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ABSTRACT

In this study, the effect of thermodynamic environmental changes on hurricane intensity is extensively in-
vestigated with the National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory
hurricane model for a suite of experiments with different initial upper-tropospheric temperature anomalies up
to 648C and sea surface temperatures ranging from 268 to 318C given the same relative humidity profile.

The results indicate that stabilization in the environmental atmosphere and sea surface temperature (SST)
increase cause opposing effects on hurricane intensity. The offsetting relationship between the effects of at-
mospheric stability increase (decrease) and SST increase (decrease) is monotonic and systematic in the parameter
space. This implies that hurricane intensity increase due to a possible global warming associated with increased
CO2 is considerably smaller than that expected from warming of the oceanic waters alone. The results also
indicate that the intensity of stronger (weaker) hurricanes is more (less) sensitive to atmospheric stability and
SST changes. The model-attained hurricane intensity is found to be well correlated with the maximum surface
evaporation and the large-scale environmental convective available potential energy. The model-attained hur-
ricane intensity is highly correlated with the energy available from wet-adiabatic ascent near the eyewall relative
to a reference sounding in the undisturbed environment for all the experiments. Coupled hurricane–ocean ex-
periments show that hurricane intensity becomes less sensitive to atmospheric stability and SST changes since
the ocean coupling causes larger (smaller) intensity reduction for stronger (weaker) hurricanes. This implies less
increase of hurricane intensity related to a possible global warming due to increased CO2.

1. Introduction

The effect of atmospheric (dry and moist) static sta-
bility on hurricane intensity has received little attention
compared to some other factors. Change of tropical at-
mospheric stability may, however, be relatively large in
some climate scenarios. Recently, maximum potential
intensity (MPI) theories (e.g., Emanuel 1988, 1995;
Holland 1997) have been developed using large-scale
thermodynamic environmental factors. These theories
are commonly used to estimate the effects of environ-
mental changes on maximum achievable hurricane in-
tensity and to provide reasonable upper limits of hur-
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ricane intensity (e.g., Schade and Emanuel 1999; Hol-
land 1997). However, some factors that may influence
hurricane intensity, such as asymmetries, hurricane–en-
vironment interactions, and hurricane–ocean interac-
tion, are not typically considered in these MPI deriva-
tions. A major criticism (e.g., Lighthill et al. 1994) con-
cerning the use of climate models to investigate the
effects of environmental changes on hurricanes, partic-
ularly on hurricane intensity, is their coarse resolution.
In this study, we focus on the effects of concurrent
atmospheric stability and SST changes on hurricane in-
tensity using the high-resolution Geophysical Fluid Dy-
namics Laboratory (GFDL) hurricane model. Rather
than focusing on several specifically observed or model-
simulated vertical thermodynamic profiles (e.g., Knut-
son et al. 1998), we investigate the effects of SST and
stability over a wide parameter space. For our approach,
integrations are made starting with specified initial cy-
clones embedded in idealized environments of temper-
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ature lapse rate anomalies. The majority of the exper-
iments in this study are performed with SSTs fixed in
time. However, the SSTs usually decrease due to the
air–sea interaction in hurricanes (Ginis 1995) which
may significantly affect the hurricane intensity (Bender
and Ginis 2000). Therefore, a set of additional experi-
ments has been conducted to investigate the role of
ocean coupling in hurricane intensity for different at-
mospheric environmental conditions. It will be inter-
esting to compare these idealized model results with the
more simple MPI theories and with the more specific
GCM global warming studies.

Strictly speaking, the change of moist static stability,
which combines temperature and moisture profiles in
the atmosphere, is restricted since equivalent potential
temperature tends to be conserved. Emanuel (1987) and
Emanuel et al. (1994) suggested that tropical atmo-
sphere is nearly convectively adjusted or neutral. The
existence of a nearly neutral state or near-zero convec-
tive available potential energy (CAPE) can be seen from
some tropical soundings (e.g., Betts 1982; Xu and
Emanuel 1989). However, deviations from this state may
occur and precise definitions of this neutral state vary.
Williams and Renno (1993) analyzed various tropical
experiment data sources and found that the tropical at-
mospheric CAPE ranges from almost zero to above 5000
J kg21 (reversible ascent was used with the inclusion of
freezing at very high altitudes). Large CAPE and its
change were either implied or indicated in both obser-
vations (Oort 1983; Henderson-Sellers et al. 1998) and
climate model simulations (e.g., Ye et al. 1998). In this
study, we will investigate the correlations of model-
attained intensity with both dry stability and CAPE.

The paper is organized as follows. Section 2 gives a
brief description of the National Oceanic and Atmo-
spheric Administration/GFDL hurricane model and the
experiment design in this study. Presented in section 3
are the results of our sensitivity experiments to atmo-
spheric static stability versus SST. Some explanations
and discussions about the results are made in section 4.
In section 5 a brief summary of this study is made.

