OCTOBER 1995

LARICHEV AND HELD

2285

Eddy Amplitudes and Fluxes in a Homogeneous Model
of Fully Developed Baroclinic Instability

VITALY D. LARICHEV

Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey

Isaac M. HELD

Geophysical Fluid Dynamics Laboratory/NOAA, Princeton, New Jersey
(Manuscript received 25 July 1994, in final form 7 March 1995)

ABSTRACT

A horizontally homogeneous two-layer quasigeostrophic model with imposed environmental vertical shear is
used to study eddy energies and fluxes in the regime in which an inverse barotropic energy cascade excites
eddies of much larger scale than the deformation radius. It is shown that the eddy potential vorticity flux,
*‘thickness’’ flux, and the extraction of energy from the background flow are dominated by the largest eddies
excited by the cascade, and not by deformation-scale eddies. The role of the latter is a catalytic one of transferring
the baroclinic energy cascading downscale into the barotropic mode, thereby energizing the inverse cascade.

Based on this picture, scaling arguments are developed for the eddy energy level and potential vorticity flux
in statistical equilibrium. The potential vorticity flux can be thought of as generated by a diffusivity of magnitude
Uk,/k3, where U is the difference between the mean currents in the two layers, &, is the inverse of the deformation
radius, and k, is the wavenumber of the energy-containing eddies. This result is closely related to that proposed
by Green, although the underlying dynamical picture is different.

1. Introduction

In a baroclinically unstable system one anticipates
eddy activity on the scale of the internal Rossby de-
formation radius. In a large enough system, one can
hope for a separation between this ‘‘mesoscale’’ and
larger scales of interest that would facilitate the devel-
opment of parameterization schemes for the mesoscale
eddy fluxes, particularly for the eddy potential vorticity
flux, which is the central quantity of interest when con-
sidering the effects of these eddies on larger scales.
However, one also has to reckon with the existence of
an inverse energy cascade that has the potential for fill-
ing in this gap in length scales. In this paper we are
concerned with understanding how the eddy ampli-
tudes and fluxes are determined in a system in which
mechanisms that might halt this cascade, such as the
beta-effect, scattering by topography, or boundary
layer friction, are sufficiently weak that the inverse cas-
cade proceeds through a substantial range of scales.

Of principal concern is the question of which scales
dominate the potential vorticity flux in this kind of
strongly nonlinear, baroclinically unstable system.
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Equivalently, one can ask which scales dominate the
extraction of energy from the environmental available
potential energy reservoir. Linear theory tells us that
deformation-scale waves are the most unstable distur-
bances, which leads one to suspect that they might also
dominate the energy production. But countering this
expectation is the simple fact that the spectral shape
consistent with the barotropic inverse energy cascade
results in a peak in energy at the scale at which this
cascade halts, not at the scale at which energy is in-
jected into the barotropic flow. What is to prevent these
large energy-containing eddies from advecting poten-
tial vorticity downgradient and dominating the flux and
the energy generation, which is proportional to the po-
tential vorticity flux? This question is made more com-
pelling by the argument of Rhines (1977) and
Salmon (1978, 1980) that the flow will be predomi-
nately barotropic on large scales, so that the dynamics
of the baroclinic part of the flow, on scales much larger
than the radius of deformation, will reduce to the ad-
vection of the baroclinic potential vorticity by the
barotropic flow. Since this potential vorticity does not
directly induce the flow field that is responsible for the
advection, it must act essentially as a passive tracer, so
it is difficult to see how the flux could fail to be dom-
inated by the energy-containing eddies.

There are several studies of the statistically steady
states of baroclinically unstable flows that show that
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the energy generation moves to larger scales when the
energy moves to larger scales, but the difference in
scales is never very large. In the context of homoge-
neous turbulence models of the sort examined here, this
tendency can be seen in Held and O’Brien (1992) and
Panetta (1993 ). Our intention here is to study a system
in which the scale separation between the energy-con-
taining eddies and the deformation radius is very clear,
to determine if the energy-containing eddies dominate
the flux and energy production or if the deformation-
scale eddies continue to contribute significantly.

We address this problem by examining a numerical
two-layer model in a doubly periodic domain with an
imposed background vertical current (wind) shear. The
results are interpreted in terms of the energy cascades
expected in such a model from the work of Rhines
(1977), Salmon (1978, 1980), and Hoyer and Sa-
dourny (1982). The analysis leads to a scaling argu-
ment for the magnitude of the potential vorticity (or
thickness) flux, or baroclinic energy production, in
such a system. The numerical model is introduced in
section 2, numerical results are described in section 3,
and theoretical interpretation of these results is pro-
vided in section 4.

2. The model

We consider the flat-bottom, rigid-lid quasigeo-
strophic two-layer model on an f plane, governed by
2D advection of potential vorticity Q;, subject to dis-
sipation at small and large scales:

80,16t + J(¥,, Q) = —vV3Q, (la)
3Q2/3t + J(\Pz, Qz) = "VVBQZ - KVZ‘I/Z. (lb)

Subscripts 1 and 2 refer to the upper and lower layers,
respectively; J is the horizontal Jacobian and V* the
horizontal Laplacian operator. The potential vorticities
Q; and the velocities (u; , v;) are defined in terms of the
streamfunctions ¥, :

Q= VU, + k3(¥, — ¥,)/2,
Q2 = VZ\I’Z + k%(‘I’l - ‘1/2)/2, .
(u;,v;) =(=0%;/0y, 0V;/0x), i=1,2, (2)

where the depths of the layers are chosen equally and
k' is the (internal) deformation radius. The large-scale

VI8t + J(, V) + J(7, VPr) + UdV?r18x = —kV>( — 7)/2 — uv8(v2¢)
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dissipation, —kV*¥,, in (1) simulates friction in the
Ekman layer at the bottom, while the V* term removes
the enstrophy cascading to small scales.

