasonable
accuracy at R15 to R30 spectral resolution. We also
note that much of the above research is about to be
published. Therefore, a short review of applications
of spectral models at GFDL should be timely as well
as useful. The applications of spectral models and
their resolution characteristics are listed in Table 2.

a. Extended and long range prediction

Miyakoda et al. (1979) focused on the cumulative
results of extended range predictions by a 2.25° res-
olution, nine-level hemispheric grid point model with
“A” type physics, for 10 summer cases. However,
based upon three cases, the R30L09 spectral model
performed at least as well as the grid point model,
if not slightly better out to 10 days. A detailed com-
parative evaluation between an R30L09 global spec-
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tral and the so-called N48L09 global grid point
model for three winter cases will be reported on in
a forthcoming paper. The latter model has a modified
Kurihara grid (Umscheid and Bannon, 1977) with
48 grid points between pole and equator (1.9° me-
ridional resolution) as well as nine sigma levels. The
grid point model has somewhat higher resolution
than the R30L09 transform grid, particularly in the
tropics. Both miodels have “A” type physics. The in-
tegrations were extended out to 15 days. The spectral
model tended to predict the phase of transient dis-
turbances more accurately. However, in at l€ast one
case the R30L09 quasi-stationary planetaty-scale
waves lost amplitude, relative to the N48L09, after
8-10 days, dlthough even the N48L09 amplitude was
deficient. The R30L09 planetary-scale wave ampli-
tudes were noticeably enhanced, however, when
“E4” physics was used.

Thirty day simulations of a January 1977 blocking
event have been carried out (K. Miyakoda, personal
communication, 1982) with an N481.09 E4, N481.09
A2, R30L09 E4 and an R30L09 A2 model. “E4”
physics appears to be a crucial factor for maintaining
the blocking patterns in the vicinity of North Amer-
ica out to 25 or 30 days for reasons as yet unex-
plained. The N481.09 E4 prediction was the most
successful. We hope that spectral models will even-
tually be accurate enough to predict 30-day means

and perhaps 10-day means of the geopotential height
field up to two or three months in advance.

b. Four-dimensional assimilation

The spectral model is an important component of
the GFDL four-dimensional optimal analysis system
used for processing FGGE data. A technique for
assimilating data into a spectral model was developed
by Simmonds (1976) and applied to a barotropic
spectral model. Prior to insertion of data, the model’s
spectral variables are transformed to the grid point
domain. Data are then inserted whenever available.
Finally, the resulting hybrid field is transformed to
the spectral domain and spectrally truncated before
resuming the integration. This technique was also
successfully applied by Simmonds (1978) to two ver-
sions of the GFDL R30L09 spectral prediction
model, i.e., one with “A” type physics and one with
more limited physical processes. A much more com-
plicated system, comprised of pre-processing, four-
dimensional assimilation, univariate optimal inter-
polation (OPI) statistical analysis, and nonlinear
normal mode initialization was developed at GFDL
to generate FGGE analyses. An R30L18 global spec-
tral model is used for the four-dimensional assimi-
lation and nonlinear normal mode initialization. The
model incorporates the Monin-Obukhov formulation
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for the surface boundary layer, the Fels-Schwarzkopf
(1975) radiation algorithms and solar diurnal vari-
ation.

The assimilation of data is accomplished in a series
of steps. Asynoptic data and timely synoptic data are
grouped into time blocks of two hours and vertically
interpolated to a set of standard pressure levels. The
latter data are optimally interpolated to the R30
transform grid, using the most recent (0000 or 1200
GMT) meteorological analysis as a first guess. Next,
the horizontal OPI analysis is vertically interpolated
to the model sigma surfaces. Finally, the model so-
lution is replaced by grid point insertion data, which
is a weighted combination of the OPI analysis and
the present model solution. The weights depend upon
various factors including the type and reliability of
the original synoptic and asynoptic data. To enhance
the assimilation of the data, the insertion process is
repeated each time step using the same OPI analysis
over a particular 2 h interval. It is interesting to note
that the ECMWF scheme employs a 6 h forecast-
OPI analysis cycle (Lorenc, 1981). Thus, the OPI
analysis affects the final analysis more directly in the
ECMWEF, as compared to the GFDL data analysis
system.

