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ABSTRACT

A formula is derived to express the PR coherence between the progressive and retrogressive components
in terms of the CS coherence between the cosine and sine space-Fourier coefficients. By the use of the PR
coherence the space-time power spectra are partitioned into standing and traveling wave parts.

If the PR coherence is zero, the progressive and retrogressive components do not interfere with each other
to form standing wave oscillations with nodes. In this case the CS coherence also becomes zero, if and only

if these components have equal amplitudes,

1. Introduction

Hayashi (1971, 1973, 1977) developed a technique of
computing space-time cross spectra through the time
cross spectra of the space-Fourier coefficients. By the
space-time spectral analysis transient waves are re-
solved into progressive and retrogressive waves and
their wave characteristics, structure and energetics
can be studied in terms of space-time power spectra,
cospectra, phase difference and coherence. This method
has been extensively applied to a wave analysis of the
output data of a GFDL general circulation model
(Hayashi, 1974; Hayashi and Golder, 1977) as well as
observational data (Gruber, 1974; Zangvil, 1975 a, b;
Hartmann, 1976, Sato, 1977).

The space-time power spectrum is equivalent to the
wavenumber-frequency power spectrum defined by
Kao (1968), except that the former is defined for a
frequency band, while the latter is defined for a single
discrete frequency. The advantage of the present tech-
nique is that it allows the time spectra to be computed
by any methods such as the lag correlation method,
the direct Fourier transform method and the maximum
entropy methods. This technique is also a generaliza-
tion of the quadrature-spectrum method by Deland
(1964, 1972a) who found that the positive (or negative)
value of the quadrature spectrum between the cosine
and the sine space-Fourier coefficients gives a measure
of the variance of retrogressive (or progressive) waves.
Hayashi (1971) proved that this quadrature spectrum
is equal to the difference between the progressive and
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retrogressive components of the space-time power
spectra.

Hayashi (1973) further interpreted that if this
quadrature spectrum is zero, the progressive and
retrogressive waves have equal amplitudes and form
standing-wave oscillations with nodes and antinodes.
However, Pratt (1976) pointed out that progressive
and retrogressive waves do not necessarily produce
nodes, if the coherence between the cosine and sine
(CS) space-Fourier coefficients is low. ]

If the CS coherence is zero, the quadrature spectrum
is also zero and the space-time power spectral formula
gives equal amplitude for progressive and retrogressive
components. However, this should not be interpreted
to mean that the space-time spectral method cannot
distinguish between progressive and retrogressive com-
ponents when the CS coherence is zero. Instead of using
the CS coherence, the space-time power spectra should
be interpreted in terms of the coherence between pro-
gressive and retrogressive (PR) components. For ex-
ample, the PR coherence is zero for waves traveling
back and forth, since the progressive and retrogressive
components do not exist simultaneously. In the present
paper it will be proven that when the PR coherence is
zero, the CS coherence is also zero, only if these com-
ponents actually have equal amplitudes. By the use of
the PR coherence the space-time power spectra will be
partitioned into standing and traveling wave
components.

2. Review of space-time power spectra

We briefly review the relevant parts of the previous
Papers (Hayashi, 1971, 1973) in this section.
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The transient waves are generally composed of
progressive (—) and retrogressive (+) waves as

W (t,x)=2_ 3 Ry, cos(kxtot+or,o),

k tw

(2.1)

where % is the wavenumber which is discrete for waves
surrounding the earth and w is a discrete representation
of an actually continuous frequency.

The space-time power spectrum of these wave
components is defined as

Prio(W)=3 3R} 1o, (2.2)
Aw

where the summation over Aw means an integration over
a frequency band. This space-time power spectrum may
be computed by the formula in a real form?

4Py 10(W)=Pu(Ci)+ Pu(Sr) 204(Cr,Sy), (2.3)

where Cj, Si are the cosine and sine space-Fourier
coefficients and P,,, 0, are the time-power spectrum and
quadrature spectrum, respectively.
It follows from (2.3) that the progressive and retro-
gressive wave components have equal amplitudes, if
Qu(Ci,Sik)=0.
- The CS coherence square is given by

sz (Ck)Sk) +Qw2 (CJWS’C)

coh 2(Cy,Sp) = . (24)
Py(C)Pu(Sk)

where K, is the time-cospectrum.