We assume that the source of energy for the motion
is the potential energy of a stationary, horizontally uni-
form flow with a vertical shear, that is, with uniform
north—south interface slope:

‘I,l _Uy+ll,l(x’yy t)’

W, = Uy + ¢,(x,y,t), U= const;

(3)
¢, and ¢, are required to be periodic over the square
domain 0 < x, y < 2 so that (k,, k)i = 1, implying
a scaling of the spatial dimensions by (27) "' times the
domain size. Closely related models have been studied
by Rhines (1977), Salmon (1978, 1980), Haidvogel
and Held (1980), Vallis (1983), and Panetta (1993).

The model is solved with a standard spectral tech-
nique, transforming to a grid for the computation of
quadratic products, using enough grid points to avoid
aliasing. A leapfrog step with a weak Robert filter to
eliminate any tendency for time splitting is used for the
time integrations. We retain 256 Fourier harmonics in
each spatial coordinate, so that (k,, k,)m. = 128, and
choose k; = 50 with oceanic applications in mind. With
this choice, we hope to resolve the dynamics near the
radius of deformation, at least marginally, while leav-
ing room for a substantial inverse cascade.

We set U = 0.005, so that the eddy energies are O(1)
in the calculation described below. The Ekman damp-
ing coefficient is set equal to 0.04. This value leaves
the flow sufficiently inviscid that the inverse energy
cascade reaches the domain scale, while providing the
damping on these largest scales needed to equilibrate
the flow in a reasonable time. Using several trial inte-
grations as a guide, we choose the diffusivity v as small
as possible while still preventing a buildup of enstrophy
on small scales. The resulting value is 0.512 X 107'°,
Haidvogel and Held (1980) discuss the sensitivity of
this model to the strength of the subgrid-scale damping,
but in a different part of parameter space and at lower
resolution.

Decomposing into barotropic and baroclinic vertical
modes, ¢y = (P, + ¥)/2, 7 = (Y, — ¢,)/2, the gov-
erning equations (1) become

(4a)

OV — k31)/0t + J(Y, Vi1 — k37) + J(1, V&) + UOVAY/0x + Uk20y/0x

3. Results

o

The model is initialized with very low amplitudes
and random phases in all Fourier modes, so that the

= —kV3(1r — )12 — vV¥(V?r — kiT). (4b)

evolution starts with a linear stage of baroclinic insta-
bility. Amplitudes are chosen so that the isotropic baro-
tropic and baroclinic energy spectra are independent of
k: Ey,(k,0) = E,(k,0) = 0.6 X 1077, Our notation is
such that
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<|V¢|2>=f E.,,(k,t)dk=f k2| |2 dk
0 0
(vrl|? +k372>=f E.(k, t)dk
0

= [T+ ipimlar,
0

where (. ..) is the area-averaged value so that the in-
tegrals over E,(k) and E. (k) are actually twice the
barotropic and baroclinic energy.

The linear stage of baroclinic instability is observed
until ¢ 40. (Linear theory predicts the maximal
growth rate @, at k, = 0.64k, ~ 32, k, = 0, with e-
folding time 1/a,,, = 4.8.) During this perlod the non-
linear intermode exchange is small, and for k € [0, 40]
there is nearly perfect correlation between 7 and the
barotropic meridional velocity v,.

Starting at ¢ ~ 50 the nonlinear terms become com-
parable to linear ones, at first for k € [20, 50]. In (4a)
the baroclinic term J(7, V?7r) becomes and remains
dominant over the linear term UOV?>7/dx as the major
forcing for the barotropic mode. Simultaneously, the
correlation between 7 and v, starts to deteriorate in the
same k range. The baroclinic energy productlon
Uk%7v, (an overbar denotes an angular average in k
space) becomes less efficient for those k, shifting the
energy source to larger scales where this process re-
peats. The movement of the production proceeds (Fig.
1) until it reaches the largest scales, where equilibra-
tion is eventually achieved at ¢ ~ 500. The shift of the
production to large scales is accompanied by an in-
crease in its total value. A key feature of the final equil-
ibrated state is that the energy production at scales com-
parable to the deformation radius is negligible.

The flow at equilibrium exhibits long-period oscil-
lations (Fig. 2a). The eddy turn-around time 7,(k)
= 2wk~ (kE4(k)) ™'’ is determined by the barotropic
velocities. From Fig. 4a, an estimate of this timescale
for the gravest mode is 7, (1) =~ 10. The variability in
the large scales is clearest in the baroclinic mode. The
Ekman damping in the model is mechanical, but most
of the energy in the baroclinic mode on large scales is
potential rather than kinetic, so this mode is very
weakly damped and must respond to the volatility of
the production term (Fig. 2a). In contrast, the baro-
tropic mode displays more regular behavior, not only
due to the inertia resulting from its greater energy, but
also due to the smaller variability in the intermode

~
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Fig. 1. The spectral structure of the energy production rate
Uk37v, as a function of time in the model spinup stage. The overbar
refers to an angular average in wavenumber space.

exchange, which serves as the energy source for this
mode.

