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S ince its discovery by Madden and Julian (1971,
1972) over two decades ago, the Madden–Julian
oscillation (MJO) has continued to be a topic of

significant interest due to its complex nature (Mad-
den and Julian 1994) and the wide range of phenom-
ena with which it interacts. The onset and break ac-
tivity of the Asian–Australian monsoon system is
strongly influenced by the propagation and evolution
of MJO events (e.g., Yasunari 1980; Lau and Chan
1986; Hendon and Liebmann 1990a,b). Apart from

this significant local influence, there are also impor-
tant downstream influences that arise from the MJO.
For example, the development of persistent North
Pacific circulation anomalies during Northern Hemi-
sphere winter has been linked to the evolution and
eastward progression of convective anomalies associ-
ated with MJO events (e.g., Weickmann 1983;
Liebmann and Hartman 1984; Weickmann et al. 1985;
Ferranti et al. 1990; Lau and Philips 1986; Higgins and
Schubert 1996; Higgins and Mo 1997; Mo 2000). In
fact, a link has been shown to exist between rainfall
variability along the western United States, including
extreme events, and the longitudinal position of MJO
convective anomalies (Mo and Higgins 1998a,b; Jones
2000; Higgins et al. 2000; Whitaker and Weickmann
2001). In addition, MJO convective activity has been
linked to Northern Hemisphere summertime precipi-
tation variability over Mexico and South America as
well as to wintertime circulation anomalies over the
Pacific–South American sector (Nogues-Paegle and
Mo 1997; Mo and Higgins 1998c; Jones and Schemm
2000; Paegle et al. 2000). Recently, studies have also
shown that particular phases of the MJO are more
favorable than others in regards to the development
of tropical storms/hurricanes in both the Atlantic and
Pacific sectors (Maloney and Hartmann 2000; Mo
2000; Higgins and Shi 2001). Finally, the passage of
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MJO events over the western Pacific Ocean has been
found to significantly modify the thermocline struc-
ture in the equatorial eastern Pacific Ocean via their
connection to westerly wind bursts (e.g., McPhaden
and Taft 1988; Kessler et al. 1995; Hendon et al. 1998).
This latter interaction has even been suggested to play
an important role in triggering variations in El Niño–
Southern Oscillation (ENSO; e.g., Lau and Chan 1988;
Weickmann 1991; McPhaden 1999; Kessler and
Kleeman 2000).

As influential as the MJO is on our weather and
climate, a fundamental question yet to be adequately
addressed concerns its theoretical limit of predictabil-
ity. For example, it is well known that useful skill as-
sociated with deterministic prediction of most
“weather” phenomena is limited to about 6–10 days
(e.g., Thompson 1957; Lorenz 1965, 1982; Palmer
1993; Van den Dool 1994). Similarly, it has been
found that the likely limit of predictability for ENSO
is on the order of 12–18 months (e.g., Cane et al. 1986;
Graham and Barnett 1995; Kirtman et al. 1997;
Barnston et al. 1994, 1999). However, it is still yet to
be determined what the corresponding metric is for
the MJO phenomenon. The somewhat well-behaved
nature of the MJO (e.g., equatorially trapped, prefer-
ence for warm SSTs, seasonality) along with its
intraseasonal timescales suggests that useful predic-
tive skill might exist out to at least 15–25 days and
maybe longer. Support for this suggestion comes from
statistical predictive models of the MJO, which indi-
cate useful skill out to at least 15–20 days lead time (e.g.,
Waliser et al. 1999a; Lo and Hendon 2000; Wheeler and
Weickmann 2001; Mo 2001). However, as with any sta-
tistical model, these models are limited in the totality
of the weather/climate system they can predict, their
ability to adapt to arbitrary conditions, and their abil-
ity to take advantage of known physical constraints.

While there have been a number of predictive skill
studies of the MJO (i.e., comparing forecasts to ob-
servations), these studies typically were performed
with forecast models that exhibited rather poor simu-
lations of the MJO. For example, the studies by Chen
and Alpert (1990), Lau and Chang (1992), Jones et al.
(2000), and Hendon et al. (2000) were all performed
on the most recent or previous versions of the Na-
tional Centers for Environmental Prediction (NCEP)
Medium-Range Forecast (MRF) model’s Dynamic
Extended Range Forecasts (DERFs). In general these
studies showed useful skill out to about 7–10 days.
However, these skill limits are likely to be significant
underestimates of the potential predictability due to
the very weak MJO signature in the model. Moreover,
since these studies were really measuring forecast skill

of the model, their skill versus lead-time estimates are
additionally hampered by the difference in phase
speeds between the model and observations and the
influence from poorly known/specified initial condi-
tions. Thus, ascertaining even a gross estimate of the
limit of predictability for the MJO from these studies
is neither appropriate nor feasible.

In this study, we determine an estimate for the
theoretical limit of dynamic predictability of the MJO
by conducting a set of twin numerical predictability
experiments (e.g., Thompson 1957; Lorenz 1965;
Charney et al. 1966; Shukla 1985) with a given
model—one that has a reasonable representation of
the MJO’s space–time variability. Using this method-
ology, we attempt to address the following two ques-
tions. What is the typical limit of useful predictabil-
ity for the tropical MJO phenomenon? How is this
limit influenced by the phase or strength of the MJO
(e.g., convection over the Indian versus the western
Pacific Oceans)? Our study focuses on the Northern
Hemisphere winter and thus the archetypal equato-
rial-propagating MJO phenomena. A separate study
(Waliser et al. 2002, manuscript submitted to Quart.
J. Roy. Meteor Soc.) addresses the limit of predictabil-
ity of the Northern Hemisphere summer (northeast-
ward propagating) mode of intraseasonal variability
(e.g., Wang and Rui 1990; Wang and Xie 1997), and
the implications this limit has on Asian summer mon-
soon predictions.

The next section describes the model employed for
this study, and that is followed by a section describ-
ing the experimental framework and the analysis meth-
ods. The section titled “Results” presents the results of
the experiments. The last section presents a summary
of the results, considers the caveats of the model and
analysis, and discusses the implications of this result
with regards to the predictability of other weather/cli-
mate phenomena that are influenced by the MJO.

