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ABSTRACT

An isopycnal model of the North Pacific is used to demonstrate that the seasonal cycle of heating and cooling
and the resulting mixed layer depth entrainment and detrainment cycle play a role in the propagation of wind-
driven Rossby waves. The model is forced by realistic winds and seasonal heat flux to examine the interaction
of nearly annual wind-driven Rossby waves with the seasonal mixed layer cycle. Comparison among four model
runs, one adiabatic (without diapycnal mixing or explicit mixed layer dynamics), one diabatic (with diapycnal
mixing and explicit mixed layer dynamics), one with the seasonal cycle of heating only, and one with only
variable winds suggests that mixed layer entrainment changes the structure of the response substantially, par-
ticularly at midlatitudes. Specifically, the mixed layer seasonal cycle works against Ekman pumping in the
forcing of first-mode Rossby waves between 178 and 288N. South of there the mixed layer seasonal cycle has
little influence on the Rossby waves, while in the north, seasonal Rossby waves do not propagate. To examine
the first baroclinic mode response in detail, a modal decomposition of the numerical model output is done. In
addition, a comparison of the forcing by diapycnal pumping and Ekman pumping is done by a projection of
Ekman pumping and diapycnal velocities on to the quasigeostrophic potential vorticity equation for each vertical
mode. The first baroclinic mode’s forcing is split between Ekman pumping and diapycnal velocity at midlatitudes,
providing an explanation for the changes in the response when a seasonal mixed layer response is included.
This is confirmed by doing a comparison of the modal decomposition in the four runs described above, and by
calculation of the first baroclinic mode Rossby wave response using the one-dimensional Rossby wave equation.

1. Introduction

The TOPEX/Poseidon altimeter observations of SSH
(sea surface height) show a variety of responses to at-
mospheric forcing and give information about how the
ocean adjusts to this forcing. The SSH observations can
be explained primarily by the adjustment of the ocean
to seasonal variations of wind and heat-flux forcing
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(Chelton and Schlax 1996; Vivier et al. 1999, VKT
hereafter; Stammer 1997; Stammer et al. 1996, Plate 3).
Studies in the North Pacific show that the steric response
to heating is large at high latitudes (VKT; Stammer
1997). A quasi-steady topographic Sverdrup balance is
also found over the North Pacific to latitudes as low as
258N. Equatorward of that, the flat-bottomed Sverdrup
balance is important (VKT). Forced first-mode baro-
clinic Rossby waves are seen to propagate south of about
408N.

A feature of the observed Rossby waves not explained
by the simple models is apparent damping of Rossby
waves as they propagate from east to west across the
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basin. Qiu et al. (1997) show that Laplacian or bihar-
monic mixing should be added to the simple long-wave
model for better agreement with SSH observations. This
form of damping represents lateral mixing by eddies,
and is scale selective. Another possible form of damping
is Newtonian cooling proportional to SSH in a reduced
gravity model. This formulation could represent simple
thermal damping of the SSH, assuming SSH is propor-
tional to SST. Newtonian damping is also interpretable
as potential vorticity mixing, indicative of vertical mix-
ing processes in the ocean. This suggests that diabatic
effects may play a role in the dynamics of the response
of the ocean to variability in wind forcing.

In reduced gravity models of the ocean’s response to
wind forcing (Qiu et al. 1997), many physical processes
are ignored; these include the coupling of the Rossby
waves to bottom topography (Killworth and Blundell
1999), coupling among different vertical modes, and
vertical mixing processes. More sophisticated numerical
models include these effects but are difficult to interpret.
Here we focus on the influence of diapycnal processes,
primarily the seasonal cycle of entrainment and detrain-
ment of the mixed layer, on the large-scale response of
the ocean to both wind and heat-flux forcing by doing
a series of model runs with different forcing configu-
rations. The possibility of forcing of Rossby waves by
diapycnal processes has been explored previously in the
context of decadal variability (Liu 1999). With simpli-
fied geometry and forcing, Liu finds that Ekman pump-
ing forces the first baroclinic mode, while heating and
cooling at the surface primarily forces the second bar-
oclinic mode. Here we quantify these results in a model
that has realistic forcing to determine if vigorous mixing
associated with the seasonal evolution of the mixed lay-
er influences the first baroclinic mode evolution and thus
the SSH in the ocean.

The outline of the paper is as follows. The numerical
model used in this study is described in section 2. Four
model runs are discussed in section 3. The dynamics at
work are explored in the context of a quasigeostrophic
modal decomposition of the oceanic response in section
4. Consequences of the results for the interpretation of
the response of the ocean to seasonal forcing are dis-
cussed in section 5.