Snapshots of the instantaneous baroclinic and baro-
tropic potential vorticity in equilibrium are displayed
in Fig. 3 (the baroclinic potential vorticity includes the
contribution from the mean interface slope). The baro-
tropic and baroclinic modes clearly have different dy-
namics. At scales larger than the deformation scale, the
barotropic flow displays an hierarchy of circular vor-
tices, which tend to get fewer and more isolated as the
scale increases, making the picture look very similar to
that which emerges with strictly 2D dynamics. At
smaller scales, the enstrophy direct cascade becomes
evident as it deforms the potential vorticity fields into
thin, stretched filaments. This description is typical ex-
cept during periods when injection of energy into the
barotropic mode is less intense (see Fig. 2a), during
which there are fewer deformation-scale vortices. The
baroclinic mode clearly bears an imprint of those strong
barotropic vortices as they distort and wrap up advec-
tively the mean meridional temperature gradient. The
baroclinic mode has the appearance of a tracer being
advected passively at all scales with long, stretched fil-
aments, which are an indication of a direct cascade [ cf.
Fig. 2 in Holloway and Kristmannsson (1984), which
compares the potential vorticity and passive scalar
fields in a simulated 2D flow].

The modal energy budget in wavenumber space fol-
lows from the dynamical equations (4):

Re[¢FJi i (, v2¢,)] + Re[‘//likI(T VzT)] + URe[¢,(OV>T/0x )]
S————-

I

+ K Re[Yf,(V2(p = 7)/2),,] + v Re[Y 5V (V)]

il I

~ 5a
v A" (52)
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ALK + 12 + K2)| 74/ |2/21/8t = Re[ 7} (T, V)] + Rel 7 Je/ (¥, VPT)]
. . A - ,
+ Re[T5Jii(h, —k37)] + URe[7}(8V/0x),,] + Uk} Re[7}(818x),]
) i ST v - v ‘
+ KRe[TE(VH(r = )2 + ¥ RelTE(VH (VT = Kir)d, 5b)
VI VIl

where (. . .);, refers to the 2D Fourier transform of an
" expression and (. . .) * the complex conjugate. Note that
the ‘‘linear’’ terms III in (5a) and IV in (5b) cancel
each other, wavenumber by wavenumber, leaving V in
(5b) as a sole source of energy for the system. The
nonlinear counterparts of the modal energy exchange
terms, II in (5a) and II in (5b), cancel when summed
over wavenumber, but one should keep in mind that
the source of barotropic energy due to this nonlinear
exchange does not have, in general, the same spectral
shape as the corresponding sink of energy in the baro-
clinic mode.

Figure 4 presents a set of spectral characteristics
of the flow at equilibrium. All are time averaged over
the 150 time unit period shown in Fig. 2. Although
Fig. 2a shows a small trend in the barotropic energy,
the averaged barotropic energy budget balances to
within a fraction of a percent (see Table 1), and ex-
perimentation with other versions of the model show
that its qualitative behavior is robust. The energy
spectra (Fig. 4a) indicate a dominance of the baro-
tropic energy over the total (kinetic plus potential)
baroclinic energy for scales larger than the defor-
mation radius. (The baroclinic energy on these scales
is almost entirely potential.) On scales smaller than
the deformation radius, the baroclinic energy domi-
nates. The slopes are close to a —5/3 power law in the
range k € [2, ~10], with the barotropic slope slightly
steeper and the baroclinic one slightly less steep, al-
though the statistics for the largest scales are not very
robust due to the long intrinsic timescales of these ed-
dies. '

The baroclinic energy transfers (Fig. 4c) are domi-
nated by two terms: the linear production (V) and the
energy transfer due to the advection of thickness by the
barotropic velocity field (IIT). Energy is injected only
at the largest scales k € [1, ~3] and removed from
these scales by the barotropic advection. The energetic
contributions of the two terms J(7, V) (I) and J(i,
V?r) (II) are of approximately equal amplitude and
opposite in sign for & less than ~15. Since term II trans-
fers baroclinic energy to the barotropic mode while I
. only redistributes baroclinic energy between different
scales, the cancellation has the effect that the transfer
out of the baroclinic mode is concentrated toward the
scale of the deformation radius. As a result, there is an
extended approximate inertial range, with invariant

downscale baroclinic energy flux, for k € [~3, ~15],
as shown in Fig. 4d.

The energy transfers for the barotropic mode (Fig.
4b) show the familiar 2D inverse energy cascade to
larger scales, resulting from the term J(, V2)). The
linear term is negligible. A surprising feature is that the
nonlinear energy influx from the baroclinic mode is
spread almost uniformly over the range k € [1, ~15],
in contrast to the outflux from the baroclinic mode;
which is concentrated at smaller scales. As a conse-
quence, the barotropic mode does not show a clear in-
ertial range with constant upscale energy transfer (see
Fig. 4d).

In the baroclinic mode, the direct effect of dissipa-
tion on the energetics is very small. In the barotropic
mode, the energy that cascades toward larger scales is
damped by the Ekman friction. The energy transfer
rates and the energies averaged over space and time are
summarized in Table 1, where this calculation is re-
ferred to as case L.

The kinetic energy spectra in the # and v components
are shown in Fig. 4e. The baroclinic kinetic energy
peaks at k ~ 25, exceeding its value at k = 1 by a factor
of 5. The only anisotropy evident is on the largest scales
in the baroclinic mode. The remarkable isotropy for all
but the largest scales is also shown by the correlation
coefficient (Fig. 4f) between the interface height 7 and
barotropic velocity v, . This confinement of the corre-
lation to large scales and the growth of both barotropic
energy and baroclinic potential energy toward smaller
k combine to sharply localize the energy production at
the largest scales.