MODEL. The model used in these experiments is the
National Aeronautics and Space Administration
(NASA) Goddard Laboratory for the Atmospheres
(GLA) general circulation model (GCM). This model
was derived from earlier version described by Kalnay
et al. (1983). Modifications have included increased
vertical resolution and several changes in the param-
eterizations of radiation, convection, cloud formation,
precipitation, vertical diffusion, and surface processes
(Sud and Walker 1992; Phillips 1996). The horizon-
tal representation uses surface finite differences on a
4° × 5° (latitude × longitude) energy and momentum
conserving A grid (Arakawa and Lamb 1977). The
horizontal advection of the atmospheric variables is
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accurate to the fourth order (Kalnay et al. 1983). The
vertical domain has 17 unequally spaced sigma levels
extending from the surface to about 12 hPa. At every
dynamical time step, a 16-order Shapiro (1970) filter
(with a timescale of 90 min) is applied to the prog-
nostic fields; a Fourier filter is also used in polar lati-
tudes. Negative moisture values are filled by
“borrowing” moisture from the level below, and from
neighboring horizontal grid boxes at the lowest ver-
tical level. Horizontal diffusion is not included and the
effects of vertical diffusion are treated by the level-2½
second-order turbulence closure model of Helfand
and Labraga (1988).

Near the surface, the planetary boundary layer is
treated as an extended surface layer with a viscous
sublayer in the space between the surface and the tops
of the surface roughness elements. Appropriate pa-
rameterizations are utilized to determine turbulent
fluxes in the different planetary boundary layer (PBL)
subregions. Both seasonal and diurnal cycles in the so-
lar forcing are simulated with the atmospheric radia-
tion treatment of Harshvardhan et al. (1987). The for-
mulation of the convection follows the scheme of
Arakawa and Schubert (1974), as implemented in dis-
crete form by Lord and Arakawa (1980). The model
orography is based on the 1° × 1° topographic height
data of Gates and Nelson (1975), which has been area
averaged over the 40 × 50 grid boxes. The resulting
orography is smoothed using a 16th-order Shapiro
(1970) filter, and a Fourier filter poleward to 60° lati-
tude. Negative terrain heights resulting from the
smoothering process are set to zero. Land surface pro-
cesses are simulated as in the Xue et al. (1991) modi-
fication of the model of Sellers et al. (1986).

In general, the GLA model performed very well
with respect to its representation of the MJO in the
Slingo et al. (1996) Atmospheric Model Intercom-
parison Project (AMIP) study. It, along with two
other models [the United Kingdom Met Office
(UKMO) model and version 2 of the Community
Climate Model (CCM2)], exhibited variability closely
resembling the observed features of the oscillation. In
fact, a more rigorous comparison of the MJO in the
GLA and UKMO models by Sperber et al. (1996)
showed that of the two models, the GLA model
tended to produce a better representation of the east-
ward propagation of convection and its associated
cyclonic and anticyclonic circulation anomalies.
While modest improvements in the GLA simulation
of the MJO were obtained by incorporating a weakly
coupled SST feedback (Waliser et al. 1999b), this
study utilizes the fixed SST version of the model. A
future study will report on the influences of SST cou-

pling and interannual SST anomalies on the predict-
ability of individual MJO events.

EXPERIMENTAL FRAMEWORK. As a basis for
selecting initial conditions for a number of MJO
events, a 10-yr simulation using climatological SSTs
was performed and daily averages (four 6-h values)
of a number of fields were saved. From this simula-
tion, MJO events were chosen based on an extended
empirical orthogonal function analysis (EEOF) of
rainfall data from the region 32°N–32°S and 32.5°E–
92.5°W. This region tends to encompass most of the
variability in rainfall that is associated with the MJO
(e.g., Lau and Chan 1986; Wang and Rui 1990). To
isolate the intraseasonal timescale, and thus the MJO,
the data were first bandpassed with a 30–90-day
Lanczos filter (Duchon 1979). EEOF analysis, using
temporal lags from –7 to +7 pentads, was then per-
formed on pentad averages from Northern Hemi-
sphere “wintertime,” hereafter defined as November–
April. The spatial–temporal pattern for the first EEOF
mode, shown in Fig. 1, depicts the bulk characteris-
tics of the typical cycle of the model MJO in terms of
rainfall. The spatial–temporal pattern of mode 2 (not
shown) exhibits a quadrature relation with mode 1;
otherwise the two modes are very similar. The first
(second) mode contains 6.0% (5.9%) of the variance
of the time-lagged sequences of the bandpassed data.
These percentages are similar to those that would be
obtained for the first two modes using a conventional,
nonlagged EOF approach (i.e., 6.5% and 5.9%,
respectively).

To illustrate the degree of realism associated with
the model’s MJO, the same EEOF analysis was per-
formed on 10 yr (1988–98) of pentad rainfall data
from Xie and Arkin (1997). The first EEOF mode (not
shown) from this analysis has a very similar structure
to the model EEOF mode shown in Fig. 1, although
the observed mode captures more variance (8.3%).
Composite MJO events from the model and observa-
tions were constructed by averaging the bandpassed
rainfall and VP200 data for all pentads that had an
EEOF mode-1 time series amplitude greater than 0.8.
For the model (observations), this included 19 (14)
pentads. This resulted in a composite MJO, in terms
of rainfall and VP200, extending from lags –7 pen-
tads to +7 pentads (similar in structure to Fig. 1). To
compactly illustrate the model–data comparison, lags
–7 and –6 were averaged together (to be referred to
as lag –6.5), lags –5 and –4 pentads were averaged
together (to be referred to as lag –4.5), and so forth,
giving composite maps separated by two pentads (i.e.,
10 days). The composite maps for lags –4.5, –2.5, –0.5,
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+1.5, and 3.5 pentads for both the observed and model
MJO composites are shown in Fig. 2. A comparison
of these two life cycles shows that the model MJO has
fairly realistic characteristics in terms of the space–
time variability of MJO-induced rainfall and VP200.
This includes the overall timescale, the magnitude and
locations of the variability, the propagation speed, etc.
One of the more significant shortcomings in the
model for this study, however, is its weaker rainfall
variability exhibited in the eastern Indian Ocean and
southern Maritime Continent region (cf. Waliser et al.
2001), a characteristic that is quite common in
AGCMs’ representations of intraseasonal variability
(Waliser et al. 2002, manuscript submitted to Climate
Dyn.). The potential implications associated with this
shortcoming for this study are discussed in the sum-
mary.