If the CS coherence is zero, the quadrature spectrum
is also zero and the progressive and retrogressive com-
ponents have equal amplitudes. However, these com-
ponents do not necessarily form standing-wave
oscillations. ‘

3. Coherence between progressive and retro-
gressive waves

In this section we shall derive a formula (3.12) to
compute the PR coherence (3.11) in terms of the CS
coherence (2.4).

The transient waves can be resolved into progressive
and retrogressive wave components with wavenumbers
(k) as

W(tx)= % (Wit ) +W_i(t,x)], 3.1

where
W:tk‘ (t,x) =Z Rw,;{:k Cos (wt:i:kx:!:(i)w,ik). (32)

The above expression is equivalent to (2.1) with the
relations

Ry pv=Ry 30, (3.3)

Do, 1:=Pk 10

* The space-time power spectrum can also be computed by
applying the maximum entropy power spectral analysis to the
complex space-Fourier coefficients as 4Py ;o(W)=P,,(Cr—iS4),
after Hayashi (1977).
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The time-power spectrum of these components at x is
given by

Po(W i) =% 2 RS s5= P po(W). (3.4)
Aw

It should be noted that this power spectrum does not
depend on « for a single wavenumber and coincides with
the space-time power spectrum defined by (2.2).

The time cospectrum and quadrature spectrum be-
tween the progressive and the retrogressive waves at
% are given by

Ko(Wi,W_y)
=% 2 RuiRu—k cos(2kx+uptdut), (3.5)
Aw

Qw(Wk)W—k)
=—3 3 RuxRo i sin(2kx+dostdu ), (3.6)
Aw

where the argument is the phase difference between the
progressive and retrogressive components. The co-
spectrum (3.5) may be rewritten as

2K,,, (Wk,W._k) =Co0s (ka) Z Rw,kR,,,'_k Cos (¢w.k+¢w,-—-k)
Aw
——Sil’l (ka) Z Rw,ka,—k sin (¢w,k+¢u,—k)- (37)
Aw

Using the relations (3-5) and (4-3) given in Hayashi
(1971), the above cospectrum is reduced to

2K (W ,W_g) =3[P, (Cr)— P, (Sk)] cos(2kx)
+K.,(Ci,Sk) sin(2kx). (3.8)

Similarly the quadrature spectrum (3.6) is rewritten as

20u(W W _) = —3[Pu(C)— Pu(S1)] sin (28x)
+ K ,(Cr,Sx) cos(2kx).

The PR phase difference and PR coherence square over
a frequency band Aw are defined, respectively, by -

(3.9)

Ph, (W, W_4)
=tan[Qu (Wi, W _4)/ Ko(W i, W _1) ],
coh (Wi W _s)
K2 (W ie,W_)+0u2(We,W_t)
T RWORW

(3.10)

(3.11)

Inserting (3.8), (3.9) and (2.3) into (3.11) and using
(2.4), we finally obtain a formula relating the PR
coherence to the CS coherence as

4[1—coh 2(Wi,W_g) 1Pr,o(W) P, —o(W) ,
=[1—coh2(Ck,SK) JPu(Cr)Pu(Sk). (3.12)

It should be noted that the PR coherence does not
depend on x for a single wavenumber. It follows
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F1c. 1. The time-power spectrum P,, (solid curve) of disturbances composed of
progressive and retrogressive waves with the same wavenumber and frequencies
as a function of space (x). The space-mean of this power spectrum is equal to the
sum of the space-time power spectra (Py o+ Py, o). The traveling part is given by
the minimum of the time-power spectrum. The standing part is given by subtract-
ing the minimum power spectrum from the space-mean power spectrum.

from this formula that if and only if the CS coherence
is 1.0, the PR coherence is 1.0.

On the other hand, if -the PR coherence is zero, we
have from (3.12) and (2.3)

Q2(Ct,Si)=Py(Ci)P,(Sk) coh2(Cr,Sw)
+ilPu(C—Pu(SHTF. (3.13)
It follows from (3.13) that if
Q.(Cr,S1)=0, then coh,(CkSy)=0. (3.14)
It also follows from (2.4) that if
cohy(Cr,Sk)=0, then Q,(Ci,Sy)=0. (3.15)

This means that when the PR coherence is zero, the
CS coherence is also zero, if and only if the progressive
and retrogressive components have equal amplitudes.
Thus it is not inconsistent that the space-time spectral
formula (2.3) gives equal amplitude for these com-
ponents when the CS coherence is zero.