Enstrophy spectra and enstrophy transfer spectra
(not shown) show baroclinic -enstrophy being gener-
ated on large scales, flowing toward the deformation
scale where there is transfer to the barotropic mode,
and then continuing to flow toward small scales in
roughly equal proportions in the two modes.

The picture suggested by this calculation is that the
baroclinic production occurs on the largest scale to
which the inverse barotropic cascade extends or the
scale of the large-scale baroclinicity, whichever is
smaller. (In the present homogeneous calculation, the
baroclinicity covers the entire domain.) To examine
this point further, one could add the beta effect, which
would arrest the cascade but introduce the added com-
plication of strong anisotropy and jet formation. Here,
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FiG. 2. (a) Time series of area averaged modal energies and energy transfer rates. The production
rate is term V in (5b); the nonlinear intermode energy exchange rate is term II in (5a) (which is
also equal to the negative of term II in (5b); and the barotropic Ekman dissipation rate is IV in
(5a). (b) The ratio of the amplitude of the £ = 1 harmonic in the meridional velocity to the mean

current velocity U.

we choose the simpler alternative of controlling the
scale of the production directly, artificially modifying
the linear terms in (4) so that they are identically zero
for |k| =< k.. One expects the production to peak at
wavenumbers slightly larger than .. The inverse baro-
tropic cascade, if sufficiently energetic, is still able to
proceed toward the basin scale (the domain size ). Here
we describe a calculation with k. = 4, with all other
parameters unchanged. In the following, this experi-
ment is referred to as case Il.

The energy level reached by this flow is much
smaller than in I. The production and barotropic energy
are both approximately 60 times smaller, while the total
baroclinic energy and the baroclinic kinetic energy are
a factor of 30 and 15 smaller, respectively. These val-
ues are tabulated in Table 1. Some spectra for case II
are shown in Fig. 5. The production is now localized
in k € [5, 10]. Qualitatively, the energy transfers are
unchanged, although there is not enough room for a
clear inertial range in the cascade of baroclinic energy
downscale in this case. Also, because of the reduced
energy level and the longer eddy turnover times, the
inverse barotropic cascade does not reach the domain
scale before being dissipated through Ekman friction.
As shown by the domain-averaged energy integrals in

Table 1 the linear term plays a somewhat more im-
portant role in the barotropic mode due to the smaller
eddy amplitudes. The equipartition of kinetic energy
between u and v remains very clear, with anisotropy
visible only on the scales at which the production
occurs.

It is a coincidence that the barotropic cascade stops
near k. in this integration. An additional integration has
been performed with the Ekman friction coefficient re-
duced from 0.04 to 0.015. The resulting energy spectra
have been included in Fig. 5a. The barotropic spectrum
extends to larger scales with the peak at k = 1 and 2,
but the baroclinic energy spectrum’s shape and ampli-
tude remain almost the same. The total baroclinic en-
ergy actually decreases by 11% and the production rate
by 12%, while the barotropic energy increased by
120%. Therefore, to first approximation, the energy
production is conirolled by the energy of the eddies
near the scale k. and not by the more energetic eddies
on larger scales. The opposite situation, in which the
inverse cascade stops before reaching %, occurs in the
beta-plane simulations to be described elsewhere. The
results are consistent with the simple picture outlined
above, in which the energy production is controlled by
the scales to which the inverse cascade extends, or the
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largest scales on which there is available potential en-
ergy to be tapped, whichever is the smaller.

Two additional experiments with the parameters as
in case I, but with larger Ekman damping rates, are also
described in Table 1. These are motivated by the fol-
lowing scaling analysis.

4. Theory

A conceptually simple picture of energy transfor-
mations in the two-layer model was advanced by Rhi-
nes (1977), Salmon (1978, 1980), and Hoyer and Sa-
dourny (1982) that is consistent with these model cal-
culations. In this picture, the baroclinic enérgy injected
at large scales cascades down to the deformation radius,
where it is converted to the barotropic mode and then
proceeds to cascade upscale.

As we have seen, the dynamics of the barotropic
mode is dominated by barotropic self-advection, large-
scale dissipation, and the forcing, mostly nonlinear, by
the baroclinic component of the flow. If the latter were
localized at scales near &, one would have the classical
formulation of a problem that would generate an in-
verse energy cascade. Although the forcing is not, in
fact, well localized, we will proceed with this simple
picture, discussing corrections afterward. For the baro-
tropic energy spectrum, E,, a —5/3 power law is ex-
pected (Kraichnan 1967; Leith 1968; Batchelor 1969):

Elll = C¢Ei/3k—5/3

(e, s the barotropic kinetic energy cascade rate and C,,
a universal constant).