Candidate MJO events to use for initial conditions
were chosen from the amplitude time series associ-
ated with model EEOF modes 1 and 2; these time se-
ries are shown in Fig. 3. Given that these modes cap-

ture the propagating nature
of the MJO, selecting peri-
ods when the amplitude of
these time series is large will
tend to capture strong,
propagating MJO events.
For the purpose of selecting
specific days for initial con-
ditions, these two pentad
time series were interpo-
lated to daily values. The
two series have maximum
correlation (0.95) at a lag of
+/– ~ 12 days, indicating a
dominant period of about
50 days. This is consistent
with the discussion above
regarding the quadrature
relation of the first two
EEOF modes. Note that
when the mode-1 time se-
ries is positive (negative),
rainfall tends to be high in
the western Indian (west-
ern Pacific) Ocean, and
when the mode-2 time se-
ries is positive (negative),
rainfall tends to be high in
the eastern Indian (central
Pacific Ocean/South Pacific
convergence zone) Ocean.
Thus, by selecting periods

of both positive and negative values of these two se-
ries, four separate “phases” of the MJO can be distin-
guished based on the longitudinal position of the heat-
ing. For each of these four phases, the 15 events with
the greatest amplitudes for each of the four phases
were selected.1 These events are highlighted in Fig. 3.

In order to contrast the difference in atmospheric
predictability between periods of high MJO activity
to those with little or no MJO activity, 15 initial con-
ditions were also chosen from periods in which nei-
ther of the above modes, nor their Northern Hemi-
sphere (NH) “summertime” (May–October)
counterpart, were strongly exhibited in the model at-
mosphere. The selection was performed as follows.
The amplitude time series for EEOF modes 1–4 for

FIG. 1. First mode EEOF of filtered (30–90 days) NH winter (Nov–Apr) model
rainfall for the tropical domain in 32°N–32°S and 32.5°E–92.5°W. Time lags
extend from –35 days (i.e., –7 pentads) in the upper-left corner to +35 days
(i.e., +7 pentads) in the lower-right corner. See section titled “Experimental
framework” for details.

1 In cases in which the occurrence was too close to the begin-
ning or end of the 10-yr record preventing subsequent analy-
sis (e.g., bandpassing, 90-day integration), the event(s) with the
next largest amplitude(s) were selected.
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the Northern Hemisphere winter, along with the
analogous four series for the summer, were squared,
added together, and then smoothed with a 51-day
(~ MJO cycle) running filter. This combined series,
shown in Fig. 3 (bottom), gives a bulk index of gen-
eralized intraseasonal activity. The 15 events with the
lowest values of this index were selected to represent
low MJO activity conditions with the additional cri-
teria that the events had to occur at least 10 days apart.
The latter criterion was applied in order to get a
sample of distinct atmospheric states of low MJO ac-
tivity. Hereafter, these cases, shown as Xs in Fig. 3
(bottom), will be referred to as null events. Figures 4
and 5 show the composite rainfall and 200-hPa veloc-
ity potential (VP200), respectively, for the 15 initial
conditions selected for each of the four MJO phases
as well as the null events.

Two perturbations were
performed for the 75 cases
selected [(4 MJO phases +
null phase) × 15 events].
The perturbation initial
conditions were deter-
mined in a fairly simplistic
manner. Given the day of
the month that the initial
condition occurs, day-to-day
root-mean-square (rms)
differences were computed
(on the model’s sigma sur-
faces) from the daily aver-
aged values of the model’s
four prognostic variables
(u,v,T,q) for that particular
month. This process was
meant to provide some spa-
tial structure to the pertur-
bation, whereby larger day-
to-day variability would
translate into more uncer-
tainty in the initial condi-

tions. These rms values were then multiplied by a ran-
dom number scaled between –0.1 and 0.1 for the first
set of perturbations and –0.2 and 0.2 for the second
set. These “errors” were then added to the original ini-

FIG. 3. Amplitude time series for the (top) first and
(middle) second EEOF of filtered (30–90 days) NH win-
ter model rainfall. (top) and (middle) The Xs and Os
represent the time periods selected for MJO-event ini-
tial conditions. (bottom) Composite EEOF amplitude
time series representing generalized intraseasonal ac-
tivity. The 15 Xs in this panel represent the time peri-
ods selected to represent little or no MJO activity (i.e.,
the null events). The minimum spacing between the Xs
in this panel is 10 days and all Xs occur in NH winter
(Oct–Apr). See section titled “Experimental frame-
work” for details.

FIG. 2. Composite NH winter (Nov–Apr) MJO from observations (left columns)
and the model (right columns). Sequential maps are separated by 10 days. Units
for rainfall (200-hPa velocity potential) are mm day−1 (106 × m2 s−1). See sec-
tion titled “Experimental framework” for a description of their construction.
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Shukla 1985; Stern and Miyakoda
1995; Anderson and Stern 1996; Yang
et al. 1998; Schneider and Griffies
1999), the approach taken here at-
tempts to make a relatively conserva-
tive estimate of the limit of useful pre-
dictability for the MJO. When the
MJO is active, it tends to exhibit an
oscillatory form in which the ampli-
tude of the oscillation can be said to
represent a measure of the “signal.”
Of interest here is how long before the
forecast errors resulting from the im-
precise initial conditions grow to be
as large as this signal. Schematically,
this is illustrated in Fig. 6, where the
solid thick line represents the control
simulation and the two solid thin lines
represent the perturbed cases. Thus
for the MJO (or null) events selected,
we will examine how the mean fore-
cast error compares to the mean sig-
nal (e.g., Kleeman and Moore 1999).
The signal for a given MJO event is
defined as the variance within a slid-
ing window that is large enough to
encompass the entire event (~50
days):

(1)

The forecast error for a given event is defined as the
mean-square difference between the perturbed case
and the control case

(2)

In the above equations, X is the geophysical quantity
being analyzed (e.g., VP200), i is the MJO event, j is
the day number relative to the initial forecast date, and
k is the perturbation number with X0 representing the
control case. The mean signal and mean-square fore-
cast error for a given set of events are then simply de-
fined as

(3)

(4)

tial condition’s prognostic values to produce an alter-
native initial condition. The different size error between
the first set and second set will be used to provide
some information on the sensitivity of the predictabil-
ity to the size of the initial condition perturbation.

For each alternative initial condition, the model
was integrated for 90 days. To isolate the MJO phe-
nomena and distinguish its predictability from high-
frequency weather fluctuations, the 120 days of model
simulation prior to the initial condition were com-
bined with the 90-day “forecasts” and the result
bandpassed filter during the same 30–90-day filter
described above. A triangular taper 40 days long was
applied at either end of these 210-day series. To il-
lustrate the sensitivity of the results to the use of such
a filter, specifically its “edge” effects, results will also
be shown for persistence forecasts as well as the case
of using 10-day-average data.

