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ABSTRACT

The analogy between space-time spectra and rotary spectra is discussed. The space-time spectra can be
interpreted as the rotary spectra of a wave vector. These spectra are combined to resolve a rotary vector
into clockwise and anticlockwise components as well as progressive and retrogressive components. The
space-time rotary spectrum analysis is useful for a statistical identification of traveling vortices.

1. Introduction

Spectral formulas have been derived (Hayashi, 1971,
1973, 1977b) to compute space-time (wavenumber-
frequency) spectra! by use of time spectral techniques
such as the lag-correlation method, the direct Fourier
transform method and the maximum entropy method. A
space-time spectral analysis resolves disturbances into
progressive and retrogressive components. It is also
possible to resolve transient disturbances into standing
and traveling waves by use of formulas developed by
Hayashi (1977a, 1979). The space-time spectral for-
mulas have been extensively applied to the wave
analyses of general circulation models (Hayashi, 1974;
Hayashi and Golder, 1977, 1978) and observational
analysis (Gruber, 1974; Zangvil, 1975a,b; Hartmann,
1976; Sato, 1977; Fraedrich and Bottger, 1978;
Deparadine, 1978 ; Krishnamurti, 1978).

On the other hand, rotary spectra have been for-
mulated by Fofonoff (1969), Gonella (1972) and Mooers
(1973). The rotary spectral analysis resolves a velocity
vector into clockwise and anticlockwise components.
This technique has been applied to observational
analysis by a number of oceanographers such as
Fofonoff (1969), Perkins (1972), Gonella (1972), Crew
and Plutchak (1974), O’Brien and Pillsbury (1974),
Leaman and Sanford (1975), Leaman (1976), Miiller
et ab. (1978), Thompson (1978) and Weisberg et al.

1 Alternative methods of computing two-dimensional spectra
are the quadrature spectrum method (Deland, 1964, 1972), the
two-dimensional direct Fourier transform method (Kao, 1968;
Tsay, 1974), the two-dimensional lag correlation method (Leese
and Epstein, 1963; Izawa, 1972), the maximum likelihood method
(Capon, 1969), the maximum entropy method (McDonough,
1974), the empirical orthogonal cross-spectrum method (Pratt
and Wallace, 1976), the Doppler shift method (Chapman et al.,
1974, Hirota, 1976), the geostrophic method (Willebrand, 1978)
and the covariance fitting method (Bretherton and McWilliams,
1979).

(1979a,b). Recently, rotary bispectra (Yao et al.
1975) and rotary spectra of a three-dimensional vector
(Calman, 1978) have been formulated.

Both the space-time and rotary spectra are essentially
the time spectra of complex vectors, namely, a ‘“wave
vector” and a “rotary vector.” It will be of interest
to compare and combine these two spectra. For this
purpose the analogy between these complex vectors
will be first discussed in Section 2 and formulas for
computing space-time rotary spectra will be derived
in Section 3. An example of their application will be
given in Section 4. In Appendixes A-D, important
properties of rotary spectra are summarized as a
review.

2. Analogy between rotary and wave vectors

In this section, the analogy between a ““rotary vector”
and a “wave vector” is discussed, since space-time
spectra and rotary spectra are reduced to the time
spectra of these vectors as will be shown in the next
section.

The rotary vector is a complex vector w represented
by

w(t)=u()+iv(), 2.1)

where # and v can be interpreted, for example, as the
zonal and meridional components for a wind vector.
The absolute value and argument of w correspond to
the speed and direction of winds, respectively (see
Fig. 1a). This vector rotates clockwise or anticlockwise
with time. A rectilinear oscillation consists of rotations
of equal magnitude in each direction.

On the other hand, the wave vector U, is the space-
Fourier transform of a real-valued space-time series #
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F1c. 1b. Wave vector Ur{t) in a complex plane.

given by ,
w(r)=2Re 3. Us(De*=+Uo(t), - (2.2)
k=1

Us(t) =3[C () —iSk ()]

=14, (0)ei+®),

(2.3a)
(2.3b)

where Ci and S are the cosine and sine coefficients,
while A; and ¢, are amplitude and phase angle,
respectively.

The wave vector is analogous to the rotary vector
(Fig. 1b). The absolute value and argument of the
wave vector correspond to the amplitude and phase
angle, respectively. The clockwise (anticlockwise)
rotation of the wave vector corresponds to eastward
(westward) phase propagations with time. The recti-
linear oscillation corresponds to a standing wave
oscillation.
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More generally, a rotary wave vector W is defined as
the space-Fourier transform of a complex valued
space-time series % given by

w(x,l) = u(x,t)+iv (1), (2.4)

w(rl)= 3 Walers, 2.5)

00

where the positive and negative values of % correspond
to the anticlockwise and clockwise rotations of the
rotary vector w with space, respectively.