As Salmon (1980) notes, the nonlinear dynamics of
the baroclinic mode in the limit of large scales (k2
< k3) reduces to 2D advection of a passive scalar by
the barotropic flow:

arldt + J(, T) = 0. (7)

We are ignoring for the moment the mean potential
vorticity gradient associated with the vertical shear.
The form of the scalar variance spectrum and the di-
rection of its cascade, given the inverse cascade of the
kinetic energy for the ¢ field, is discussed by Lesieur
and Herring (1985). Studies of closure models for (7)
(Lesieur and Herring 1985; Hoyer and Sadourny 1982)
show that the cascade of the scalar variance is direct
with a —5/3 power law spectrum; however, correlations
between the scalar and the vorticity of the advecting
field may change the slope (Lesieur and Herring,
1985). We are not aware of any direct numerical sim-
ulations that focus on the large-scale tracer transport
with a statistically stationary inverse energy cascade in
the advecting field [other studies which consider the
direct enstrophy cascade, decaying 2D turbulence, (-
plane, etc. may be found in Holloway and Kristmanns-
son (1984), Babiano et al. (1987), and Bartello and
Holloway (1991)].
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FiG. 3. Barotropic (upper panel) and baroclinic (lower panel) po-
tential vorticity fields at t+ = 17.5. (The gray scales are the same in
the two panels except that the baroclinic potential vorticity has been
divided by 4.0.) :

We use the symbol ¢, for the cascade rate of the
baroclinic energy, which equals k3 times the cascade
rate for (7?) on large scales. Relying on the classical
phenomenological argument based on spectral locality,
we assume that

€, = const ~ (E,k)/T,,

where T, is the typical eddy lifetime. Since the latter is
determined only by the advective field ¢, dimensional
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FIG. 4. Spectral energetics for case I: (a) barotropic, baroclinic, and potential energy spectra, and passive tracer variance spectrum,; (b) the
energy transfer rates in the barotropic mode due to different terms in Eq. (5a) (detailed structure is shown in inserts; if terms are not plotted,
they have negligible amplitude); (c) energy transfer rates in the baroclinic mode due to different terms in Eq. (5b); (d) the upscale energy
flux in the barotropic mode and the downscale energy flux in the baroclinic mode, obtained by integrating term I in Eq. (5a) and term III in
Eq. (5b), respectively; (e) the spectra of the kinetic energy in zonal and meridional flow for barotropic and baroclinic modes; and (f) the
correlation coefficient between 7 and the barotropic meridional velocity v, averaged over angle in wavenumber space.

considerations and the locality assumption give T
~ (E,k*)™""2, which together with (6) yields

E, = Cee;,'" k™", (3)

While our model is still far from the asymptotic limit
in which this passive scalar model is valid over a wide
range of scales, the tendency for the energy transfers
associated with the terms J(7, V*) and J(¢, V>7) to

nearly cancel each other at intermediate values of k
extends the inertial range closer to k ~ k&, than would
otherwise be the case. '

The picture of the looping energy path in the
model implies that the cascade rate of the baro-
clinic energy to smaller scales is equal to the cas-
cade rate back to larger scales in the barotropic
mode:
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TABLE 1. Values of model parameters and domain-averaged energetics in the four statistically steady states described in the text.

Experiment/case
Parameter/energetics I I I v
k 50 50 50 50
2U 0.01 0.01 0.01 0.01
K 0.04 0.04 0.08 0.25
v 0.512-107"% 0.512-107" 0.512-107"% 0.512-107'%
k. 0 4 0 0
E, 0.323 0.102-10™" 0.239-10™" 0.117-107?
(u3) 0.779 0.126-107" 0.135-107" 0.218-107°
(v, 0.798 0.123-10™" 0.138-107" 0.227-107°
u? 0.833-1072 0.569-107* 0.970-1073 0.103-107?
) 0.832-1072 0.569-107* 0.965-107° 0.109-107°
E,E 0.830 0.709 0.533 0.276
WJ(r, V7)) 0.338-10"" 0.521-107° 0.113-1072 0.258-10™*
(U-$0V’/0x) 0.115-107* 0.298-107* 0.359-107* 0.107-10™*
(k- YV — T)2) -0.314-107" —0.485-107° —0.103-1072 —0.322-10™*
(V- VAV ~0.266-1072 ~0.583-10~* -0.117-107 -0.397-105
(UK 7O/ Ox) 0.396-10"" 0.696-107° 0.144-1072 0.474-10™*
(k- TV — ¥)I2) -0.177-107* -0.105-10"* -0.182-107* -0.297-1073
(v TVVr — IG7)) -0.517-107 —0.124-107* -0.233-107* —-0.789-107%

€))

As seen in Fig. 44, this is not a good quantitative fit to
the model results, partly because there is no clean in-
ertial range in the barotropic mode due to the distrib-
uted nonlinear source and partly because some of the
energy has been dissipated on small scales as the en-
ergy passes through this loop. Accepting (9) as a qual-
itative guide, one has (as in Hoyer and Sadourny 1982)

E, = Cye2 k™" (10a)
E, = C.e2*k™", (10b)

suggesting that the ratio E,/E, = C,/C,; is invariant in
the inertial range and independent of ¢, and k,. There-
fore, we have the scaling relation

Y ~ (kg k)T (11a)

for k* < k3. Note also that the baroclinic kinetic energy
spectrum E,.;, = (k/k;)*E, grows slowly toward
smaller scales, like k'/?, as Figs. 4e and Se corroborate.

Since the spectra in (10) are steeper than k™', en-
ergetically the ¢ and 7 fields are both dominated by the
largest scales to which these spectra extend. Denoting
this largest energy-containing scale as k,, the relation
between the magnitudes of the physical space baro-
tropic and baroclinic eddy streamfunctions is therefore

Y~ (ky/ko)T. (11b)

From an eddy-damped quasi-normal Markovian the-
ory, Lesieur and Herring (1985) estimate C, = 0.29,
given the value C, = 6.69 suggested by Kraichnan
(1971). [Note that a recent direct numerical high-res-
olution simulation of 2D flow finds C, = 5.58 (Maltrud
and Vallis 1991).] Despite misgivings about the ac-

€y = €.

curacy of the closure estimate and the extent to which
our results are in the asymptotic limit, the qualitative
results are consistent: the barotropic energy is larger by
a substantial amount. The same amount of energy is
cascading up the barotropic spectrum as is cascading
down the baroclinic spectrum in this picture, but the
former is much less efficient and requires larger ener-
gies to produce the same energy flux.