RESULTS. While there are a number of ways to de-
fine predictability for atmospheric phenomena (e.g.,

FIG. 4. Composite filtered (30–90 days) rainfall anomalies for the 15
initial conditions selected to represent the four “phases” of the MJO
(upper four panels) as well as the null cases (lower panel). For ex-
ample, the upper-left panel [i.e. Indian (1+)] is the average rainfall
anomaly from the 15 initial conditions indicated by the Xs in the up-
per panel (i.e., mode 1) of Fig. 3. Similarly, for the other panels. Ex-
cept in the null case (lower left), the headings indicate the geographic
region of the most intense MJO-related rainfall (i.e., Indian Ocean for
the upper left) as well as the rainfall EEOF mode and sign (e.g., 1+
indicates EEOF mode 1 > 0).
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In the above equations, N is typically set to 15 (e.g.,
15 events for a particular phase of the MJO) or 60 (all
MJO events), L is set to 25, and X represents daily
values of intraseasonally filtered data. Parameter set-
tings of this sort, considered the standard or control,
provide the means to diagnose the predictability of the
model’s MJO. However in some cases, X represents
daily unfiltered data and L is set to 5. These latter cal-
culations are for the purposes of diagnosing the pre-
dictability of the model’s weather and comparing it
to the predictability of the model’s MJO (i.e., Fig. 12).

Given that the two sets of perturbations (k = 1,2)
use different size perturbations, the error growth for
these two sets can be calculated separately in Eq. (4)
by averaging only over k = 1 in one case, and only over
k = 2 in the second. Using the above definitions, a pre-
dictability ratio can be defined as

(5)

with the implication that at early lead times this ratio
will be much larger than 1 and at the point it becomes
of order 1, little useful predictability remains. Note
that an alternative to the above approach would be to
perform a much larger ensemble of forecasts for one
or a few events and compare the ensemble spread at
any given lead time to the size of the mean signal. This
represents a more typical approach of comparing sig-

nal to “noise.” However, given lim-
ited computing resources, this ap-
proach drastically reduces the num-
ber of events that can be represented
in the analysis. For example, given
the same number of simulations,
only three events could be examined
if the ensemble size was set to 10.
Since it is unknown how variable the
predictability of the MJO might be
from one event to the next, selecting
one or a few events to be represen-
tative might prove difficult. For this
reason, we opted for the approach
outlined above. In any case, to test
the sensitivity of the results to the ap-
proach adopted, we also performed
90-day forecasts for a 15-member en-
semble for a single MJO event [start-
ing from 31 January, year 8; see X in
Fig. 3 (top)]. The predictability char-
acteristics for this ensemble were
found to generally agree with those
described below that were based on

more events (i.e., 60) but with fewer members in each
ensemble (i.e., 2) as outlined above.

Figure 7 illustrates the temporal evolution of
VP200 for the selected events (i.e., N = 15 for each
case; thin solid lines) for a region located in the west-
ern Pacific Ocean. For each panel, the solid thick lines
represents the ensemble mean of the events chosen,
the dotted thick lines depict the standard deviation
associated with this ensemble, and the thin dotted
lines represent the square root of the signal as defined

FIG. 5. Same as Fig. 4, except for 200-hPa velocity potential.

FIG. 6. Schematic depiction of the evolution of an MJO
event vs forecast time for a control forecast (thick line)
as well as two forecasts with perturbed initial conditions
(thin lines). The forecast error at any given time [σE(t)]
between the control forecast and a perturbed forecast
is the difference between the two time series. The sig-
nal of the MJO event at any given time [σs(t)] is repre-
sented as the running variance (shown here in terms
of std dev) of the time series, where the averaging
length is long enough to encompass a typical MJO pe-
riod. Thus the “signal” is a representation of the over-
all amplitude of a given MJO event. See Eqs. (1)–(4) and
associated text in the section titled “Results.”
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in Eq. (3). Note that forecast day “0” is the day that
the forecasts will begin from perturbed initial condi-
tions. The upper four panels illustrate the VP200 evo-
lution for the events that were selected to represent
four different phases of the MJO. The relatively good
coherence in the temporal evolution between these
events within each panel demonstrates that the MJO
event selection procedure performed as intended. The
lower panel illustrates the VP200 evolution for the
events that were selected to represent cases with little
or no MJO activity. In this case, the events show little
coherence and also exhibit significantly weaker am-
plitudes.

Figure 8 shows the mean signal [thick solid blue;
Eq. (3)] and mean-square forecast errors [thick solid
black; Eq. (4)] versus lead time for VP200 for the se-
lected events for the same western Pacific Ocean re-
gion. Ninety-five percent confidence limits on these
mean values are also shown (thin dashed lines). In

addition, mean-square forecast er-
rors for persistence are also shown.
For these persistence forecasts, the
daily average value from the day of
the initial conditions was persisted
for 90 days. The data are then
bandpassed in the same manner as
the dynamical forecasts. It is worth
noting the fact that the forecast er-
rors are not zero at 0-days lead due
to the use of the bandpass filter to
isolate the MJO phenomena. The
application of such a filter introduces
useful information into the early
forecast early period from the period
prior to the forecast and erroneous
information into period prior to the
forecast from the forecast itself. For
the most part, the mean signal re-
mains relatively constant through
the period shown. However, since the
MJO (null) events were chosen based
on maxima (minima) found in the
EEOF amplitude time series, a slight
decrease (increase) in the signal is
exhibited away from forecast day 0
for the MJO (null) events. In addi-
tion, part of the decrease in the sig-
nal at long lead times (> ~ 45 days)
is due to the application of the trian-
gular taper before bandpassing (see
the section titled “Experimental
framework”).