2. Model and experiment design

a. Model description

The hurricane model applied in this study is the triply
nested movable mesh model described by Kurihara and
Bender (1980). The model is a primitive equation model
formulated in latitude, longitude, and s coordinates,
with 18 levels in the vertical (Kurihara et al. 1990, Table
1). The domains of the three meshes in this study are
758 3 758, 118 3 118, and 58 3 58 with resolutions of
18, 1⁄38, and 1⁄68, respectively. The outermost domain
ranged from 108S to 658N in the meridional direction.
The longitudinal positioning of this domain does not
possess any specific meaning since zonally uniform en-
vironmental states are used in all the experiments in this

study. The outermost domain is fixed in the model, while
the inner meshes move with hurricane center. The model
physics includes cumulus convection treated by the pa-
rameterization scheme of Kurihara (1973) with some
additional modification (Kurihara and Bender 1980, ap-
pendix C); surface exchanges via the Monin–Obukhov
scheme; subgrid-scale horizontal diffusion treated by
the nonlinear viscosity scheme (Smagorinsky 1963);
vertical diffusion via the Mellor and Yamada (1974)
level-2 turbulence closure scheme with a background
diffusion coefficient added; and the Schwarzkopf and
Fels (1991) infrared and the Lacis and Hansen (1974)
solar radiation parameterizations with cloud specifica-
tion. The GFDL model has been implemented as an
official hurricane forecast model of the National Weath-
er Service since 1995. An overall summary of the GFDL
model and forecast system can be found in Kurihara et
al. (1998).

The Princeton ocean model is coupled to the hurricane
model for a set of experiments in this study. This ocean
model is a free surface primitive equation model in s
coordinate system with the same vertical and horizontal
diffusion schemes as used in the atmospheric model.
Details of this model are described in Bender et al.
(1993b) and Blumberg and Mellor (1987).

b. Experiment design

For the experiments without ocean coupling, SSTs
are fixed during 3-day integrations. The initialization
scheme by Kurihara et al. (1993), with some recent
modifications (Kurihara et al. 1995), is applied for mod-
el initialization. Simply, a vortex of model-produced
axisymmetric and b-effect related asymmetric compo-
nents is superposed on an environmental field. The ini-
tial vortices are placed at 19.58N. For most of the ex-
periments in this study, a strong and deep initial vortex
based on Hurricane Fran (2 Sep 1996) is used. The
axisymmetric surface tangential wind distribution of the
vortex is shown by the solid line in Fig. 1. We thus are
starting with a hurricane of given surface maximum
wind and minimum pressure. Note that in this paper
surface air–sea difference refers to the difference be-
tween the lowest model layer and the sea surface, sur-
face pressure and temperature refer to values at the sea
surface, while surface wind refers to values at the lowest
model level. A few experiments are also performed with
a large size initial vortex indicated by the dashed line
in Fig. 1. Since in all experiments the hurricane model
attains quasi-steady state (regarding its intensity and
overall structure) in about one or two days using these
vortices, it is assumed that this steady state is repre-
sentative of the maximum attainable hurricane intensity
for the specified environmental conditions. The time
evolution of these environmental fields was evaluated
and found to be very small during 3-day runs.

For most of the experiments in this study, horizontally
uniform environmental fields are used. Figure 2a shows
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FIG. 1. Radial distributions of the surface tangential wind in the
initial hurricane vortices. The initial wind distribution of the primary
experiments is denoted by the solid line. The distribution used in
some supplementary experiments is denoted by the dashed line.

the reference profiles of temperature and relative hu-
midity based on the Global Atmospheric Research Pro-
gram Atlantic Tropical Experiment (GATE) III condi-
tions at 808W.1 These reference profiles are used in the
control case with an underlying SST of 28.58C. The
environmental surface pressure is set to be 1010 mb for
all experiments in this study. The temperature anomalies
(from 248 to 148C in the upper troposphere) in Fig.
2b are those applied to the reference temperature profile
to investigate the effects of temperature lapse rate
changes. Note that the opposite temperature anomalies
in the stratosphere are based on the effect of increased
CO2 (e.g., Hansen et al. 1984; Manabe and Wetherald
1987); these stratospheric anomalies are found to have
negligible influences on the final hurricane intensities
in this study. Separate experiments are performed for a
range of SSTs (268–318C) with an increment of 0.58C
and for each temperature anomaly shown in Fig. 2. The
same surface air–sea temperature difference of 1.28C
and relative humidity profile are used in most of the
experiments in this study. The same relative humidity
profile is used because climate model simulations reveal
little variation in tropical relative humidity in global
warming scenarios. Although the SST range from 268
to 318C may exceed the temporal variability of SST at
a specific location, it fairly represents a combination of
temporal and spatial variabilities in the tropical and sub-
tropical SSTs due to doubling CO2. The 148C upper-
tropospheric temperature anomaly relative to surface
temperature is only a little larger than the maximum
change indicated by climate models for doubling CO2,

1 The humidity for GATE III at 808W is high to a large depth
compared with the moisture at other longitudes and other periods of
GATE (Kurihara and Tuleya 1981).

while the 248C anomaly may be somewhat larger than
the natural variabilities implied by Oort (1983) and Hen-
derson-Sellers et al. (1998). This will be further dis-
cussed in the next section.