If we attempt to estimate C, and C, by fitting the
model results to —5/3 spectra, we find C, = 5.1, C,
= 0.79 for case I, and C;, = 4.1, C, = 1.1 for case IL
(To obtain these estimates, we set €, equal to the rate
of production of baroclinic energy, and we take ¢,
equal to the rate of dissipation of barotropic energy by
Ekman friction, which is slightly smaller in the nu-
merical model.) Considering the inadequate resolution
of the inertial ranges in the model, and the steeper baro-
tropic spectrum, the discrepancy with the estimates
given above is not unreasonable. The smaller ratio
C,/C, in case II implies a smaller ratio of energies
E,E,.. As noted earlier, the barotropic energy in-
creases by a factor of 60 from cases II to I, while the
baroclinic energy increases only by a factor of 30.
Therefore, (11) provides only a rough guide to the
model’s behavior.

The steeper barotropic spectrum may be related to
the broadly distributed energy input from the baroclinic
mode. As one moves to smaller k, ¢, increases due to
this distributed energy input. Assuming that we can still
use (6) locally in k space, this implies a steeper baro-
tropic spectrum and, from (8), a less steep baroclinic
spectrum. One would therefore expect the ratio E,/E;
to be larger in case I than in case II since the difference
between the slopes extends for a larger range of wave-
numbers in the former case. By fitting a simple function
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FiG. 5. Spectral energetics for case II. As in Fig. 4 except that (a) also shows the energy spectra
for the experiment with smaller Ekman friction.

to the shape of ¢,(k), one can try to make this argument

more quantitative, but we do not pursue this point here.

The production of baroclinic energy is proportional

to the northward transport of thickness (or heat):

e, = Uki(Tvy). (12)

The potential vorticity fluxes are also proportional to
the thickness flux in this homogeneous system:

(vgi) = (=1)'ki(Tv,). (13)

We can also write

(Tvy) = j c(7, v )(E,E,) ' *dk, (14)

where c¢(7, v,) is the correlation coefficient. Even if the
correlation had no structure in k, given (10) the mul-
tiplier (E,E,)'’? alone would make the integral diver-
gent at small k, implying that most of the contribution
to the heat or potential vorticity transport would come
from the largest scales. That the correlation is high only
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on the largest scales makes these scales even more
dominant.

To estimate the production of baroclinic energy e,,
we reintroduce the environmental thickness gradient
into (7):

orlot + J(Y, T — Uy) = 0. (15)

In this approximation, the problem of computing the
energy production is equivalent to computing the flux
of the conserved tracer 7 in the presence of a linear
large-scale gradient, due to advection by a prescribed
field yy—the classical problem of turbulent diffusion.
Standard mixing arguments suggest that the typical
magnitude of the physical space perturbations in 7 on
the scale k, of the energy-containing eddies will be

T~Ulky or v, ~U. (16a)

In terms of the spectral amplitudes at this scale, we
have instead

T ™~ [Jk(;:”2 at k= k(). (16b)

In experiment I, an appropriate choice would be k,
~ 1; in experiment II, ko ~ 5-6.

In Fig. 2b, the magnitude of the baroclinic velocity
at k = 1 is plotted as a function of time for case I. This
plot shows the approximate validity of (16) for the sta-
tistically steady state (in the time mean, v,/U = 1.6)
and also gives one some feeling for the close dynamical
relation between the production and v,. In case II, if
we consider only the variance in k = 5, we find v,/U
= 1.2 in the time mean. If we include the variance in
k = 6 as well, then this ratio is increased to 2.0. The
poor resolution due to discreteness of the spectral do-
main on these scales makes it difficult o be more pre-
cise, but given the large changes between I and II in
the production and the total energy levels, the claim
that the baroclinic velocities on the largest scales con-
tributing to the flux are of the same magnitude as U is
qualitatively supported.

Combined with (10), the relation (16) determines
the spectra of the barotropic and baroclinic modes. Us-
ing the relation (11), (10) implies the physical space
amplitudes

T~ko'U and ¢ ~ (k,Jk§)U (17a)
or, in terms of spectral amplitudes,
T~ ko*PU and Yy ~ (kJk*)U at k= k.
(17b)
Therefore, the production scales as
e, ~ Ukikor ~ UKLIKS. (18)

To obtain this scaling in a slightly different way,
assume that the correlation between 7 and v, is perfect
between k, and k, + Ak, and zero otherwise, so that
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ko+ Ak
e, = UK3(7v,) = Uk, f (E.E,)"*dk.

kg

Alternatively, we can think of this expression as defin-
ing Ak. Using (10), we then have

¢, = _23: Uk, (C;C,) e k52

X (1 = [(ko + Ak) ko] 727).

Solving for €, and assuming that Ak ~ k,, we retrieve
(18). The assumption that Ak ~ k, is consistent with
the picture of the correlation as being determined by
Eq. (15), in which there is no other length scale.

The dependence €, ~ kg is roughly consistent with
the numerical experiments: the ratio of the energy pro-
duction in cases I and II (see Table 1) is 57, while k,
~ 1 for I and ~5-6 for II. Note also that the range of
k for which the correlations are significant (Ak above)
is roughly proportional to k, (Figs. 4f and 5f).