2. The isopycnal model formulation

The model used for this study is the Hallberg Iso-
pycnal Model (Hallberg 2000; Hallberg and Rhines
1996; Ladd and Thompson 2001), an isopycnal model
similar to MICOM [New et al. (1995) and references
therein]. The model includes diapycnal mixing and an
embedded mixed layer. The mixed layer has Kraus–
Turner physics with additional shear-dependent mixing
below the mixed layer, and the entrainment algorithm
used in MICOM. However, detrainment occurs through
a buffer layer, an additional layer with variable density.
The detrainment method is described in detail in the

appendix and has been used to study the seasonal cycle
and water mass formation (Ladd and Thompson 2001).

To maintain the model’s free surface while increasing
the time step, the value of gravity at the free surface is
10 times smaller than the actual value. The SSH re-
sponse is 10 times larger than what it would be in the
ocean so that in all plots of SSH from the model, we
divide the magnitudes by 10. High-frequency barotropic
motions will not be well represented in the model, owing
to both the artificial value of g as well as the closed
domain. An experiment with the true value of g was
done and compared against the control run described
below for year 1992. The response is quantitatively sim-
ilar, with rms SSH locally no more than 10% larger.
The low-frequency (annual period) motions of interest
are very well represented by the approximation used
here. In particular, quasi-steady barotropic topographic
Sverdrup response on the annual period is well repro-
duced in the model, as demonstrated by VKT.

The model domain is the North Pacific between 138S
and 608N. Resolution is 28 in each direction. The hor-
izontal mixing is biharmonic (with the coefficient set at
2 3 1015 m4 s21), which favors mixing at smaller lateral
scales. Thus, the solution is less viscously controlled
than one with the numerically required value of Lapla-
cian mixing. The diapycnal mixing coefficient is 1 3
1025 m2 s21 unless otherwise noted. There is also hor-
izontal thickness diffusion of 20 m2 s21, required for
numerical stability. Bathymetry is taken from ETOPO
60. The model is forced by National Centers for En-
vironmental Prediction (NCEP) daily wind fields, using
perpetual 1992 winds to spin up the model for 20 years
from the September initial conditions based on Levitus
et al. (1994) and Levitus and Boyer (1994). Year 1992
is used for sensitivity studies. The buoyancy forcing is
a combination of da Silva et al. (1994) heat fluxes and
a relaxation to Levitus et al. sea surface buoyancy. The
timescale of the relaxation is 100 days for a mixed layer
100 m thick (Rothstein et al. 1998). The coefficient of
thermal expansion varies with location and season so
that the equation of state is nonlinear in temperature.
Two different density layer configurations are used (Ta-
ble 1). In the first case, an adiabatic simulation is done
with 7 isopycnal layers. In the second, 8 isopycnal layers
are used along with a buffer layer and a mixed layer,
giving a total of 10 layers.

3. The role of diapycnal and mixed layer processes

To elucidate the role of diapycnal processes in the
response of the ocean to seasonal forcing, we present
the results from four model runs, run 1: wind forcing
but no diapycnal processes either in the mixed layer or
the interior and no heat flux forcing; run 2: heat flux,
wind forcing, and interior diapycnal mixing; run 3: wind
forcing but heat flux is given by relaxation to the an-
nually averaged SST and wind mixing is turned off in
the mixed layer; and run 4: seasonal heat flux forcing
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TABLE 1. Simulations.

Layer Density

Adiabatic

1
2
3
4
5
6
7

1021.5
1023.5
1024.5
1026.0
1026.75
1027.25
1027.25

Diabatic
1 (mixed layer)
2 (buffer layer)
3
4
5
6
7
8
9

10

1022.8
1022.9
1023.5
1024.5
1025
1025.5
1026
1026.5
1027.5
1028

and annual mean wind stress. For run 3 and run 4, the
models were run for several years from the spunup ver-
sion of run 2. This ensures that the mean density struc-
ture is similar to that in run 2. In general, the model
runs do not reproduce the smallest zonal scales seen in
the observations (Chelton and Schlax 1996; Stammer
1997; Stammer et al. 1996). This occurs for two reasons:
one is that the model is low resolution and the other is
that there may not be sufficient energy at small scales
in the wind fields.