In the present GFDL system, nonlinear normal
mode initialization is applied at 6 h intervals, just
after the archival, if performed, of a final four-di-
mensional analysis. The main benefit is better control
of small-scale noise. The GFDL scheme is based on
the formulation of Machenhauer (1977). Six itera-
tions were found to provide optimal convergence.
Also, only the first seven vertical modes of the
R30L18 spectral model are initialized. A novel fea-
ture of the GFDL scheme is that slow modes with
periods exceeding 6 h, are not initialized. This fre-
quency cutoff criterion is more severe than the ver-
tical modes cutoff criterion. Its primary function is
to help preserve the amplitude of the tropical (Had-
ley) meridional circulation. The slow modes, which
tend to be forced in the tropics by diabatic heating,
would be adversely affected by the application of
nonlinear normal mode initialization.

Perhaps the most important conclusion reached
thus far, is that four-dimensional assimilation is a
viable alternative to the forecast-OPI analysis cycle
approach. In particular, it does not significantly re-
duce’ the amplitude of midlatitude, synoptic scale
disturbances or generate excessive small scale noise
provided that: 1) climatology is not the first guess
field for the OPI and 2) the *“data toss-out” criterion
in the OPI is not too severe. The GFDL /FGGE anal-
ysis system is described in more detail by Miyakoda
et al. (1982).

Although it takes ~3.0 h of CPU time on the ASC
computer to process and analyze one day of FGGE
data, the computations would not have even been
feasible with the N48L18 grid point model. On the
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other hand, the analyses would have been of inferior
quality if the coarser resolution N24L18 model had
been used.

¢. Climate

The GFDL spectral prediction model has been
adapted by L. Holloway of the climate group for
climate simulation studies. In effect, he linked our
spectral-grid dynamics and semi-implicit time dif-
ferencing scheme to a GFDL climate model. Despite
differences in long-period forcings, condensation cri-
terion and placement of the sigma levels, the pre-
diction and climate models are rather similar. The
climate model versions with R15, R30, T21 and T30
spectral resolution have been integrated using linear
V* horizontal diffusion with » ~ 1.0 X 10'® m* s™!
or occasionally » ~ 2.5 X 10" m* s™'. An inter-
comparison of the R15, R21 and R30 results is re-
ported in Manabe et al. (1979). For climate simu-
lation purposes, the R15L09 model version is quite
respectable. For example, it simulates the sea level
pressure field better than a comparable 500 km res-
olution grid point model, yet is far more economi-
cal. Increasing the resolution to R30L09, the sea-
level pressure simulation becomes more realistic in
the Southern Hemisphere. But the belt of surface
westerlies in the Northern Hemisphere becomes too
intense in winter. Meanwhile, the precipitation belts
and dry zone are simulated better as the resolution
is increased. In any case, the use of the R15L09
spectral climate model for climate variability and
climate sensitivity studies appears justifiable.

Manabe and Hahn (1981) and Lau (1981) have
analyzed the time variability of a 15-year integration
of the R15L09 spectral model. Topography, season-
ally varying sea-surface temperature and insolation,
snow-albedo feedback and soil moisture feedback
were included in the model. But no non-seasonal
perturbations were introduced into the prescribed
forcing. Manabe and Hahn noted that the variability
of both the daily and monthly mean 1000 mb geo-
potential height field were well-simulated at mid-
latitudes. However, the monthly mean variability
was somewhat too weak in the tropics. Lau has fo-
cused on the three-dimensional structure and tem-
poral behavior of the most prominent circulation
anomalies appearing in the R15L09 integration. For
this purpose, he employed a wide variety of tech-
niques including empirical orthogonal function rep-
resentations, teleconnection patterns and frequency
spectra. The large-scale features of the model’s
anomaly patterns were internally consistent, quali-
tatively similar to the predominant observed standing
modes, and had a characteristic time scale of 15-20
days. On the other hand, Lau found that the model
was unable to simulate the east-west sea-level pres-
sure seasaw associated with the observed Southern
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Oscillation. He speculated, as Manabe and Hahn
(1981) had done, that a lack of air-sea coupling
might be the cause.

As a next step, R. N. Keshavamurty (personal
communication, 1981) has investigated the sensitiv-
ity of the R15L09 climate model simulation to im-
posed warm sea-surface-temperature anomalies in
the equatorial Pacific. Although a complete air-sea
coupling was absent, he was able to simulate differ-
ent phases of the observed Walker circulation. The
phase essentially depended on the region where the
sea-surface-temperature anomalies were placed. Also,
dynamically consistent atmospheric circulation
anomalies did indeed rise above the natural vari-
ability “noise” level of the model.