4. Partition of space-time power spectra

In this section we shail derive formulas (4.9) and
(4.10) to compute the standing and traveling parts of
the space-time power spectra. This partition is based on
the space variation of the following time-power spectrum
(see, also, Fig. 1).

The time-power spectrum of disturbances at x
composed of progressive and retrogressive waves with
a single wavenumber % over a frequency band Aw is
given by the identity

P, (Wit W_i)=K.(Wi+W_i, Wit W_s)

=2Ko(Wi,W_i)+Po(Wi)+P,(W_i). (4.1)

The above cospectrum may be written in terms of the
phase difference (3.10) and coherence (3.11) as

Ko(Wi,W_i)=P}W) PHW_y)

Xcoh,(Wi,W_x) cos[Ph, (Wi, W_x)]. (4.2)

"where m=0, +1, £2 ..

This relation is further rewritten by using (3.10),
(3.8) and (3.9) as
Ko(Wi,W_)=PA(W)PHW_y)
Xeoh, (Wi, W_i) cos(2kx—a), (4.3)
where
2K o (CkySi)
et 250 )

) Pw(Clc)_Pw<Sk)

Inserting (4.3) and (3.4) into (4.1) we have

Po(Wit-W_i)=2P (W)P _ (W) coh, (Wi, W_y)
X c08 (2kx~a)+ Py o (W)+Pi_o(W). (4.4)

The above power spectrum (4.4) attains its maximum at

a-t+2mr
x= X

2k

(4.5)

.. However, if the PR co-
herence is zero, there is no space variation in this
power spectrum.

The time-power spectrum (4.4) averaged over x is
given by

Po(Wed W _4) = Pro(W)+Peu(W).  (4.6)

The minimum value of the time-power spectrum along
% is given by
Min=[P},(W)~P} _,(W)T

+2P} ()P}, (W)[1—cohs (W W_)]. (4.7)

It follows from (4.7) that if
Pi . W)=Py_ (W) and coh,(Wi,W_)=1,

then

Min=0. (4.8)

This means that the minimum value vanishes if the
waves are standing waves composed of progressive and
retrogressive waves which are of equal amplitude and
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coherent with each other. Therefore, it will be reason-
able to interpret this value as due to waves traveling in
opposite directions or due to random noise.

The “standing part” is defined as a space-mean of
the space-varying part of the time-power spectra (see
Fig. 1). This is given by subtracting the minimum
variance (4.7) from the space-mean variance (4.6) as

STk,o(W)=2P} ,(W)P} _,(W) coh, (Wi, W_). (4.9)

This standing part may be interpreted as a coherent
part of the space-time variance. The right-hand side
of (4.9) is rewritten by using (3.11), (3.8) and (3.9) as

ST:;,@(W)
={3[Pu(Cr) = Pu(S) P+ K2(Cr, S} (4.9)

This coincides with the “‘standing variance” defined by
Pratt (1976) who uses a different approach.

The “traveling” part is defined as the minimum
value (4.7) which is rewritten as

TRk,w(W) =Pk,w<W)+Pk.-—w(W) _STkm(I/V)

It should be mentioned that there is no unique
partition of the space-time power spectra into standing
and traveling wave parts because of their non-orthog-
onality and the arbitrariness of the position of the
node as discussed by Deland (1972b), Tsay (1974) and
Pratt (1976). Nevertheless, the present definition gives
reasonable results at least for pure traveling or pure
standing waves as follows:

(4.10)

For pure traveling waves
STk,o(W)=0

J». (4.11)
TRk,‘,,(W) =P1¢'(,,(W)+Pk,—w(W)

For pure standing waves,
STk.w(W) =Pk,w(W)+Pk.—w(W)

TRy, (W) =0 } 12)

5. Further partition of space-time power spectra

In Section 4 the space-time power spectrum is parti-
tioned into standing (4.9) and traveling parts (4.10).
In this section we shall further divide the traveling part
into “pure” progressive and retrogressive parts (5.9).