We first examine the Rossby waves in runs 1 and 2.
By Rossby waves, we mean the first baroclinic mode
Rossby waves, identifiable by their westward phase
propagation and distinct phase speed. A comparison
shows that Rossby waves propagate more freely in run
1 at all latitudes and the response is larger (Fig. 1). For
both model runs, the rms SSH is lower than in the ob-
servations at low latitudes and comparable to the ob-
servations at midlatitudes. VKT showed that poleward
of 258N, the barotropic topographic Sverdrup balance
is important and this part of the response appears to be
well simulated in the model. In run 2 Rossby wave
generation and propagation is inhibited relative to that
in run 1 at midlatitudes. In fact, the rms model response
in run 1 is as large or larger than in the observations at
midlatitudes, despite the lack of a seasonal steric re-
sponse. This result echoes that found by Qiu et al. (1997)
in a one-dimensional wave equation where mixing was
needed to better reproduce the observations.

The rms SSH is about a factor of 2 smaller than the
observations in run 2 when the comparison is made after
applying a correction for non-Boussinesq effects sug-
gested by Greatbatch (1994) (see also Stammer 1997),
proportional to the area-averaged heating. In the higher-
resolution simulations of Stammer et al. (1996), the rms
response is also a factor of 2 too small when compared
with the observations. This result suggests that higher

horizontal or vertical resolution is needed or the winds
that forced the model had too low amplitude. In addition,
the relaxation part of the heat flux could cause damping
of the wind-driven signal, although we find that this is
not the case here.

Of course, the response at the sea surface is not the
only feature of the model ocean that changes when dia-
batic processes are included. There are profound dif-
ferences in the density structure (Fig. 2). In run 1, the
density does not show a significant seasonal cycle. In
addition, there are regions where the isopycnals are
packed together (see for instance Fig. 2c at 1408E). Wa-
ter can be moved to different parts of the basin within
the same layer but cannot cross layer interfaces. Con-
vergences and divergences control the density structure
and create regions with large vertical density gradients.
In run 2, however, the density structure must be com-
patible with the surface buoyancy forcing. Density sec-
tions from the Levitus et al. climatology show layer
thicknesses that are more uniform with longitude, with
isopycnals depressed in the west, showing reasonable
agreement with run 2. The mixed layer tends to be too
deep in the model, most likely owing to incompatible
heat fluxes and a lack of density resolution in the ther-
mocline, especially at low latitudes and the Kraus–Turn-
er mixed layer model formulation (Ladd and Thompson
2001).

Run 2 results are very robust to change of interior
mixing values. When the interior diapycnal mixing is
10 times larger, and 10 times smaller, the SSH is very
similar. It appears that it is the mixed layer evolution
that plays a large role in how the Rossby waves prop-
agate and evolve in the model rather than interior dia-
pycnal mixing. Two additional runs were done to show
that the relaxation part of the buoyancy flux as well as
thickness diffusion have very little impact on the evo-
lution of the SSH.

In run 3 with heating only, we find that the rms SSH
is relatively small, ensuring that the differences that we
see between runs 1 and 2 are not simply because of a
seasonal steric response (Fig. 3). There is however a
striking difference between run 2 and run 4 from 188N
to 388N where the run 4 response is almost twice as
large as the run 2 response. Elsewhere, the two simu-
lations are very similar, and both give smaller responses
when compared to run 1.

4. Modal decomposition and the forcing of Rossby
waves by diapycnal processes

So the question becomes, what is it about midlatitudes
when the seasonal cycle in heating and cooling is in-
cluded that causes the changes in the oceanic response?
We know from previous work that north of about 408N,
the barotropic and steric response dominate on seasonal
time scales (VKT) and neither of these responses should
be influenced by diapycnal pumping that results from
the entrainment/detrainment cycle of the mixed layer.



3660 VOLUME 32J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

F
IG

.
1.

T
im

e–
lo

ng
it

ud
e

pl
ot

s
m

od
el

of
S

S
H

fo
r

ye
ar

s
19

93
–9

6
at

10
8,

20
8,

30
8,

an
d

40
8N

:
(a

)–
(d

)
ad

ia
ba

ti
c

si
m

ul
at

io
n

(r
un

1)
(c

on
to

ur
in

te
rv

al
10

cm
),

an
d

(e
)–

(h
)

di
ab

at
ic

si
m

ul
at

io
n

(r
un

2)
(c

on
to

ur
in

te
rv

al
5

cm
).



DECEMBER 2002 3661N O T E S A N D C O R R E S P O N D E N C E

F
IG

.
1.

(C
on

ti
nu

ed
)



3662 VOLUME 32J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

FIG. 2. Layer interfaces at 228N for winter and summer: (a) and (b) run 2, (c) and (d) run 1,
and (e) and (f ) Levitus et al. (1994) observations. Mixed layer base is shown in (a) and (b) and
(e) and (f ) as a dark line.
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FIG. 3. Rms SSH anomaly (cm) zonally averaged. Solid line is run
1, dot–dashed is run 2, dashed line is run 3, and small dotted line is
run 4.