Of interest here is the forecast
lead time when the mean forecast error and the mean
signal tend to be equal. For this western Pacific Ocean
region, this tends to occur at about 20–30 days. Com-
paring the upper four panels shows that this intersec-
tion of signal and forecast error occurs soonest (~ 20
days) when the convection is over the Maritime re-
gion at the start of the forecast and latest (~ 30 days)
when the convection starts in the Indian or central
Pacific Ocean. This difference might be related to the
fact that longer-lead predictions of MJO variability for
the western Pacific (or any region) are probably less
skillful within the convective regime of the MJO. For
the events when the convection starts in the Indian
Ocean, the western Pacific first goes through a sup-
pressed phase (see Fig. 7) during days 0–20, which is
then followed by the development of the convective
phase during days 20–30. Having the suppressed
phase in the early part of the forecast appears to lend
skill to the prediction and lengthen the period of use-

FIG. 7. The thin solid lines depict the evolution of filtered (30–90 day)
200-hPa velocity potential over the western Pacific Ocean (4°N–12°S,
147.5°–162.5°E) for the selected MJO events (upper four panels) and
null cases (lower panel). Except in the null case (lower left), the head-
ings indicate the geographic region of the most intense MJO-related
rainfall at the start of the forecast as well as the rainfall EEOF mode
and sign (see Fig. 4). The thick solid lines are the means of the 15
time series in each panel. The thick dashed lines are the mean values
plus and minus one std dev. The thin dashed lines are the square root
of the mean MJO signal as defined by Eq. (3). Forecast day 0 is the
day that the forecasts will begin from perturbed initial conditions.
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ful predictability. On the other hand,
for the events when the convection
starts over the Maritime region, the skill
appears quite good in the first 10–
15 days when evolving from sup-
pressed to convective conditions.
However, beyond this time the fore-
cast skill degrades rapidly. It should be
noted that the size of the confidence
limits (black and blue dotted lines)
suggests that the longitudinal depen-
dencies of the predictability measures
illustrated in Fig. 8 (as well as Figs. 11
and 12) should be considered with
some caution.

Considering all the selected MJO
events together (lower-left panel in
Fig. 8) indicates that useful predict-
ability extends to about 25–30 days.
Note that the dynamical skill typically
exceeds that associated with the per-
sistence score by about 5–10 days. Due
to the use of the bandpass filter to iso-
late the MJO, the persistence forecasts
shown here essentially represents a
crude empirical form of MJO forecast-
ing (cf. Wheeler and Weickmann
2001). For the null cases (lower-right
panel) useful predictability tends to
exist for lead times less than about
15 days for this location. This appears
to result from an error growth rate (at
early lead times) that is not too dis-
similar from the high-amplitude MJO
cases in combination with a much
weaker amplitude associated with the
MJO signal. Thus the errors simply
obtain the magnitude of the signal at a much earlier
lead time. It is also worth pointing out that persistence
appears to provide a more competitive forecast for the
null events as compared to the MJO cases. This is not
completely unexpected since for the null cases the at-
mosphere is in a more quiescent (i.e., persistent) state,
in an intraseasonal sense, than for the cases when the
MJO is strongly exhibited.

To illustrate the sensitivity of the forecast errors
to the initial perturbation size, the top two panels in
Fig. 9 shows the same information as the lower-left
panel in Fig. 8, except that the left (right) panel con-
tains the MJO forecasts that had a perturbation mul-
tiplier of 0.1 (0.2) (see section titled “Experimental
framework”). Thus each of these panels is based on
the same 60 MJO cases, but they differ in the size (and

random nature) of the perturbation applied. As a re-
minder, the lower-left panel in Fig. 8 is composed of
both these sets of forecasts (i.e., N = 120). The results
illustrate some modest dependence on perturbation
size, at least for the magnitude of the perturbations
considered in this study. The mean-square forecast
error for the forecasts with the smaller perturbation
size (upper left) crosses the mean signal at 30 days,
while for the forecasts with the larger perturbation
size (upper right) this intersection occurs at 25 days.
Although the qualitative aspect of this result is some-
what expected, the quantitative aspects should be con-
sidered with some caution given the confidence lim-
its shown. The lower two panels in Fig. 9 demonstrate
the influence of the use of the 30–90-day bandpass
filter as a means of isolating the MJO. It contains the

FIG. 8. The thick solid black and blue lines are the mean-squared fore-
cast error [Eq. (4)] and mean MJO signal [Eq. (3)], respectively, for
the filtered (30–90 day) 200-hPa velocity potential over the western
Pacific Ocean (4°N–12°S, 147.5°–162.5°E) for the selected MJO events
[upper four panels (N = 30) and lower left panel (N = 120)] and for
the null cases [lower-right panel (N = 30)]. The thin dashed black and
blue lines depict the 95% confidence limits for these means using a
Student’s t test. Except in the lower two panels, the headings indi-
cate the geographic region of the most intense MJO-related rainfall
at the start of the forecast as well as the rainfall EEOF mode and sign
(see Fig. 4). The lower-left panel includes all MJO events (i.e., all the
series in the upper four panels). The dotted red lines are the mean-
squared forecast error for a persistence forecast (see section titled
“Results”). Forecast day 0 is the day that the forecasts begin.
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same information as the upper two panels, except for
the case of using a simple 10-day box average instead.
Since less variability is filtered out in
this case, the signal (thick blue line)
is larger than for the use of the
bandpass filter. Correspondingly,
the error growth rate is somewhat
larger. However, considering these
two quantities together still suggests
that useful predictability extends to
about 20 days for the selected MJO
events. As with the upper panels,
there is some evidence for forecast
errors in these two lower panels to
be larger for the larger perturbation
cases, at least in the 20–30-day
range.

To illustrate the spatial depen-
dence of the results discussed above,
Fig. 10 shows the MJO signal [left
panels; Eq. (3)] and mean-square
forecast error [right panels; Eq. (4)]
for VP200 at three lead times (5, 15,
and 25 days) between 60°N and 60°S.
As expected the large values for the
MJO signal, and thus large values of
the forecast error as well, are pre-
dominately confined to the tropical
latitudes of the Eastern Hemisphere.
At 15 days, the mean signal is still con-
siderably larger than the mean fore-

cast error for this entire region. Even
out to 25 days in this region, the mean
signal is still slightly larger than the
mean forecast error indicating useful
predictability at this lead time.

While VP200 is a useful indicator
of tropical circulation patterns asso-
ciated with the MJO, its relevance to
weather and short-term climate
variations at the surface is quite lim-
ited. As in most weather and climate
forecasting contexts, rainfall is not
only a highly relevant quantity to
predict, it is also typically one of the
most difficult. Figure 11 shows the
same information presented in
Fig. 10 but for rainfall instead of
VP200. As expected the area exhib-
iting strong MJO variability is signifi-
cantly reduced for rainfall as com-
pared to VP200 (i.e., Figs. 4,5).
Apparent is the expected reduction

in predictability. For rainfall, the error at 15-day lead
time is approaching the size of the signal. While 15 days

FIG. 9. (top) Same as lower-left panel of Fig. 8, except that the left
(right) panel only contains the 60 out of the 120 forecasts having ran-
dom perturbations to the initial conditions with a magnitude of 0.1
(0.2) times the daily rms values (see section titled “Experimental
framework”). (bottom) Same as upper plots, except using 10-day
running mean data rather than 30–90-day bandpass filtering.