Let us divide the progressive and retrogressive com-
ponents (W) defined by (3.2) into the standing part

++ and the “‘pure” progressive and retrogressive
parts (W7.,) as

Wan(b,0) = W (6,0) + W, (4,2). (5. i)

In order to be able to determine the power épectra of
the above parts uniquely, the following assumptions
are invoked:

1) The disturbances with a particular wavenumber
and a frequency band consist of only one standing wave,
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one pure progressive wave and one pure retrogressive
wave which are completely incoherent with one another.

2) The standing wave consists of progressive and
retrogressive components which are of equal magnitude
and are completely coherent with each other.

The above assumptions are formulated as

coh (W ok, W) =0, (5.2)
coh, (W, W) =0, (5.3)
coh, (WEW* ) =0, (5.4)
coh, (Wi, W_i)=1, (3.5)
Po(Wi)=Po(W_s). (5.6)
The power spectrum of (5.1) is reduced to
Pu(We)=PoWa) +Po(Why)
) F2K o (Wi, W)
=P, (W) +Po(Wiy), (.7

where the assumption (5.2) has been used. On the other
hand, (4.9) is reduced to

1ST; (W) =K2(Wi,W_i)+Q2 (W, W_)
=K. (Wk,W—k) +Q.2 (Wk,W—-k)
=P, (WP, (W_y)
=P2(Wo)=P2(W_.), (5.8)

where (3.11) and the asumptions (5.3)—(5.6) have been
used successively. Inserting (5.8) into (5.7) we have
the desired formula for computing the ‘“pure” pro-
gressive and retrogressive parts of the space-time power
spectra as

Po(We)=Prre(W)—% STio(W). (5.9
In order that P, (W) be positive, the following condi-
tion must be met:

Py so(W)
coh 2(W i, W_i)}< s

Pk,?w(I/V),

where (5.9) and (4.9) have been used.

If the condition (5.10) is not satisfied, assumptions
1) and 2) are not valid and the above separation is not
meaningful. It is important to remember that if the
length of the time record is too short or the frequency
band is too narrow, the coherence is overestimated and
condition (5.10) cannot be satisfied [for the statistical
significance of coherence, see Goodman (1957) and
Julian (1975)7.

(5.10)

6. Example

As an example, we shall apply the present method to
mid-latitude ultralong waves appearing in a GFDL
general circulation model. For a detailed analysis of
these waves, see Hayashi and Golder (1977).

The following spectra defined in the previous sec-
tions are computed for the geopotential height at 60°N
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F1c. 2. The longitude-time section of the wavenumber 1 com-
ponent of the geopotential height at 60°N at 190 mb level of the

GFDL model. The time-mean is subtracted out. Contours are

drawn only in the negative area (shaded).

from October through March. These spectra are as-
sociated with wavenumber 1, periods of 30 days and
frequency intervals of 1/60 day.

Space-time power spectra (2.2):
Py, o(W)=23.0
Py —o(W)=30.0
CS coherence (2.4):
coho (Cr,Sk)=0.32
PR coherence (3.11):
coh, (Wi, W_,)=0.31
Standing part (4.9):
ST4..(W)=16.0
* Pure traveling parts (5.9):
Po(W=15.0
P,(W*,)=22.0

The above spectral analysis suggests that in addition
to standing wave oscillations, there exist both eastward
and westward moving waves which are incoherent with
each other. This interpretation can be visualized in a
longitude-time section (Fig. 2) of wavenumber 1. It is
seen that the incoherent waves are identified as traveling
waves moving back and forth. These incoherent waves
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may be interpreted as the vacillation of synoptic
patterns.

7. Conclusions

By deriving the formula (3.12) which expresses the
PR coherence between the progressive and retrogressive
components in terms of the CS coherence between the
space-Fourier coefficients, the following conclusions
have been obtained:

1) If the PR coherence is zero, progressive and
retrogressive components do not interfere with each
other to form standing wave oscillations.

2) When the PR coherence is zero, the CS coherence
is also zero, if and only if these components have equal
amplitudes.

3) The PR coherence determines the partition of the
space-time power spectra into the standing part given
by (4.9) or (4.9)! and the traveling part (4.10). The
position of the antinodes is given by (4.5).

4) The traveling part may further be divided into
“pure” progressive and retrogressive parts by (5.9),
provided that the condition (5.10) is satisfied.

It is important in estimating the above coherences
that the record length and the frequency interval are
sufficiently large.
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