However, the baroclinic modes could be influenced by
diapycnal pumping (Liu 1999). To answer the above
question, a modal decomposition is done to determine
the relative contributions to the SSH from each vertical
mode and then to examine the response of the first bar-
oclinic mode under different forcing conditions. This
allows the separation of the seasonal heating and bar-
otropic response from the Rossby waves.

To do the modal decomposition, the annual mean
stratification (layer thicknesses) and densities are used
at each point. Care must be taken in constructing the
annual mean stratification when layers vanish. Using
the model results, a mean distribution of layer thick-
nesses is constructed such that each layer is of finite
thickness, removing layers when they are less than 10
m from the mean field by combining layers. This results
in some regions of the model ocean where fewer than
10 layers are used for the modal calculations. Interface
deviations are constructed to be consistent with this al-
gorithm. We do the model decomposition locally, as-
suming that the motions are linear, and thus make the
WKB approximation. A dynamically consistent way to
decompose the response in the model is to use the ver-
tical structure equation [see section 2 of Killworth et
al. (1997) for the continuously stratified version of this].
In the layered framework, the vertical structure equation
and the boundary conditions reduce to

f 2 f f 11 2 11 1 f 5 0 (1)12H g H g c1 1 1

for the top layer,

(f 2 f ) (f 2 f ) 1n n11 n n211 1 f 5 0 (2)n2H g H g cn n n n21

for the nth interior layer, and

(f 2 f ) 1m m21 1 f 5 0 (3)m2H g cm m21

for the bottom layer, where m is the number of layers.
In this framework, the streamfunction is related to in-
terface displacements by

n21

f f 5 gĥ 1 f ĥ . (4)On 0 n n
i51

Here Hn is the mean thickness of layer n, fn is the
streamfunction deviation from the mean streamfunction
in layer n, and gn is the reduced gravity between layer
n and layer n 2 1 taken from the mean density profile.
Also, ĥn is the interface displacement of the bottom of
layer n from its mean position.

In matrix notation, (1)–(3) can be written

1
LF 5 2 F. (5)

2c

Here L is a matrix containing the operators in the first
two terms of (1) and (2) and the first term in (3) and
F is a vector containing the vertical structure of the
streamfunction for a particular mode. Equation (5) is
solved as an eigenvalue problem for c22. The eigen-
vectors are sorted by their phase speeds, with the most
rapid phase speed being the barotropic mode. In run 2,
for the first two baroclinic modes the structure is smooth
and shows no obvious discontinuities that would suggest
lack of vertical resolution (Fig. 4), while the third bar-
oclinic mode starts to show the finite number of layers
in the calculation. Note that the density resolution is
concentrated in the upper 500 m. The phase speed of
the first baroclinic mode gravity wave shows reasonable
correspondence with other calculations (cf. Killworth et
al. 1997), although it is slightly larger than their estimate
based on the Levitus et al. data.

Since the higher vertical modes are not well repre-
sented by the limited vertical resolution in the model,
we will concentrate our discussion on the response in
the barotropic and the first two baroclinic modes. We
have ignored the impact of vertical shear on the modal
structure and phase speeds. According to the calculation
of Killworth et al. (1997), the modal structure for the
first baroclinic mode is relatively uninfluenced by the
zonal vertical shear, although the phase speed can differ
from the traditional phase speed by as much as factor
of 2. For the analysis done here, we do not use the phase
speed directly, so our results should be relatively robust
to the exclusion of the mean flow field, particularly for
the first baroclinic mode. In addition, with the inclusion
of the mean flow, the modes are no longer complete or
orthogonal.

First, we decompose the SSH response using the ver-
tical structure of the streamfunction anomalies to de-
termine how each mode contributes to the SSH varia-
tions. Since the vertical modes are orthogonal and com-
plete by construction, we can write the streamfunction
in any layer and at any point as a sum of contributions
from each vertical mode:

C 5 Ra, (6)
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FIG. 4. Nondimensional vertical structure for the first four vertical modes from run 2 in (a)–(d)
streamfunction and (e)–(h) interface displacement at 228N, 1808.

where R is the matrix whose columns are made up of
the eigenvectors F that represent the vertical structure
of each mode and a is a vector that represents the time-
dependent magnitude of each mode. The vector C con-
tains the model streamfunction as a function of time.
At each time step a is found from (6) and the model
streamfunction deviations using