FIG. 10. (left) The MJO mean signal [see Eq. (3)] and (right) mean fore-
cast error [see Eq. (4)] for all the selected events MJO events com-
bined at lead times of (top) 5, (middle) 15, and (bottom) 25 days for
filtered (30–90 days) 200-hPa velocity potential.
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represents about a factor of 2 reduc-
tion relative to the lead times of use-
ful predictability for VP200, taken in
the context of typical weather varia-
tions, it still represents consider-
able utility.

To show more directly how the
signal and error compare versus
lead time, predictability ratios
defined by Eq. (5) were computed
for VP200, rainfall and 500-hPa
geopotential heights (hereafter
H500). As mentioned earlier, com-
putations were done on bandpassed
data with L = 25 (Eq. (1)] to diag-
nose the predictability of the
model’s MJO as well as on unfil-
tered daily data with L = 5 to
diagnose the predictability of the
model’s weather. Figures 12a,b
show domain-averaged predictabil-
ity ratios versus lead time for a rect-
angular region encompassing the
southeast Maritime Continent and
northeast Australia. The MJO pre-
dictability ratios are plotted for
VP200 (Fig. 12a) and rainfall (Fig. 12b) considering
all 120 MJO events combined from both the dynami-
cal (thick solid blue) and persistence (thin dashed
red) forecasts. The plots show that on average in this
region the predictability ratio remains greater than
1 at lead times up until about 30 days for VP200 and
15 days for rainfall. In contrast the predictability ra-
tio for the persistence forecasts remain greater than
one only out to lead times of about 12 days for VP200
and 8 days for rainfall. This indicates a fair level of
MJO forecast skill that might be attributed to the
dynamical framework.

The predictability values associated with the
model’s weather—that is, computed from unfiltered
daily data—are also plotted in Figs. 12a,b for the same
tropical region (thick solid black). For these cases, the
predictability ratio remains greater than 1 only out to
about 12 days for VP200 and 10 days for rainfall.
Comparing these weather predictability ratios to the
(dynamical) MJO predictability ratios discussed above

FIG. 11. Same as Fig. 10, except for rainfall.

FIG. 12. Predictability ratios vs lead time [Eq. (5)]
for (a) 200-hPa velocity potential (VP200) aver-
aged over 8°N–16°S, 117.5°–167.5°E, (b) same as
(a) except for rainfall, and (c) 500-hPa geopo-
tential height averaged over 40°N–52°N, and
162.5°–142.5°W. Thick solid (thick dashed) lines
are based on all 120 MJO (30 null) events from the
dynamical forecasts. Thin dashed lines are based
on all 120 MJO events from the persistence
forecasts; see section titled “Summary” for
computation of persistence. Blue and red (black)
lines are based on calculations using daily filtered
(unfiltered) data with L set equal to 25 (5) in
Eq. (1), and thus are applicable to MJO (weather)
variability.
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illustrates the enhanced skill that is associated with
predicting the low-frequency variations of the model’s
MJO over that of predicting its high-frequency
weather variations. Figure 12c shows predictability ra-
tios associated with the model’s weather, in terms of
H500, for a midlatitude regime (i.e., northeast Pacific
Ocean). Again, it is clear that the limit of predictabil-
ity for the model’s weather, whether in the Tropics
or the midlatitudes, is considerably shorter than the
limit of predictability for the model’s MJO. Finally,
Figs. 12a–c all show the MJO predictability ratios
computed from only the null events (thick dashed
lines). Comparing the solid and dashed thick blue
lines in Figs. 12a and 12b illustrate the enhanced pre-
dictability associated with strong MJO events versus
the diminished predictability associated with periods
when the MJO is weak/absent. Comparing the solid
and dashed thick black lines in Fig. 12c illustrates that
only modest sensitivity exists in the model’s
midlatitude weather predictability to the strength
and/or presence of tropical MJO variability.
Examination of the dependence of the model’s
midlatitude weather predictability to the phase of the
MJO also showed very little sensitivity (not shown),
with the exception that slightly greater predictability
existed when the MJO convection center was located
in the western Indian Ocean at the start of the fore-
cast (i.e., phase 1+ in Figs. 4, 5). This latter issue is
presently being examined in more detail and will be
reported in a future study.

The results in Fig. 8 indicated the possibility that
predictability of the model MJO may have some de-
pendence on the convective versus subsidence phase
of the MJO, as opposed the dependence on the lon-
gitudinal position of the convection (i.e., Fig. 5). To
quantify the sensitivity of the predictability to the sign
of the MJO anomaly (i.e., convection or subsidence),
the relationship between the VP200 (rainfall) predict-
ability ratios and the mean VP200 (rainfall) anomaly
values were examined. Mean bandpassed VP200 and
rainfall anomaly values over a given set of MJO events
(i.e., Indian, Maritime, W Pacific and C Pacific
phases) or null cases were computed as follows:

(6)

where i represents the event index and N is 15. Note
that this computation is tantamount to constructing
the thick solid line shown in Fig. 7 for each grid point.
These mean bandpassed anomalies [Eq. (6)] as well
as the associated mean predictability ratios [Eq. (5)]

each have latitude, longitude, forecast day, and MJO
phase dependence. Both these variables were incor-
porated into the upper left (right) panels of Fig. 13
that show the VP200 (rainfall) predictability ratios bin
averaged against the bandpassed VP200 (rainfall)
anomaly and lead time from a large equatorial area
that exhibits relatively strong intraseasonal variabil-
ity. In this case, the latitude, longitude, and MJO phase
(e.g., Fig. 5) dependencies were averaged out to leave
only the dependence on lead time and mean anomaly
value. These diagrams show that the predictability
values, as defined in Eq. (5), tend to be slightly greater
at longer lead times for the suppressed phase of the
oscillation; this is especially so for rainfall. However
at short lead times (< ~ 5 days), the model predict-
ability for either variable tends to be greatest for the
convective phase of the MJO. The lower panels of
Fig. 13 indicate that the above tendencies, at least for
rainfall (and VP200 at short lead times; not shown),
are significant at the 95% level.