These correlations drop to remarkably small values
well before the deformation scale is reached, especially
in Fig. 4f. We can try to understand the negligible trans-
port and energy production by deformation-scale ed-
dies in the context of the baroclinic energy cascade. An
eddy of scale k does not simply feel the environmental
baroclinic potential vorticity gradient directly, but in-
stead feels the gradient as modified by all larger eddies
in the cascade (see Fig. 3). To the extent that the baro-
clinic cascade is able to isotropize the gradient as seen
by a given scale, eddies on that scale will not, on av-
erage, be able to transport potential vorticity or produce
eddy energy.

The scaling (17) implies that the timescale T, of the
energy-containing barotropic eddies with wavenumber
kg is

To ~ (Egkd) ™" ~ 1/(k3" ) ~ 1/ (kU),  (19)

which is independent of k. This is also the character-
istic timescale of the linear baroclinic instability near
k,. This scaling has interesting implications for the role
of Ekman friction in this model. If the energy level of
the flow were fixed, then the timescale of the energy-
containing eddies would increase as energy cascaded
to larger scales, and Ekman friction would eventually
grow to O(1) importance and stop the cascade. But
with the present scaling, the energy level increases as
the scale k;'! increases and in such a way that the time-
scale of the energy-containing eddies does not increase.
Therefore, if k < k;U, the Ekman damping will never
be able to halt the cascade. On the other hand, if «
= k,U, the Ekman friction will be of O(1) importance
at the deformation radius, so one does not expect a
significant inverse cascade of barotropic energy. (In
this case the damping also has a significant effect on
the linear baroclinic instability.) The implication is that
there should be a dramatic decrease in eddy energy at
some point as « is increased significantly over k,U.
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Haidvogel and Held (1980, Fig. 14) provide results
for experiments with «/(k,-2U) = 0.35 and 0.5, for
which the total eddy energy levels, normalized by
(2U)?, are 17.7 and 9.0, respectively. In our experi-
ment, k/(k,-2U) = 0.08, and the energy level nor-
malized in the same way is 9.5 X 10*! To make contact
with the parameter range of Haidvogel and Held, we
have performed two additional experiments with larger
Ekman damping (cases III and IV in Table 1). For «/
(k;-2U) = 0.16, and 0.5, we obtain normalized ener-
gies of 256, and 8.0, the latter value being consistent
with Haidvogel and Held (1980). The sensitivity to
damping in this model is indeed exceptionally strong,
consistent with our scaling argument.

In order to check on the consistency of our expla-
nation for the energy generation and heat flux in this
system, we have performed several supplementary cal-
culations. In particular, a passive tracer was added to
the model and simply advected by the barotropic flow
produced in case I. The equation solved is (15) with
V* diffusion added. The tracer and thickness equations
differ only due to the O(k/k,)? terms in the latter. The
tracer was initialized with small random values. The
resulting tracer variance spectrum has been included in
Fig. 4a. Not only is this variance almost identical to
that of the thickness on large scales, but the tracer flux
(not shown) is nearly identical to the thickness flux. In
fact, the correlation coefficient between the tracer and
T is nearly perfect on large scales, decreasing from 1.0
at k = 1 to 0.9 near k = 30. Therefore, the structure of
the baroclinic mode on large scales can be studied in
the framework of passive tracer 2D advection. Con-
versely, it follows that the transport of passive tracer in
such a model is dominated by the largest scales.

We have also performed computations in which the
barotropic energy is maintained at a much higher level
than would naturally occur in this system, by holding
constant the Fourier harmonics for the barotropic mode
in the wavenumber range [30, 40]. This removes the
feedback from the baroclinic onto the barotropic mode
and makes the barotropic forcing more localized in
wavenumber. The spectral slopes of the baroclinic and
barotropic energies are now closer to each other, and
both are closer to —5/3, so it does appear that the non-
local source of barotropic energy that occurs in the full
system steepens the barotropic and flattens the baro-
clinic spectra slightly. One still sees cancellation in the
baroclinic mode energetics between the terms resulting
from J(¢, V?7) and J(7, V) in the range k € [1,
12], which again has the effect of localizing the energy
lost from the baroclinic mode to scales near k,.

5. Discussion and conclusions

We have studied the horizontally homogeneous, sta-
tistically steady state of a baroclinically unstable, two-
layer, quasigeostrophic fluid under conditions that re-
sult in an inverse energy cascade to scales much larger
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than the deformation radius. The instability is generated
by a uniform vertical shear in the mean current, or
thickness gradient, U = —07/3y. The following pic-
ture emerges as a simple way of understanding the en-
ergy levels and the magnitude of the fluxes in this
system.

The central point is that the energy production and
the associated potential vorticity fluxes are localized at
the largest scales to which both the barotropic inverse
energy cascade and the baroclinicity of the mean flow
extend, and not at the deformation scale.

As discussed by Rhines (1977) and Salmon (1978,
1980), on large scales the eddies are almost entirely
barotropic, and the dynamics of the baroclinic mode
reduces to the advection of the thickness 7, or large-
scale potential vorticity, by this barotropic flow .
Given the existence of the mean gradient, the flux of
thickness down this gradient can be thought of as pro-
duced by the turbulent diffusion generated by the flow
field . Since the largest-scale eddies to which the in-
verse barotropic cascade extends are also the most en-
ergetic, we must expect these eddies to dominate the
flux.