21a 5 R C. (7)

To determine the contribution to the sea surface height
for each mode, we find how much each vertical mode
contributes to the stream function in layer 1. There the
streamfunction is related to the SSH (h) by

g g
h 5 c 5 R a . (8)O1 1 j jf f j51,m0 0

To study how each mode contributes to the SSH, we
examine R1j aj for j 5 1, 3 (the barotropic and first two
baroclinic modes). Each of the vertical modes contrib-
utes different spatial and temporal structure to the SSH
response. The barotropic mode is quite noisy, but does
show structure consistent with a barotropic Sverdrup-
like response as a zonally uniform and nonpropagating
signal (Fig. 5a). The first baroclinic mode shows prop-
agation and is the mode that we identify with Rossby
waves that appear so strongly in the observations (Fig.
5b). The second baroclinic modes have slower propa-
gation and a weaker response (Fig. 5c). The contribution
to the SSH from the first baroclinic mode shows western
intensification and has similar structure to that found by

VKT while the second baroclinic mode is larger in the
Kuroshio Extension and subpolar gyre (not shown).

The modal decomposition for runs 2, 3, and 4 shows
the destructive interference of the Ekman pumping and
diabatic pumping response (Fig. 6). The first baroclinic
mode response in run 4 is larger than the response in
run 2 or in run 3. This suggests that the wind-driven
response and the diabatic response destructively inter-
fere to lower the total (run 2) response. This interference
is largest between 208 and 358N. In contrast, for the
second baroclinic mode there is constructive interfer-
ence poleward of 258N. Note that the second baroclinic
mode response is larger than the first baroclinic mode
response under thermodynamic forcing alone (run 3)
since its vertical structure projects better onto the ther-
modynamic forcing.

To determine how the diapycnal processes influence
each vertical mode in the model, a dynamical interpre-
tation must be made. To do this, we use quasigeostrophic
theory. We have assumed that the motion is linear and
has large horizontal length scales so that the relative vor-
ticity can be ignored. Mixing is written as a diapycnal
flux at the top and bottom of each layer. The continuity
equation for each layer can then be written as

]
h 1 = · (u h ) 5 w 2 w , (9)n n n n21 n]t

where hn is the thickness of layer n and wn is the diabatic
velocity or flux across the interface at the bottom of
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FIG. 6. Zonally averaged rms SSH anomaly (cm) from each vertical
mode from run 2 (solid), run 3 (dashed), and run 4 (dotted): (a) first
baroclinic mode and (b) second baroclinic mode.
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layer n. The linear layer quasigeostrophic potential vor-
ticity (PV) equations are

] c 2 c c ]c f2 1 1 12 1 b 5 (w 2 w ) (10)Ek 11 2]t H g H g ]x H1 1 1 1

for layer 1,

] c 2 c c 2 c ]cn11 n n21 n n1 1 b1 2]t H g H g ]xn n n n21

f
5 (w 2 w ) (11)n21 nHn

for interior layers, and
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FIG. 7. Rms contribution to the forcing of the baroclinic modes by
Ekman pumping (solid) and diabatic pumping (dashed) in run 2: (a)
first baroclinic mode and (b) second baroclinic mode.

] c 2 c ]c fm21 m m1 b 5 w (12)m211 2]t H g ]x Hm m21 m

for the bottom layer.
In setting up (10)–(12), we have assumed that the

Ekman layer is much thinner than the mixed layer so
that the mean mixed layer can be treated as layer one
in the above equations. This means that the Ekman
pumping acts on the top of the first layer. This is not
strictly accurate since in the model the wind acts as a
body force in the mixed layer; thus the mixed layer and
Ekman layer are the same depth. Treating the mixed
layer with separate dynamics from the interior layers
would introduce additional complexity and is not war-
ranted here. Note that Ekman pumping in the layered
model is not a diabatic vertical velocity in that it does
not cause fluid to pass between layers; thus it does not
appear in the diapycnal velocity diagnosed from the
model. It does, however, directly modify PV in the top
layer. In contrast, the diapycnal velocity causes mass
redistribution between the layers, and affects the PV in
each layer. In this case, most of the diapycnal mixing
comes about from entrainment and detrainment at the
base of the mixed layer. The interior diapycnal velocities
that are diagnosed from the model are assigned to the
appropriate interface when layers vanish using the same
algorithm as described above for the construction of the
interface deviations. We also continue to ignore vertical
shear in the background flow field.

The PV equations for each layer (10)–(12) can be
written

]C ]C
L 1 b 5 F, (13)

]t ]x

where C is a vector representing the streamfunction in
each layer and F is the rhs of (10)–(12).