FIG. 13. (top) Mean predictability ratios [Eq. (5)] for
(left) VP200 and (right) rainfall vs forecast day (verti-
cal axis) and mean (left) VP200 and (right) rainfall
anomaly value (horizontal axis). All four phases of the
MJO were binned together with values taken from
model grid points between 16°N–20°S and 20°E–
130°W. Only bins with an N > 20 are plotted. (bottom)
Thick lines are the predictability ratios of rainfall at
forecast day (left) 3 and (right) 20 (see horizontal lines
on upper-right plot). Thin lines are the 95% confidence
intervals on the means using a Student’s t test.
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Finally, to examine the dependency of the predict-
ability values discussed above on the modal charac-
teristics of the model’s intraseasonal variability and to
demonstrate that the enhanced predictability at long
lead times is in fact derived from the model’s MJO,
mean-square forecast errors were calculated for
model EOF amplitude series. To do so, the filtered
wintertime (November–April) bandpassed VP200
data from the control simulation were subject to a
standard EOF analysis. The spatial structures of the
first two EOF vectors resemble the middle two pan-
els of the composite VP200 data shown in Fig. 5. Note
that these first two EOF modes represent the basic
structure of the model’s MJO, particularly given that
their time series have a maximum correlation (~ 0.8)
at about ±12 days. EOF amplitude time series were
computed using this modal structure for the control
and perturbed forecasts for all the selected MJO
events and null cases. These amplitude time series
were then used in place of the actual data in Eqs. (1),
(2), and (4) to compute the mean-square forecast er-
ror for each EOF mode. In this case, the forecasts for
all four MJO phases and both perturbation sizes were
considered together (N = 120).

The values of the mean-square forecast error for
each EOF mode are shown in Fig. 14 versus forecast
day. Also shown (asterisks,) are the variance percent-
ages associated with the VP200 wintertime EOF
modes. This figure demonstrates that the model fore-
cast errors associated with the lowest two EOF
modes, those that capture the main elements of the
MJO, tend to be considerably lower at most lead
times than the forecast errors for the higher order
modes. In fact their forecast errors at lead times of
20–30 days are comparable to the forecast errors of
the higher-order modes at 10–20 days. Keep in mind
that given the significantly greater variance of the first
two modes (~ 70% of the bandpassed variance), most
of the overall error is still coming from these two
modes. However, errors associated with the higher-
order modes are likely to be influencing the devel-
opment of errors of the lower-order modes. Note that
for the null cases, the forecast errors for the low-order
modes remain relatively small through the forecast
period, even smaller than for the active MJO cases.
This is somewhat expected since for these cases very
little energy is associated with the low-order modes
and thus the errors tend to remain small as well. In
fact, the mean amplitudes [Eq. (3)] of EOF modes 1
and 2 (not shown) for the null cases are about 0.4
while those for the MJO events are about 1.0. These
values, and their trends over the forecast period, are
consistent with the lines associated with the MJO sig-

nal in the bottom two panels of Fig. 8. The implica-
tions of the above results will be discussed further
below.

SUMMARY. The goal of this study is to provide an
initial estimate of the dynamic predictability of the
Madden–Julian oscillation (MJO). While there have
been a number of predictive skill studies of the MJO
(i.e., comparing forecasts to observations) with sta-
tistical forecast models as well as with dynamical
models with rather poor representations of the MJO
(see the introductory section), none of these provide
a useful or adequate measure of dynamical MJO pre-
dictability. The NASA GLA general circulation model
was chosen for this study due to its relatively realistic
MJO representation (Fig. 2; see also Slingo et al. 1996;
Sperber et al. 1996; Waliser et al. 2002, manuscript
submitted to Climate Dyn.). A 10-yr control simula-
tion using specified annual cycle SSTs was performed
in order to provide initial conditions from which to

FIG. 14. Mean rms forecast errors [Eq. (4)] vs forecast
day of the EOF time series (modes 1–8) of 200-hPa ve-
locity potential for (top) all the selected MJO events
combined and the (bottom) null cases. The asterisks
indicate the percent variance associated with each
EOF mode using the same x axis interpreted as
percentage (%).
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perform an ensemble of twin predictability experi-
ments. The initial conditions were taken from peri-
ods of strong MJO activity identified via extended
empirical orthogonal function (EOF) analysis of 30–
90-day bandpassed tropical rainfall (Figs. 1, 3). From
this analysis, 15 cases were chosen when the MJO
convective center was located over the Indian Ocean,
Maritime Continent, western Pacific Ocean, and cen-
tral Pacific Ocean, respectively, making 60 cases in
total (Figs. 3–5). In addition, 15 cases were selected
that exhibited very little to no MJO activity (Figs. 3–
5). Two different sets of small random perturbations
were added to these 75 initial states. Simulations were
then performed for 90 days from each of these 150
perturbed initial conditions (e.g., Fig. 7).

A measure of potential predictability was con-
structed based on a ratio of the signal associated with
the MJO, in terms of rainfall or 200-hPa velocity po-
tential (VP200), and the mean-square error between
sets of twin forecasts [defined in Eqs. (1)–(5); see
Figs. 6–8). Predictability was considered useful if this
ratio was greater than 1, and thus if the mean-square
error was less than the signal associated with the MJO.
The results indicate that in the region of strong MJO
variability (i.e., the Eastern Hemisphere), useful pre-
dictability for this model’s MJO extends out to about
25–30 days for VP200 and to about 10–15 days for
rainfall (Figs. 10–12). Note that these limits of pre-
dictability are associated with the relatively strong
MJO event chosen for examination. During periods
of little or no MJO activity, the limits of predictabil-
ity over this same region are significantly diminished
(e.g., Figs. 8, 12, and 14). Effectively, the same pre-
dictability ratios are found at considerably shorter lead
times for the null cases versus the active MJO events
(~ 5–15-day difference). This diminished predictabil-
ity is a result of an error growth rate comparable to
the strong MJO activity cases in combination with
weaker intraseasonal signals. Thus, the magnitude of
the error attains the size of the signal more rapidly
within the forecast.