Experiments are also performed using an easterly
mean wind of constant angular velocity that yields 25
m s21 at 19.58N where the initial hurricane vortexes are
placed. In the presence of the initial mean winds, me-
ridional gradients of surface pressure and air tempera-
ture are obtained by solving the geostrophic wind and
hydrostatic balance equations. Additional coupled hur-
ricane–ocean experiments are also performed with this
mean flow condition. In these coupled experiments, ide-
alized ocean initial conditions are used. A resting hor-
izontally uniform ocean is assumed of a typical vertical
temperature profile in the western Atlantic Ocean in
August. It has a vertically uniform mixed layer of 30-m
depth with a 0.18C m21 vertical temperature gradient in
the upper thermocline layer from 30 to 100 m and a
0.0378C m21 gradient in the lower thermocline layer
from 100 to 375 m. The ocean depth is set to be 4000
m everywhere. Open ocean boundary conditions are
used. The resolution of the ocean model is the same as
the resolution for the most inner mesh of the atmo-
spheric hurricane model.

3. The results

As stated previously, 3-day integrations are made
starting with a specified vortex initialized on an ideal-
ized environmental field. Figure 3 shows time evolu-
tions of hurricane intensity (minimum surface pressure
in the upper panel and maximum surface wind in the
lower panel) for different lapse rate anomalies with no
mean flow. A quasi steady state is achieved after about
one or two days. The cases with more unstable (stable)
lapse rates tend to attain higher (lower) hurricane in-
tensity. Changes of temperature lapse rate due to upper-
tropospheric temperature anomalies ranging from 2.58
to 22.58C lead to hurricane minimum surface pressure
changes by about 15 mb and surface maximum wind
changes by about 8 m s21. It was found in these ex-
periments that the sizes of the resulting hurricane and
its eye are almost the same as their initial sizes with the
warm core correspondingly more intense for higher hur-
ricane intensity. Further details of hurricane structure
are not investigated but a simple discussion about the
most salient feature regarding the warm core intensity
will be given in the next section based on the initial
environmental and the simulated eyewall thermodynam-
ic profiles.

It is important to examine whether the lapse rate dif-
ferences in the above cases cause any differences in
hurricane track and propagation that may be responsible,
in part, for the observed differences in hurricane inten-
sity. It was found that the hurricane track differences
are small and their latitudinal and longitudinal differ-
ences at any time during the model integrations are



112 VOLUME 13J O U R N A L O F C L I M A T E

FIG. 2. (a) Vertical distributions of temperature (dashed line) and relative humidity (circles) used in the control case with
SST of 28.58C. The surface air–sea temperature difference is 1.28C. Surface relative humidity is 84%. In the cases with different
SSTs and no lapse rate anomaly, the same surface air–sea temperature difference and the lapse rate, 2dT/dz, profile of this
temperature distribution are used. (b) Temperature anomalies used in the experiments.

smaller than 0.58. Other experiments were also per-
formed with initial position perturbed up to 0.58 for the
same lapse rate conditions. The results indicated that
compared to the intensity difference shown in Fig. 3 the
intensity difference due to the track difference caused
by the initial position perturbation is negligible. Hence,
any influence from the track differences on hurricane
intensity difference should be negligible in the present
cases. It should be pointed out that any temporal changes
of the hurricane environment from its initial state are
found to be small during the 3-day integrations. We have
examined the temporal evolution of the environmental
lapse rates, CAPEs, and the surface air–sea entropy dif-
ferences. It was found that their variation during 3-day
integrations is small and the differences in these quan-
tities among the experiments during the 3-day integra-
tions are quite consistent with their initial differences.

The third day (48–72 h) averaged minimum surface
pressure is used to represent the model-attained maxi-
mum intensity (hereafter referred to as hurricane inten-
sity). The result of the hurricane intensity as a function
of environmental lapse rate and SST is given in Fig. 4.
The offsetting relationship between the effects of lapse
rate decrease (or stability increase) and SST increase is
monotonic and quite systematic in the parameter space
investigated. For example, the effect of an SST increase
of 1.58C can be compensated by the effect of a positive

upper-tropospheric temperature anomaly of about 38–
48C. Another feature in this figure is that the effect of
the same SST or lapse rate change is lager with higher
SSTs and more unstable lapse rates (lower-right corner
of Fig. 4) than with lower SSTs and more stable lapse
rates (upper-left corner). This implies that more intense
hurricanes have larger intensity changes given the same
magnitude change in temperature lapse rate or SST.
Most climate models indicate that an increase of SST
of about 28C is accompanied by an upper-tropospheric
temperature anomaly of about 1.58–48C for an increased
CO2 effect (e.g., Henderson-Sellers et al. 1998). Thus,
a typical CO2-induced warming will lead to a model-
attained intensity increase about 7–8 mb if an SST of
28.58 with the control lapse rate profile is considered
the current climate. Without the stabilization aloft, the
attained intensity increase would nearly double. These
results agree with those of Henderson-Sellers et al.
(1998) and Knutson et al. (1998) who determined cy-
clone intensities based on estimated climate change sta-
tistics from the GFDL climate model.