To transform (13) to PV equations for each vertical
mode, we first note that we can write (5) as

LR 5 2RC, (14)

where C is a matrix containing the eigenvalues (c 22 )
of (5) as elements of the diagonal. Then we can write
(14) as

HLR 5 2HRC, (14)

where H is a matrix whose diagonal elements are the
thickness of each layer. If we then take the transpose
of each side of (14), we find that

T TR HL 5 2CR H (15)

since HL is symmetric (this is another way of saying
that the operator is self-adjoint). Thus, we can transform
(13) by multiplying by RTH and using (15) to get

]C ]C
T T T2CR H 1 bR H 5 R HF. (16)

]t ]x

We have created an equation that defines the propagation

and forcing of the potential vorticity for each vertical
mode, in terms of the vertical divergences (F) where
now the jth element of RTHC is the potential vorticity
of the jth vertical mode. We have assumed that R and
H are independent of time and that they vary slowly in
the zonal direction.

The rms contribution of the Ekman pumping and dia-
pycnal velocities to the PV forcing of each vertical mode
as calculated from the rhs of (16) can then be compared
(Fig. 7). For the first baroclinic mode, the Ekman pump-
ing dominates everywhere, while diapycnal pumping
plays an important role between 308 and 408N near the
Kuroshio Extension (Fig. 7a). The diabatic pumping is
large just in the region where there is the largest dif-
ference between the wind only run and the control run
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FIG. 8. Ratio of transfer coefficient. Solid line is ratio of transfer
coefficient of the run 4 to run 2 (zonally averaged), and dashed line
is the ratio of rms SSH of run 4 to run 2 (zonally averaged).

FIG. 9. Correlation coefficients between first baroclinic mode re-
sponse in the numerical model run 2 and that from the 1D wave
equation (solid line), and correlation coefficient between the the dia-
batic pumping response and the Ekman pumping response from the
1D wave equation (dashed line).

(cf. Fig. 7 to Fig. 3). For the second baroclinic mode,
Ekman pumping and diabatic pumping are coincident
and of similar magnitude with the maximum in the Ku-
roshio Extension (Fig. 7b). One would not expect a one-
to-one correspondence between the energy in the modes
and the forcing patterns. Rossby wave energy locally
depends on the accumulation of forcing as the Rossby
wave propagates to the west.

We can define a transfer coefficient for Ekman pump-
ing for each vertical mode taken from (16) that deter-
mines the magnitude of the forcing for mode given by
f 0fn(0) . A question arises whether the changes in the2cn

stratification in the various experiments that were dis-
cussed in section 3 could explain the changes in the
amplitude of the response rather than diapycnal pump-
ing. The ratio of the transfer coefficient for run 2 and
run 4 shows that the expected wind-driven response is
approximately the same in both runs (Fig. 8). However,
the ratio of the response is significantly different at mid-
latitudes, confirming the role of diapycnal pumping in
the evolution of the first baroclinic mode.

There is no guarantee that diapycnal forcing will
cause damping (see, e.g., Liu 1999). To ascertain its
effect on the first baroclinic mode more directly, we
solve the one-dimensional wave equation (16) using the
forcing fields calculated from its right-hand side and the
phase speed calculated from the modal analysis. The
equation is solved by an upwind differencing scheme
and then is compared against the modal calculation. In
general, the amplitude found from the one-dimensional
model is about a factor of 2 smaller than found from
the modal analysis. This can be explained by the errors
in the wave equation associated with the presence of
the mean flow related to the factor-of-2 difference in
the phase speed from that of a resting ocean at midlat-
itudes (as show by Killworth et al. 1997). Barring the
differences in amplitude, south of 308N, the wave equa-
tion reproduces the modal time/longitude behavior and
it is well correlated with the results from the numerical

model (Fig. 8). Between 178 and 288N, the diapycnal
pumping response is anticorrelated with the Ekman
pumping response, resulting in a total wave field that
is smaller than the wave field forced by Ekman pumping
alone.

There are several caveats that should be made about
this analysis. In the modal analysis, we have linearized
about the mean stratification, which does not take into
account the order one changes in the density structure
that occur throughout the year in the upper ocean. The
one-dimensional model does not do very well in pre-
dicting the response of the full model poleward of 458
where the annual Rossby wave is most likely evanes-
cent, and VKT found very little Rossby wave response.
In this region we expect that the one-dimensional model
should fail. In addition, in this region the mean flow is
strongly eastward, and the wave propagation character-
istic would be significantly modified so that the one-
dimensional model would not be valid.