One can estimate this flux by assuming a diffusivity
D = V A, where the mixing length A = kg is the scale
of the energy-containing eddies, and the velocity scale
V is the characteristic barotropic flow speed. The char-
acteristic size of the perturbations in thickness on the
scale of k, is expected to be Uk;' based on the passive
tracer analogy. The eddy heat and potential vorticity
fluxes, and the baroclinic eddy energy generation are
all proportional to this thickness flux. Estimating these
quantities requires an estimate of the barotropic energy
level and the energy-containing scale kg'.

Given the equality of the rates at which the energy
cascades to small scales in the baroclinic mode and
cascades upscale in the barotropic mode, the phenom-
enological inertial range theory implies that the baro-
tropic and baroclinic energy levels should be compa-
rable. (Another way of arguing this is to note that the
ratio E,/E, may depend only on the cascade rate ¢, and
k, which do not make a nondimensional quantity.) In
terms of spectral amplitudes we have ¢, ~ (k,/k)7,.
Since the spectra are such that the largest scales dom-
inate the variances of ¢ and 7, the physical space rms
amplitudes satisfy ¢ ~ (k;/k,)7, where k, is the en-
ergy-containing scale. Therefore, the characteristic
barotropic speed V to be used in estimating the thick-
ness flux is kgp ~ k,7, or Uk,/k,.

The resulting diffusivity has the magnitude Uk,/k3.
This should be compared to the diffusivities implicit in
the discussions of atmospheric eddy fluxes in Stone
(1972) and Green (1970). Stone assumes that the mix-
ing length is the radius of deformation and that the
typical eddy velocity is of the order of the mean shear
U, resulting in a diffusivity that scales as U/k,. This is
equivalent to assuming that eddy kinetic and eddy
available potential energies are comparable and that
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each is of the order of the mean available potential
energy contained within a region of width equal to the
deformation radius. Green also effectively assumes
equipartition of eddy kinetic and eddy available poten-
tial energies but assumes that these are of the order of
the available potential energy in the entire baroclinic
zone. If the width of this zone is k;', this leads to the
same diffusivity as we have obtained, Uk,/k3. We em-
phasize, however, that it is only if the inverse energy
cascade reaches the scale of the baroclinic zone that we
can set k, equal to that scale. If the cascade stops ear-
lier, due to the beta-effect for example, k, will be set
by this smaller scale. Implications of this scaling for
eddy fluxes and the scale of eddy-driven jets on a beta
plane will be discussed elsewhere. Also, our explana-
tion for approximate equipartition of eddy kinetic and
potential energies is quite different from that usually
considered in such scaling arguments. More typically,
as in Stone (1972), one assumes that deformation-scale
eddies are of central importance, and one automatically
has equipartition on this scale between the kinetic and
potential energies in the baroclinic mode. Barotropic
velocities are implicitly assumed to be of the same or-
der as the baroclinic velocities, as is typically true in
the most unstable linear modes, for example. In the case
of an extensive inverse cascade on which we focus
here, the kinetic energy is almost entirely barotropic,
but the arguments leading to (11) still imply approxi-
mate equipartition between this kinetic energy and the
potential energy in the baroclinic mode.

This zeroth-order picture must be modified in several
ways to account quantitatively for our numerical re-
sults. First, the direct cascade of baroclinic energy is
much more efficient than the inverse barotropic cas-
cade, in that the same spectral energy flux is produced
with a smaller energy level. The barotropic energies are
an order of magnitude larger as a result. Second, the
transfer of energy to the barotropic mode is not sharply
localized at the scale of the deformation radius; the
source actually extends to very large scales. This has
the effect of steepening the barotropic energy spectrum
and flattening the baroclinic- spectrum. Third, the loss
of energy from the baroclinic mode is more sharply
confined to the deformation scale, but only because of
a cancellation of terms in the energetics the reasons for
which we do not understand. These quantitative aspects
of our results may be sensitive to the particular model
that we have studied. However, we believe that the ze-
roth-order scaling will be robust within the framework
of quasigeostrophic theory.

Since this analysis is based on a quasigeostrophic
model, it is suspect on scales much larger than the de-
formation radius unless the Rossby number is ex-
tremely small. In more general models, the possibility
exists that baroclinic large-scale coherent eddies could
dramatically alter the vertical structure of the eddy ve-
locity field.
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The role played by deformation-scale eddies in our
calculation is strikingly modest. The potential vorticity
flux and energy generation on these scales is totally
negligible, although there is a weak maximum in the
baroclinic kinetic energy spectrum, and the loss of
baroclinic energy to the barotropic mode does occur on
this scale. That the eddy energy moves to larger scales
as the flow becomes more strongly unstable is a famil-
iar idea. That the generation itself moves to larger
scales is less familiar but has often been observed in
numerical models. The large separation in our calcu-
lation between the deformation radius and the size of
the domain (and the absence of the G-effect, which
allows the cascade to reach the domain scale) makes
this movement very clear. In this regime, linear growth
rates on the mean shear play no direct role in the clo-
sure. A good indicator of this is the negligible role
played by the linear term in the barotropic energetics.
Instead, the mean shear provides a thickness gradient
that supports the diffusive flux generated by the baro-
tropic flow; the barotropic flow, in turn, is supported
by the energy generation associated with the downgra-
dient thickness flux.

Any attempt at using these concepts to estimate oce-
anic diffusivities due to baroclinic instability will re-
volve around estimating the scale to which the inverse
energy cascade extends. If one can think of the cascade
as being halted by the beta effect, this estimate should
be relatively straightforward. If one needs to consider
the inhomogeneous system in order to understand how
the cascade is halted—if, for example, the radiation of
coherent vortices away from an unstable region is an
essential ingredient—this will be much more difficult.
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