In an unrelated study, Meleshko and Wetherald
(1981) have analyzed the sensitivity of a 60-day in-
tegration of the R211L09 spectral climate model to
the fixed cloud distribution. Seasonal parameters
appropriate to Northern Hemisphere summer were
prescribed. Also, two cloud distributions, one zonally
symmetric, the other geographical, were specified.
The latter was generated by a scheme which incor-
porates longwave radiation fluxes measured by sat-
ellites. The geographical cloud distribution caused
the surface temperature to increase by 2 to 4 K over
the continents, but the sea-surface temperatures were
held fixed. The surface pressure decreased over the
continents (by as much as 12 mb at midlatitudes)
and increased over the oceans.

In yet another study, Wetherald and Manabe
(1981) have analyzed the sensitivity of the R15L09
spectral climate model to the quadrupling of the car-
bon dioxide concentration. Their atmospheric model
excluded topography but was coupled to a simple
mixed layer ocean model, The domain was an ar-
bitrary 120° sector. They found that the climate is
much less sensitive to carbon dioxide if the seasonal
variation of the solar insolation at the top of the
atmosphere is imposed. In this case, the highly re-
flective snow cover at polar latitudes disappeared in
summer, thereby reducing the sensitivity.

d. Planetary atmospheres

Thus far, there have been two applications of the
GFDL spectral prediction model in this area. First,
W. Rossow has constructed an R15L09 spectral
model with parameters (e.g. radius, retrograde ro-
tation rate and mass) appropriate for the Venusian
atmosphere. The model extends from the surface to
70 km, i.e., near the top of the observed cloud layer.
Rossow removed all the physical processes except for
dry convective adjustment and V? horizontal diffu-
sion, then added Newtonian heating based upon an
assumed equilibrium temperature profile. The above

model was integrated out to 5000 days. The results -

have appeared in condensed form in Rossow (1978,
1979). In Rossow’s model, the larger scale modes
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have a more predominant influence than convective
scale modes upon the temperature structure. An in-
tense, thermally direct Hadley cell develops 50-70
km above the surface and a weaker direct cell in the
lowest 10 or 20 km. The mean stratification remains
weakly stable. Rossow’s vertical profile of the zonal
wind agrees qualitatively with Pioneer satellite
observations in the 10-20 km region. However, he
has not yet successfully simulated the so-called 4-
day wind by prescribing diurnal-varying radiative
forcing.

Second, Williams and Holloway (1982) have in-
vestigated the response of the atmospheric general
circulation of an earthlike planet to variations in ro-
tation rate and obliquity. For this purpose, Holloway
constructed an R15L09 and an R42L09 sector
model, among others, from the GFDL climate
group’s spectral model with “A” physics. Many as-
pects of the simulated general circulation quali-
tatively resembled that of the Venusian, Martian
or Jovian atmospheres when the rotation and obli-
quity parameters appropriate to those planets were
specified. Their results suggest that these two pa-
rameters strongly influence the circulation of plan-
etary atmospheres. Also, at low rotation rates, the
diurnal variation in the solar heating plays an im-
portant role.

10. Concluding remarks

A global spectral transform model, developed at
GFDL, has been described in detail. This model was
originally designed for carrying out extended range
prediction experiments. However, it has also been
adapted and applied to the four-dimensional assim-
ilation of data, climate studies and simulation of the
Venusian atmosphere.

The spectral aspects, semi-implicit time differenc-
ing scheme and grid point physical processes of the
model were emphasized. Two apparently unique fea-
tures of the GFDL spectral prediction model are its
linearized virtual temperature correction and an op-
tional spectrally-computed nonlinear horizontal dif-
fusion scheme.