The higher vertical modes are strongly influenced by
diapycnal processes in this analysis, which suggests that
they would be strongly forced by diapycnal processes,
much more so than by Ekman pumping. However, the
higher modes are less well represented in the model,
and the mean velocity field is more important in their
evolution than it is for the first baroclinic mode. The
effects of the mean flow on the propagation character-
istics of the higher modes will be explored in a sub-
sequent paper.

5. Conclusions

Model simulations of the SSH response to wind forc-
ing show that diapycnal processes and mixed layer evo-
lution are important in the dynamics of the SSH re-
sponse, particularly at mid- to high latitudes. Typically
the propagation of the first baroclinic mode Rossby
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waves has been studied in simple models without the
inclusion of diapycnal processes and mixed layer phys-
ics, and thus the adjustment of the ocean to seasonal
changes in wind stress has been decoupled from the
seasonal cycle of heating and cooling. The simulations
show that, in particular, the presence of the seasonal
cycle mixed layer entrainment/detrainment can be im-
portant in oceanic adjustment at midlatitudes. In an adi-
abatic simulation (run 1), Rossby waves forced near the
eastern boundary propagate without reduction in am-
plitude, and an obvious seasonal cycle is lost. In con-
trast, in run 2 Rossby waves are less vigorous. We are
argue here that the mixed layer seasonal cycle, and the
associated diapycnal velocities, is important for chang-
ing the Rossby waves.

A modal decomposition of the model interface dis-
placements shows that, as expected, the barotropic mode
dominates the SSH signal at high latitudes, with the first
baroclinic mode important at mid to low latitudes and
higher vertical modes not contributing as much. The
model decomposition shows that the first baroclinic
mode is suppressed at midlatitudes by diapycnal pump-
ing. In contrast, the second baroclinic mode is enhanced
by diapycnal pumping.

The results from a one-dimensional wave equation
are consistent with the modal analysis and show that
the diabatic response and Ekman pumping response are
opposite between 178 and 288N for the first baroclinic
mode. The resulting signal is weaker than the Ekman
pumping signal alone. In addition, the one-dimensional
model has good predictive skill south of 308N, while
north of 458N, the skill is very poor indeed, suggesting
that the linearized potential vorticity equation is not
valid in this region. A more complete analysis would
include the effects of the mean flow on the propagation
pathways of the waves.

Higher resolution in the model, both vertical and hor-
izontal, would help with a more faithful representation
of the observations. In particular, the choice of density
resolution influences how well the stratification can be
represented. The vertical structure in these model sim-
ulations was chosen to maximize resolution in the sub-
tropics, which leaves the resolution in the Tropics lack-
ing near the surface. This leads to mixed layers that are
too deep, and vertical mixing that is unrealistically large.
Likewise, the lack of horizontal resolution affects the
northwestern Pacific, where the Kuroshio Extension is
too far north, and where the mixed layers are too deep.

This study shows that Rossby waves, which are tra-
ditionally thought to be purely adiabatic, can be greatly
influenced by diabatic processes. This has been explored
for decadal variability (Liu 1999), but it is on the sea-
sonal cycle that the dynamic impact of diapycnal ve-
locity associated with the seasonal cycle of heating and
cooling is the largest.
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APPENDIX

The Mixed Layer Formulation

The model uses a bulk Kraus–Turner (1969) type
mixed layer, much like that of Bleck et al. (1989) except
that a variable density buffer layer is used to receive
the fluid detrained from the mixed layer.

The mixed layer depth is determined by energy con-
siderations. If there is turbulent kinetic energy available
to drive mixed layer deepening, it does so entraining
successively from the lightest layers that contain any
mass. Alternately, if there is net surface loss of buoy-
ancy, the mixed layer may entrain due to free convec-
tion. Otherwise, the mixed layer detrains to the Monin–
Obukhov depth—the depth at which wind generated tur-
bulent kinetic energy balances the work required to mix
the surface buoyancy forcing throughout the mixed lay-
er.

Fluid that is detrained from the mixed layer goes into
a variable density buffer layer. This avoids the necessity
of having a ‘‘fossil mixed layer’’ that is appended to
the real mixed layer, as in Bleck et al. (1989). The details
of this buffer layer differ from those of Murdegudde et
al. (1995), but the layer is conceptually similar. For
example, the scheme described here conserves heat
while Murdegudde’s does not. If there is an isopycnal
layer that is intermediate in density between the mixed
layer and the buffer layer, it is possible to split the buffer
layer while maintaining a stable density profile. Bleck
et al. are careful to insure that the fossil mixed layer
does not alter the surface temperature or salinity ten-
dency due to vertical processes. But mixed layer thick-
ness, temperature, and salinity tendencies due to hori-
zontal advection within the mixed layer are unavoidably
affected by the presence of a fossil mixed layer. The
mixed layer/buffer layer approach used here gives a
more accurate representation of the effects of horizontal
advection on the mixed layer properties.