In this idealized investigation, the upper-level tem-
perature anomalies and SSTs were specified rather ar-
bitrarily. In reality, however, static stability and SST are
correlated. As an estimate for the observed temporal
and spacial variability, concurrent SSTs and upper-level
temperature anomalies were calculated from the GFDL
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FIG. 3. Intensity evolution, indicated by (a) the minimum surface pressure and (b) maximum
surface wind, during model integrations for seven cases of different lapse rate anomalies with no
environmental wind. SST is 28.58C in these cases. Temperature lapse rates destabilize with in-
creasing darkness of the intensity lines but with the reference state dashed. The numbers from
22.58C to 12.58C in the upper right represent the maximum temperature anomalies in the upper
troposphere shown in Fig. 2b.

climate model simulations. The calculations were made
for all ocean locations between 108 and 308N for the 18
3 18 initial fields, which were used in the experiments
of Knutson et al. (1998). The dots in Fig. 4 show the
upper-tropospheric temperature anomalies for different
SSTs with the surface relative humidity of 83%–85%.
The dark (light) dots denote those in the current (high)
CO2 climate model simulations. The upper-tropospheric
temperature anomalies related to the dots are the de-
viations of T320mb 2 T1000mb from the mean value in the
current climate. The individual climate values show
considerable spread with high-CO2 values generally at

higher SSTs and larger positive temperature anomalies
than control values. This indicates that most parts of the
parameter space may be attainable, although some parts
are more likely at least as far as the GFDL climate model
is concerned.

Experiments with an easterly (25 m s21) zonal wind
in the initial environment are also performed. The ex-
periments with the easterly zonal wind are summarized
in Fig. 5. There is a systematic lower intensity (about
5 mb higher for the minimum surface pressure) than in
the cases with no environmental wind. This is consistent
with Bender et al. (1993a). Nevertheless, the offsetting
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FIG. 4. Minimum surface pressures (thick lines) as a function of SST and environmental temperature
lapse rate. The upper-tropospheric temperature anomaly denotes the maximum temperature anomaly in
the upper troposphere relative to the surface. Positive anomalies denote stabilization. Experiments are
conducted at the values of intersecting horizontal and vertical (thin) lines. The reference bar shows the
range of averaged upper-tropospheric temperature increase from most climate model results related to
a 28C SST increase (28.58C is used to represent the current climate in the figure) due to increased CO2

effect. The dark (light) dots denote the anomalies in the control (warmed) climate from the GFDL
climate model simulations.

relationship between the effects of lapse rate decrease
(increase) and SST increase (decrease) in the current
cases is quite similar to that in the cases with no en-
vironmental wind. As in the no environmental wind
case, the track differences among experiments with the
25 m s21 zonal flow are negligible. This assures that
the intensity differences are nearly unrelated to the track
differences in the cases with the zonal flow.

Some experiments are also performed to test the sen-
sitivity of the results to the initial vortex wind distri-
bution. A vortex with a different radial distribution of
surface wind (the dashed line in Fig. 1) but with the
same vertical variation profile and maximum surface
wind is used for such a sensitivity test. Quasi steady
states are also attained but more slowly (in about two
days) in the current cases. Figure 6 shows the model-
attained hurricane intensities with different lapse rates
but a fixed SST of 28.58C (thick dashed line) and with
different SSTs but the control lapse rate temperature
profile (thick solid line). Upper-tropospheric tempera-

ture anomaly from 2.58C to 22.58C and SST change
from 278 to 308C lead to hurricane minimum surface
pressure changes by about 20 and 30 mb, respectively.
These changes are larger than those obtained using the
Hurricane Fran (2 Sep 1996) initial vortex. However,
the offsetting relationship between the lapse rate and
SST effects is quite similar to that found in the previous
cases. In the current cases, the radius of the maximum
surface wind changes from the initial value of about 100
km to about 70 km when a quasi steady state is achieved,
while with the Hurricane Fran vortex the radius of the
maximum surface wind changes little from its initial
value of about 55 km. This structure adjustment is typ-
ical for initial development of most tropical cyclones
and may have contributed to the longer time for the
model hurricane to reach its quasi steady state. Although
the characteristics of the initial vortex have an influence
on the final model intensity, the difference in hurricane
track and final hurricane size is very small for the per-
formed experiments. In summary, the model-attained
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FIG. 5. Same as Fig. 4 except for a smaller parameter space with
an easterly zonal wind (25 m s21) in the environment (solid line).
The dashed lines denote the experimental results with no zonal wind
(Fig. 4).