Predictability ratios were also computed for the
model’s weather variations (using unfiltered daily
data), both for tropical and midlatitude regimes. For
these cases, the predictability ratios remained above
1 only out to lead times of about 12 (10) days for tropi-
cal VP200 (rainfall) and 14 days for midlatitude
500-hPa geopotential height (Fig. 12). While this re-
duction in predictability for weather, relative to the
MJO, is expected, the quantitative aspects of this re-
sult, along with its demonstration, emphasize the po-
tential for enhancing our predictive capabilities of the
atmosphere via the low-frequency variations of the

MJO. In this regard, mean-square forecast errors were
also computed for EOF amplitude time series of the
bandpassed model output (Fig. 14) to highlight the
fact that the enhanced predictability at the extended
range is derived largely from the first two EOF modes,
that is, the model’s representation of the MJO.

The predictability measures for the MJO were also
found to exhibit a modest dependence on the phase
of the MJO, with greater predictability for the con-
vective phase at short (< ~ 5 days) lead times and for
the suppressed phase at longer (> ~ 15 days) lead
times (Fig. 13). The reason for this dependence is not
obvious. At short lead times, if the model atmosphere
has built up sufficient vertical instability on a large
scale, convection may be nearly ensured making the
predictability higher. While in regions where convec-
tion is expected to be suppressed, the model may sim-
ply have a tendency toward convection making pre-
dictability at shorter lead times more difficult relative
to convective regions. At longer lead times, pinpoint-
ing the place and time of convection may simply be
more difficult than predicting what would typically
be a larger-scale region of subsidence.

The above results have important implications for
both the local regions that the MJO rainfall variations
impact directly as well as regions that are influenced
by the MJO via teleconnections. Present-day atmo-
spheric forecasts are largely directed toward predict-
ing short-term weather variations from analyzed ini-
tial conditions as well as seasonal climate variations
associated with seasonal/interannual changes in sur-
face boundary conditions, namely from tropical SSTs.
As yet, operational weather forecasts have largely
been unable to exploit the relatively strong signal and
slow evolution associated with the MJO (e.g., Waliser
et al. 1999a; Jones et al. 2000; Hendon et al. 2000).
This is due to the generally poor representation of the
MJO in most AGCMs, except for a few research-
oriented models (e.g., Slingo et al. 1996; Waliser et
al. 1999a; Waliser and Hogan 2000). However, if the
MJO could be better represented in operational
weather forecast models, the above results imply that
extended-range tropical forecasts in the regions
directly impacted by the MJO (e.g., Fig. 2) could be
greatly enhanced and/or extended. This includes a
means to better predict the onset and break periods
of the Asian–Australian summer monsoons that are
so strongly determined by intraseasonal variations
such as the MJO. In this regard, the improvement in
forecast skill that might be possible with a model ca-
pable of simulating the MJO over one that poorly
represents the MJO can be inferred from the en-
hanced predictability associated with the active ver-
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sus null MJO cases discussed above (i.e., about a
10-day improvement in lead time).

In addition to the local impacts that improved
MJO prediction might offer there are a number of
remote processes, discussed in the introductory sec-
tion, whose prediction may also improve as well.
These include wintertime midlatitude circulation
anomalies, and their influence on U.S. west coast
rainfall, as well as summertime precipitation variabil-
ity over Mexico and South America. If the results
above represent even an approximate estimate of the
predictability of the observed MJO, then extended-
range predictions (> 10 days) of this region’s rainfall
variability could be improved if our operational
model representation’s of the MJO were more real-
istic. In addition, recent studies have also shown that
particular phases of the MJO are more favorable than
others in regards to the development of tropical
storms/hurricanes in both the Atlantic and Pacific
sectors. Again having operational forecasts that pro-
vide useful skill in predicting the MJO out to even
10–15 days would be of benefit to predicting periods
of enhanced or diminished periods of hurricane and
tropical storm development.

There are a number of caveats that should be noted
regarding the above results. For example, there are
model shortcomings that suggest the above results
might be an underestimate of predictability of the
MJO. First, while the intraseasonal peak of equatorial
wavenumber 1, upper-level velocity potential and
zonal wind for the model is quite similar, in terms of
magnitude and frequency, to observations, the model
spectra has too much high-frequency (~days) variabil-
ity for wavenumber 1 (Slingo et al. 1996). Relative to
the MJO, this variability would be considered to be
unorganized, errant convective activity that may
erode the relatively smooth evolution of the MJO and
thus diminish its predictability. Second, these simu-
lations were carried out with fixed climatological SST
values. A previous study with this model showed that
coupled SSTs tend to have an enhancing and organiz-
ing influence on the MJO, making it stronger and
more coherent (Waliser et al. 1999b). Thus the exclu-
sion of SST coupling may lead to an underestimate
of the predictability as well. The third aspect that may
lead to an underestimate the predictability is the fact
that the model contains too little variability over the
western Indian Ocean and southern Maritime Con-
tinent region (Figs. 2, 12). The weakened MJO rain-
fall variations over this region may lead to a reduced
predictability due to the model’s relatively weak con-
vection passing through this region, a region that ex-
hibits a relatively robust convective signal in the ob-

servations. This tendency for underestimating the
predictability is somewhat analogous to the manner
the null cases showed reduced predictability, not be-
cause of an increased error growth rate but because
of a reduced MJO signal.

A number of aspects associated with the model
and/or analysis suggest that the above results might
overestimate the predictability of the MJO. The first
is that the model’s coarse resolution and inherent re-
duced degrees of freedom relative to the true atmo-
sphere may limit the amount of small-scale variabil-
ity that would typically erode large time- and
space-scale variability. However, it is important to
note in this regard that the low-order EOFs of
intrasesonality filtered model output typically do not
capture as much variability as analogous EOFs of ob-
served quantities (section titled “Experimental frame-
work”). Thus while it may be true that the model lacks
sufficient small-scale variability, which may erode
MJO predictability, the model’s MJO itself, as indi-
cated above, still has room to be more robust and
coherent, which would tend to enhance predictabil-
ity. In addition to model shortcomings, the simple
manner that perturbations were added to the initial
conditions may also lead to an overestimate of the
predictability. The perturbation structure and the size
of the perturbations (see same section) may be too
conservative and not adequately represent the type of
initial condition error that would be found in an op-
erational context. However, even if that is the case, it
would seem that adequate size “initial” errors would
occur in the forecast in a matter of a day or two and
thus one would expect this aspect to overestimate the
predictability by only a couple days, if at all. Future
studies will examine the sensitivity of these results to
the AGCM employed, to winter versus summer con-
ditions, to SST coupling, midlatitude variability, and
El Niño state, as well as to examine how sensitive these
results are to the initial condition perturbations and
definition of predictability [e.g., Eqs. (1)–(5)].
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