The specific calculation of the one-dimensional mixed
layer evolution is as follows.

1) If there is a net surface loss of buoyancy from the
ocean, the mixed layer becomes denser.

2) The water column convectively adjusts. Any mass
in layers lighter than the mixed layer is entrained
into the mixed layer. Penetrative convection seems
to be fairly unimportant in the ocean (Marshall and
Schott 1999), so none of the potential energy re-
leased through convective adjustment is retained to
drive further entrainment.

3) As prescribed by Kraus and Turner (1969) or Bleck
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et al. (1989), turbulent kinetic energy (with a spec-
ified surface source) is used to drive mixed layer
entrainment if there is a net surface buoyancy loss
or if the mixed layer is shallower than the Monin–
Obukhov depth, hMO 5 2m0 /B0. Here u* is the3u*
surface friction velocity, B0 is the total surface buoy-
ancy flux into the ocean and m0 is a nondimensional
constant, 0.5. The entrainment is essentially the same
as described in Bleck et al. The mixed layer entrains
from successively denser layers until the increase in
the potential energy due to the entrainment equals
the surface energy available to drive mixing:

h03TKE 5 Dt m u* 2 [(B 1 |B |)0 0 05 4

1 n(B 2 |B |)] , (A1)0 0 6
where Dt is the time increment, h0 is the mixed layer
thickness at the start of the entrainment, and n is
another nondimensional constant, here 0.03. It is easy
to show that the potential energy increase due to an
increment Dh of entrainment by the mixed layer is

1
DPE 5 h Dh(b 2 b ), (A2)0 ML Ent2

where bML is the mixed layer buoyancy and bEnt is
the buoyancy of the entrained fluid. Entrainment
continues until DPE 5 TKE. The surface TKE avail-
able to drive mixing does not decay with depth in
the current model.

4) If the mixed layer is deeper than the Monin–Obu-
khov depth, the mixed layer detrains into the buffer
layer until the mixed layer thickness agrees with the
Monin–Obukhov depth and the mixed layer buoy-
ancy increases due to any net positive buoyancy forc-
ing.

5) If there is an isopycnal layer that is intermediate in
density between the buffer layer and the mixed layer
(and there is any fluid in the buffer layer), the buffer
layer is detrained. It is partitioned into a portion that
matches the density of the intermediate density layer
and a portion that matches the density of the next
denser layer. If layer k is intermediate in density
between the buffer layer and the mixed layer, the
amount of fluid that goes into layers k and k 1 1 is,
respectively,

r 2 rB kv 5 h andk11 B r 2 rk11 k

r 2 rk11 Bv 5 h . (A3)k B r 2 rk11 k

Whenever fluid moves across interfaces between lay-
ers (except during the partitioning of the buffer
layer), it does so with the velocity and tracer con-
centrations of the layer from where it came.

The mixed layer and buffer layer obey the same
momentum equations as all of the interior isopycnal
layers, except for the inclusion of an additional pres-
sure gradient term. When the momentum equations,

]u
1 ( f k̂ 1 = 3 u) 3 uS]t

p 1
5 2= 1 gz 1 u · uS1 2r 2

p
2 = r 1 viscosity (A5)S2r

(written in standard notation, with the subscript S
emphasizing that the gradients are taken along co-
ordinate surfaces, and only the horizontal compo-
nents of the velocities are used, consistent with the
hydrostatic approximation), are evaluated in layers
of nonconstant density, the middle term on the right-
hand side does not vanish.
The average through the layer of this term is

p g h
2 = r ø 2 h 1 = r, (A6)S S2 1 2r r 20

where h is the height of the interface above the layer
and h is the thickness of the layer. The natural ex-
pression of this term on a C grid is not obvious, but
a finite-element interpretation suggests the discreti-
zation

g h ]r
2 h 11 2 )r 2 ]x0 S

1 2 1 2 2 1 1 2g h h 1 h h 1 h h r 2 r
ø 2 , (A7)

1 2r h 1 h Dx0

where the superscripts 1 and 2 indicate the points
to the east and west of the velocity point where this
term is being evaluated. This discretization is used
in the mixed layer calculations.
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