FIG. 6. The model-attained hurricane intensities for different upper-
tropospheric temperature anomalies with SST of 28.58C (thick
dashed) and for SST anomalies with the reference lapse rate profile
(thick solid) in the case of the initial vortex with its radial distribution
of surface wind shown by the dashed line in Fig. 1. The thin lines
correspond to the smaller initial vortex (the solid line in Fig. 1).

FIG. 7. Model-attained hurricane minimum surface pressures with
(solid line) and without (dashed line) ocean coupling for the parameter
space of Fig. 5. Values without ocean coupling are identical to the
solid lines of Fig. 5.

intensity is found to be dependent on the radial profile
of the initial surface wind. Nevertheless, the zonal winds
without vertical shear and the vortices used do not ap-
preciably alter the relative effects of stability and SST
changes on hurricane intensity.

Supplementary experiments have been performed to
test the effects of environmental relative humidity
change in the lower troposphere. Small changes (81%–
87%) in the surface relative humidity were used in the
experiments with the same SST and lapse rate profile.
Again, these small relative humidity changes were as-
sumed to be independent of other factors. Experiments
were performed both with no mean wind and with an
easterly environmental zonal wind. Results (not shown)
indicate little impact on hurricane intensity despite no-
ticeable changes in the environmental CAPE.

A set of coupled hurricane–ocean experiments are
also performed. An easterly mean flow of 25 m s21 is
used in these experiments in order to introduce a mod-
erate SST response. Note that the SST response is highly
related to hurricane movement (Ginis 1995). In Fig. 7,
the results of the coupled model are compared to those
with fixed SST in Fig. 5. In general, stronger (weaker)
hurricanes have larger (smaller) reduction in intensity
due to ocean coupling. This leads to less sensitivity of
hurricane intensity to atmospheric stability and SST
changes. This implies a further reduction of hurricane
intensity increase in the high-CO2 climate. The overall
offsetting relationship between the effects of SST and
stability increases on the hurricane intensity is main-
tained. Figure 8 shows the relationships between the
intensity decrease due to ocean coupling and the hur-
ricane intensity and between the intensity decrease and

the averaged SST cooling around hurricane center.
These relationships are quite linear.2 The SST cooling
from 0.48 to 0.78C results in minimum surface pressure
increase from 1 to 9 mb. The results indicate that the
hurricane intensity change depends on both its intensity
and the induced SST cooling. The quasi-linear relation-
ship between the ocean intensity decrease due to ocean

2 Theoretically, the current linear relationship between the intensity
and the intensity change cannot be extended to very weak hurricanes
since even a very weak hurricane induces some SST cooling that
leads to some intensity decrease.
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FIG. 8. The ocean coupling–induced increase of minimum surface
pressure as a function of model-attained minimum surface pressures
(stars with the left axis) and as a function of the averaged SST cool-
ings around the hurricane center (radius , 100 km, circles with the
right axis).

coupling and hurricane intensity implies that the effect
of ocean coupling does not alter the previous conclusion
that the intensity of stronger hurricanes is more sensitive
to the atmospheric stability and SST changes. Little is
known about the effect of climate changes on the upper
ocean structure. Further experiments with ocean cou-
pling are needed in the future to explore the hurricane
intensity changes due to variation of the ocean mixed
layer and underlying temperature distribution.

4. Discussion

a. Environmental CAPE

From the results in the previous section, we can in-
vestigate the relationship between the model-attained
hurricane intensity and CAPE. Since the same relative
humidity profile is used, there is a unique relationship
between the parameters (lapse rate and SST) and CAPE.
The environmental CAPE is computed with the defi-
nition based on a surface air parcel:

pb

R (T 2 T ) d lnp,d E p e

po

where Rd is the gas constant, pb the pressure at the lowest
model layer (the initial parcel level), po the out-flow
pressure (of neutral buoyancy), Tp the virtual temper-
ature of the parcel undergoing reversible-adiabatic as-
cent, Te the virtual temperature of the environment, and
p the pressure. Figure 9a gives the distributions of en-
vironmental CAPE and Fig. 9b the maximum surface
evaporation for the lapse rates and SSTs that were used
in the previous experiments. The hurricane intensity is

fairly correlated with the CAPE.3 The hurricane inten-
sity is better correlated with CAPE for the regimes with
more unstable lapse rates than for the less unstable re-
gimes. In general, an SST increase (decrease) with the
same value of CAPE, which is accompanied by a less
(more) unstable lapse rate, leads to an increase (de-
crease) of hurricane intensity. In the case of increased
CO2, a 28C SST increase leads to almost no CAPE
change while it would be about 700 J kg21 without the
accompanying lapse rate changes. The CAPE related to
the GFDL climate model simulations used by Knutson
et al. (1998) was also computed (not shown). The results
indicated that the climate CAPE ranges from near zero
to above 5000 J kg21 in a few simulations. The averaged
CAPE, however, remains almost the same in the current
and high-CO2 climates. The good relationship between
the maximum surface evaporation and the hurricane in-
tensity shown in Fig. 9b implies the importance of oce-
anic surface energy fluxes in determining the hurricane
intensity. However, the maximum evaporation and hur-
ricane intensity are apparently influenced by both the
SSTs and upper-level temperature anomalies.