The basic model has R30L09 resolution and uti-
lizes the so-called “A2” physics package and linear
V* horizontal diffusion. Its capability at extended
range prediction, i.e., 10 days and beyond, will be
discussed in a forthcoming paper. Concerning other
model versions, preliminary results from the more
advanced R30L09 “E4” spectral model are quite
encouraging. More specifically, the “E4” physics
appears to improve the quality of the R30L09 me-
dium range forecast. Also, the integration of a global
RA421.09 “E4” model and a hemispheric R60L09
“A2” model are in progress. An R30L18 spectral
model is playing a prominent role in the production
of four-dimensional analyses of FGGE data at
GFDL. Finally, lower resolution spectral models are
being widely used in climate sensitivity studies.
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APPENDIX
Derivation of the B, , Matrix Elements

The semi-implicit leapfrog time differencing
scheme is applied in the spectral domain. For sim-
plicity, the spectral indices n and m will usually be
suppressed in the course of the derivation; factors
involving n or m will be retained, however. For ex-
ample, n(n + 1)D,”(k) would be written as n(n
+ 1)D,.

Before carrying out the derivation, it is useful to
define the semi-implicit operator associated with
leapfrog time differencing. If it is applied to an ar-
bitrary variable Z, then

(A1)

where ¢ is the time and At is the time step. Thus, the
leapfrog time differencing operator may be written
as

= [Z(t + A1) + Z(t — A1)]/2,

2 _ [Z Z(t — An]/Ae.

Y (A2)

For fixed n and m, a set of kx algebralc equations

for the kx spectral coefficients Dk, = 1, kx may
be obtained as follows: First, the spectral divergence
equation (42) at level k + 1 is subtracted from its
counterpart at level k, 1 < k < kx — 1. Then, ap-
plying the finite difference operator (A2) to this in-
termediate equation as well as to the divergence
equation at level k = kx, we obtain

~ nn + 1)

D, - (P — Po)Ar=1,, (A3a)
k=1 « kx — 1 and

—r +1

Dkx 'n(na—) kaAt Ikx . (A3b)

Here, I, is shorthand notation for D, (t — At) — Dy(2
— A1) + (m — m+)At, and I, for D, (r — Ar)

+ n.Al. Second, the ng spectral coeflicients must be

eliminated from Egs. (A3a) and (A3b). The lengthy
manipulations may be summarized as follows:

i) Eq. (A2) is applied to ﬁ; to obtain
) 4
P, = —6~" At + P(t — At).
i) The leapfrog finite difference operator is ap-
piizd to Eq. (40) tc chtain
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o, _ 5%,

ot ot
and Eq. (A4) is used to eliminate 6Pk/ ét. Note that
P(t — At) is known.

iii) (0®:/6t) — (6%+1/0t) and 6®,,/0t are ex-
pressed as linear combinations of 87,(k)/ét and
0T (k + 1)/6t and of 6T(kx)/ét and 6T (kx — 1)/
t, respectively, using Egs. (27b) and (27a). In turn,

6T,,(k) oT,
ot ot

iv) The leapfrog finite difference approximations
to dT,/dt, dr,/dt and dg/dt are replaced by their
respective spectral tendencies, i.e., by the right-hand
side of the spectral thermodynamics Eq. (43), water
vapor Eq. (44) and surface pressure Eq. (45).

The final result, in matrix form, is the kx coupled
linear equations

kx

2 Bk,k’D_I:' = I +
K=1

+ RT(R) é‘i (A4)

4 0617,(k) 6”‘

n(n + 1)

AtGy (A5)

for the kx unknowns D_,:, or more precisely 5,:’”(k),

k=1,2 «++ kx, where n and m are fixed. The
matrix elements are given by
' +1
I ﬂn—_) (At)z{akAkI( + BiArripe + R[T (k)
— T(k + D)(Ac)e} + bk — Oxrie» (Aba)
fork=1,2, --- kx — 1; and
n(n+1
Biw = ‘(—_) (ALY [&Asep + BAre-1p
+ RTv(kx)(Aa)k'] + 6kx,k‘ ) (A6b)
where
5o = {1 if kK'=k
o if k' #k

The right-hand side of Eq. (A5) was denoted by J;
in Eq. (46) in Section 5. Also, in Eq. (A5), Gy is the
expression

G = {Pr — Ppyy + aqT(k) + BTk + 1)
+ R[Ty(k) — Tk + Dg}a
+ {a(O + 0.61T,I1,)
+ Bi(Opsy + 0.61T ;1 I14,)

+ R[Ty(k) — T(k+ 1)IM} At
fork=1,2, ---, kx — 1; and for k = kx,
Gix = [Prx + &T(kx) + BT (kx — 1)

+ RT(kx)q)i—ar + [&(Oyx + 0.61T,,I1;,)
+ 6(9,(,;_. + 0.617T,— Iie—1)]AL

(A7a)

(A7b)
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