b. Hurricane CAPE

In the above discussion, the CAPE represents the po-
tential buoyancy energy that an air parcel at the surface
can gain when being lifted. Figure 10 shows various
temperature profiles in the control case. The environ-
mental CAPE is proportional to the area enclosed by
the thin and thick solid lines in the figure. However, for
a hurricane system, moist convection is concentrated in
the eyewall whose temperature (dashed line) is much
higher than the temperature of a parcel ascending from
the environmental surface (thin solid line). For such a
system, the energy available for hurricane maintenance
may be represented by the shaded area in Fig. 10 (e.g.,
Riehl 1954; Emanuel 1988). Such available energy for
a hurricane can be obtained by assuming an approximate
wet-adiabatic profile in the eyewall (dashed line) rather
than the parcel ascent of environmental air (thin solid
line) in the CAPE formula, assuming the same Te from
the environmental sounding. The so-defined CAPE will
be referred to as the hurricane CAPE hereafter. It is
noteworthy that if the surface environmental air should
converge toward the eyewall adiabatically, the surface
temperature in the eyewall would be represented by that
of the thin solid line at the eyewall pressure, implying
no difference between environmental CAPE, and hur-
ricane CAPE. Thus diabatic processes mainly associated

3 A pseudoadiabatic ascent would lead to larger values of CAPE
but of a similar pattern in the the parameter space. A reversible ascent
was chosen here because some tropical observations (Xu and Emanuel
1989) indicate near-neutral buoyancy for this type of ascent. Perhaps
a more realistic case should be somewhat between the pseudoadi-
abatic and reversible ascents.
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FIG. 9. (a) Initial environmental CAPE (solid lines) for reversible
ascent as a function of SST and temperature lapse rate for the pa-
rameter space used in this study. The dashed contours denote the
model-attained hurricane minimum surface pressures consistent with
those in Fig. 4. The shading at the upper-left corner denotes no CAPE.
The reference bar represents the increased CO2 condition as shown
in Fig. 4. (b) Same as the upper but for maximum surface evaporation
found during each experiment.

FIG. 10. Environmental sounding and wet-adiabatic profiles based
on the surface environmental and eyewall parcel ascents in the control
case where the surface relative humidity is 84% in the environment
and 90% in the eyewall for SST of 28.58C and no upper-level tem-
perature anomaly.

FIG. 11. Hurricane CAPE as a function of environmental SST and
temperature lapse rate. The thin dashed contours indicate the model-
attained minimum surface pressures of Fig. 4. Quasi-steady model
estimates of surface pressure and relative humidity in the eyewall are
used to calculate this hurricane CAPE.

with the air–sea exchanges (Fig. 9) are very important
to distinguish the hurricane CAPE from the environ-
mental CAPE.

Figure 11 shows the hurricane CAPE as a function
of environmental SST and lapse rate for the parameter
space investigated. The hurricane intensity is much bet-
ter correlated with hurricane CAPE than with the en-
vironmental CAPE. Furthermore, the changes of hur-

ricane CAPE associated with the same SST or lapse rate
change are larger for higher SSTs and more unstable
lapse rates than for lower SSTs and more stable lapse
rates. This seems to be consistent with the larger model-
attained intensity change for higher SSTs and more un-
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FIG. 12. Vertical distribution of the virtual temperature changes
due to a 28C SST increase relative to the case shown in Fig. 10. Here
dTe is the change of environmental sounding temperature; dTp is the
change of eyewall parcel temperature. Same environmental relative
humidity and lapse rate profiles but with a 28C surface air temperature
increase are used for the solid line. Same surface relative humidity
and pressure in the eyewall but with a 28C surface air temperature
increase are used for the dashed line.

stable lapse rates. Note that surface relative humidity
of 90% and surface air temperature of 1.58C less than
the SST in the eyewall were used in the hurricane CAPE
calculations. These values are representative of those
attained in the model experiments. The small differences
of these values from case to case were found to have
an insignificant influence on the value and pattern of
the hurricane CAPE. Calculations using the same sur-
face pressure in the eyewall as that in the environment
indicate that about 30%–40% of the change from en-
vironmental CAPE to hurricane CAPE in Fig. 11 is due
to the surface pressure change. The CAPE from these
calculations also indicates a pattern similar to that in
Fig. 11. This is consistent with the high correlation be-
tween the hurricane intensity and CAPE (RH 5 90%)
in Knutson and Tuleya (1999).

It is found that the hurricane intensity and hurricane
CAPE are also well correlated in the case with surface
relative humidity changes, while the relationship be-
tween the hurricane intensity and environmental CAPE
collapses. This may be because the thermodynamic
properties of the surface air parcel near the eyewall
depend on both air–sea energy flux and advection of the
surrounding air. Apparently, environmental CAPE is not
a requirement for hurricane maintenence (Fig. 9a, upper
left). However, the existence of environmental CAPE
appears to enhance model hurricane intensity.

It is interesting that although a 1.28C surface air–sea
temperature difference is initially specified for the en-
vironment in the experiments, the surface air of a mature
storm particularly of high intensity is found to have a
temperature quite close to the SST in the outer region
(radii from about 150 to 400 km). However, the surface
air temperature decreases when approaching the eye-
wall. Observational evidence (e.g., Beckerle 1974;
Cione and Black 1998) also points to an enhanced air–
sea temperature difference near the hurricane center.
Due to the diabatic exchanges in the experiments, the
total surface temperature decrease from the outer region
to the eyewall is smaller than that by an adiabatic ther-
mal expansion (e.g., the temperature decrease is 1.58C
in the control case while the decrease by an adiabatic
thermal expansion is 2.58C).

c. Effects of environmental soundings and SSTs on
the warm core

For fixed SSTs, parcel theory indicates that more un-
stable lapse rate produces larger eyewall–environment
temperature difference and hurricane CAPE, assuming
the same wet-adiabatic profile in the eyewall. This can
be clearly shown using Fig. 10 when the environmental
temperatures aloft are colder (more unstable). With the
inclusion of the simulated lower surface pressure near
the eyewall for more unstable lapse rates, the eyewall–
environment temperature difference becomes even larg-
er. Although the model-simulated surface relative hu-
midity, surface temperature, and eyewall sounding vary

from case to case, these variations appear to be small.
In the model experiments with different lapse rate pro-
files, the eyewall–environment temperature difference
was found to be mainly determined by the environ-
mental sounding difference. This may explain why more
intense warm cores were found to be associated with
the cases of more unstable lapse rates.

For the experiments with different SSTs but with the
same lapse rate profile, the difference in the eyewall wet
adiabat may be used to explain the intensity of the warm
core and, thus, the storm intensity. Figure 12 shows the
changes of environmental and eyewall virtual temper-
atures due to a 28C surface temperature increase relative
to the reference case in Fig. 10 but with the same surface
pressure and relative humidity in the eyewall. The in-
crease of hurricane CAPE is proportional to the area
between the dashed and solid lines below the outflow
layer (about 100 mb in this case). It is clear that the
hurricane CAPE increase with increased surface tem-
perature is due to the nonlinear change of the eyewall
sounding (i.e., the wet adiabat). The inclusion of the
simulated decrease in surface pressure near the eyewall
in the higher SST cases moves the dashed line (in Fig.
12) farther right. As in the cases of different lapse rate
profiles, the model-simulated surface relative humidity,
surface air temperature, and eyewall sounding vary from
case to case if SST is different, but such differences
were found to only have minor modifications to the
calculated wet-adiabatic ascent (dashed line in Fig. 12).
Thus, the large temperature increase in the eyewall for
an SST increase explains the larger environment–eye-
wall temperature difference and the more intense warm
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FIG. 13. Maximum potential intensity (solid) calculated by the Hol-
land (1997) thermodynamic approach for the parameter space of the
present study and the model-attained intensity (dashed) of Fig. 4.

core (not shown). Since the largest eyewall temperature
increase (around 200 mb) is located above the the warm
core center (around 300 mb), this may also explain why
higher (in altitude) warm cores have been found with
higher SSTs in the experiments (not shown).

In summary, changes of initial environmental lapse
rate affect hurricane CAPE, warm core intensity, and
thus hurricane intensity mainly by changing the envi-
ronmental temperature aloft (the thick solid line in Fig.
10). On the other hand, changes of SST affect hurricane
CAPE, warm core intensity, and hurricane intensity
mainly by changing the slope of the eyewall wet-adi-
abatic ascent (the dashed line in Fig. 10).

d. Comparison with MPI theories

It is interesting to compare the present results with
MPI theories for the parameter space investigated. Fig-
ure 13 shows the Holland (1997) MPI (solid) in com-
parison with the model-attained maximum intensity
(dashed). The patterns are quite similar. In general, how-
ever, the GFDL model intensity is less sensitive to the
SST and lapse rate changes than the Holland (1997)
MPI. The Holland approach also predicts larger (small-
er) intensity change for stronger (weaker) hurricanes
given the same magnitude change in SST and temper-
ature lapse rate. The abrupt intensity change around 970
mb by the Holland approach is due to an intensity cri-
terion used in which the eyewall pressure is used for
the minimum surface pressure for weak storms. For the
low SSTs and high stability regimes in the upper-left
corner of the parameter space (Fig. 9), the GFDL model-

attained hurricane intensity may have been influenced
by the rather strong initial vortex used. Nevertheless,
Fig. 10 indicates that a hurricane can be maintained in
this neutral or stable state if an initial low-pressure vor-
tex preexists. Due to the existence of CAPE and its large
variation in the present study, the GFDL model intensity
pattern in Fig. 4 somewhat departs from those by the
MPI approach of Emanuel (1995), which is relatively
CAPE insensitive. Nevertheless, as pointed out by Knut-
son et al. (1998), the GFDL model yields similar in-
tensity tendencies to the MPI estimates of Holland and
Emanuel for the global change scenarios in which SST
increases are accompanied by more unstable lapse rates.

5. Summary

The GFDL hurricane model has been used to study
the sensitivity of hurricane intensity to thermodynamic
environment for a wide range of upper-tropospheric
temperature anomalies and SST changes. With the same
relative humidity profile, this yields atmospheric CAPE
of a broad spectrum from zero to about 3000 J kg21 for
the parameter space investigated. A few experiments
were also performed with ocean coupling. The main
results of this study are summarized as follows.

1) The results show that stabilization in the environ-
mental atmosphere and SST increase cause opposing
effects on hurricane intensity. Any potential hurri-
cane intensity change due to SST increase of 1.58C
can be compensated by an atmospheric stabilization
due to upper tropical tropospheric temperature in-
crease of about 38–48C relative to the surface tem-
perature. The offsetting relationship between the ef-
fects of stabilization (destabilization) and SST in-
crease (decrease) is monotonic and quite systematic
in the parameter space investigated (268–318C for
SST and upper-tropospheric temperature anomalies
of 648C relative to a control profile). This offsetting
relationship appears relatively independent of the
zonal environmental wind without shear, the hurri-
cane size, and the surface wind profile of the initial
vortex. The results imply that any hurricane intensity
increase related to a possible warming due to in-
creased CO2 is much smaller than that would be
expected by considering SST increases alone.

2) Hurricane intensity is more sensitive to lapse rate
and SST changes over a warmer region with a more
unstable lapse rate than over a colder region with a
less unstable lapse rate for the parameter space in-
vestigated. Since the model attains higher intensities
over warmer regions with more unstable lapse rates,
this result is equivalent to the fact that more intense
hurricanes are more sensitive to temperature lapse
rate and SST changes.

3) Inclusion of ocean coupling leads to reduction of
hurricane intensity but the intensity reduction of a
stronger hurricane is larger than that of a weak hur-
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ricane. This is because a stronger hurricane generates
more vigorous mixing of the ocean mixed layer and
thus larger sea surface cooling, which reduces hur-
ricane intensity. On the other hand, the ocean cou-
pling does not change the overall offsetting rela-
tionship between the effects of atmospheric stabili-
zation and SST increases. This implies less sensitiv-
ity of hurricane intensity to any given changes of
environmental stability and SST with ocean coupling
than without ocean coupling, and thus less hurricane
intensity increase in the high-CO2 climate.

4) Hurricane intensity is correlated with the environ-
mental CAPE at least for the experiments where the
initial relative humidity is fixed. However, in general,
an SST increase (decrease) with the same value of
CAPE, which is accompanied by a less (more) un-
stable lapse rate, leads to an increase (decrease) of
hurricane intensity. The hurricane intensity is also
well correlated with the maximum surface evapo-
ration in the experiments of lapse rate and SST
changes. The hurricane intensity is found to be very
highly correlated with the ‘‘hurricane CAPE,’’ de-
fined as the energy available from wet-adiabatic as-
cent in the eyewall relative to a reference sounding
in the undisturbed environment. Hurricane CAPEs
of high values are found to be more sensitive to lapse
rate and SST changes, which is consistent with the
result that more intense hurricanes are more sensitive
to temperature lapse rate and SST changes. A strong
relationship between hurricane intensity and hurri-
cane CAPE also applies to the cases with small sur-
face relative humidity changes where the relationship
between hurricane intensity and environmental
CAPE collapses. Since hurricane CAPE compares
the eyewall and environmental thermodynamic pro-
files, the surface diabatic exchanges are indirectly
considered. The better representativeness of this
CAPE can be considered a combination index of
atmospheric and oceanic influences.

5) The difference of warm core intensity for different
initial lapse rates is mainly due to the environmental
sounding differences while differences of the eye-
wall sounding appear to be small. In the cases of
SST differences, the warm cores are more intense
and higher (in altitude) with more intense hurricanes
due to higher SSTs. It is found that in these cases,
the nonlinear change of the eyewall sounding due to
SST change is very important. The diagnosis of the
position of the largest eyewall temperature increase
(around 200 mb) using parcel theory may also ex-
plain the upward movement of the warm core for
the cases of higher SSTs.

The results in this study were obtained with numerical
experiments using the GFDL hurricane model. It should
be pointed out that the operational GFDL hurricane
model intensity prediction has not been as successful as
its track prediction. The intensity prediction error is like-

ly related to the current model resolution, the treatment
of deep convection in the model, and probably the cur-
rent initialization scheme in the operational forecasts
(Kurihara et al. 1998). However, in this idealized study
with a focus on maximum achievable model hurricane
intensities with specified environment and vortex con-
ditions, it is anticipated that model variations in intensity
may be more reliable than those found in operational
forecasts.
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