The rotation of W,(f) with time is interpreted as
that of the wavenumber 2 component of the rotary
vector w(x,t). As illustrated by Fig. 2, if vectors
(anticlockwise) with longitude
propagate westward, they also rotate clockwise
(anticlockwise) with time.

The rotary wave vector W, is related to the wave
vectors Uy and V; as

Wk (®)=U () +3V 14 (8), (2.6)
where

U0 =3[Cx(OFiSi(0], (2.7

V() =3[CRO)FiSi(1)]. (2.8)

3. Space-~time rotary spectrum

In this section, formulas (3.5), (3.6) and (3.7) will
be derived to compute space-time rotary spectra.

Therotary wave vector W in (2.5) can be represented
by a Fourier-Stieltjes integral (see Yaglom, 1962;
Lumley and Panofsky, 1964) for a stationary stochastic
process as

Wi ()= / ) eI dW.(f), G.1)

where W,(f) denotes the F ourier-Stieltjes transform
of W, () and the increment dW,(f) may be interpreted
as the complex time-amplitude associated with in-
finitesimal frequency increment.

Inserting (3.1) into (2.5) gives

w(x,f)= 2 el 10g I (f),
k=—x

-

(3.2)

where the positive (negative) value of f corresponds
to anticlockwise (clockwise) rotation of the rotary
vector w with time. One period corresponds to one
rotation of the vector. Also, the positive (negative)
value of f/k corresponds to westward (eastward) phase
velocities, respectively.

The space-time rotary power spectrum Py i, is
defined, based on (3.2), as

Pty (0)df = (| dW ua (£ 1) |2), (33)
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where the angle braces denote an ensemble average
which can be replaced by an average over an infinites-
imal frequency band for an ergodic time series of
infinite length (see Beran and Parrent, 1964, p. 23).

The coherence between clockwise (—f) and anti-
clockwise (4 f) components for either westward or east-
ward moving components is defined as

| <dW:tk(f)dm*Fk(_f)>\
(| dW () 1D Wi (— f) |2)¥

where the asterisk denotes the complex conjugate of
the increment.

If this coherence is zero, the clockwise and anticlock-
wise components do not interfere with each other to
form a rectilinear oscillation. If the orientation of
the axis of elliptical oscillation fluctuates with time,
this coherence is not 1.0. This coherence is also called
the “stability of the ellipse orientation” by Gonella
(1972).

The formulas for computing the power spectrum
and coherence are given by use of (2.6) as

cohyy, s(w)=

(3.4)

2Pk, 1s (W)= Py (Uss+iV ), (3.52)
=Pir s ()+Pik,4s()

- 2Qﬁ:k.:i:f (M,‘Z)), (35b)
[1— COhik.,f('w)]Pik,f (@) Pxr,—s (w)

=[1—coh’; ;(4,0) 1Pk ; () Pyi,s (v). (3.6)

The degree of polarization (Dy ;) is given by
(—Dhs )= 4Py, s (0)Pxr,—s(v)
CPir.s()+Pri,—s(v)
X[1—coh%e, r(u,0)]. (3.7)

The degree of polarization is a measure of circular,
elliptical or rectilinear oscillation and coincides with
the maximum value of the (u,%) coherence when the
coordinates are rotated by a certain angle (see Appen-
dixes B and C).

The right-hand sides of the above formulas can be
computed by use of space-time spectral formulas in
real representation (Hayashi, 1971) given by

4Pk, or ()= Py (CH)+ Py (SH) 4204, (C1,S%e), (3.8)

4P k.47 (0) =P (CF+P o (S)+204 (Ci,S7k), (3.9)
4K 4i, 11 () = K;(C,C2)+ K (S%,S7)

+Q:hf (Cg’sﬁd:k) +Q=Ff (ST:‘A:I:}CD’ (310)

401 k,27 (u,9) = Qs (CHCD+ Q1 (SHSD)
—Kf (C,:)S”:kk)-"Kf (Sl:‘l:kycz)) (311)

A K2 : , + 2 . ,
coh®z, = r(u,0) = narW0) 4 Qe -v)’ (3.12)

Por ()P i 1s(v)

where P;, K; and Q; are time power spectrum, co-

spectrum and quadrature spectrum, respectively,
defined by .
P(Crdf=2(]dC(f)|*), (3.13)
K;(Cu,S)df=2Re{dCi(NASk(f),  (3.14)
0/(CoS)df=2Im@Ci(HaSu(f)).  (3.15)

The plus and minus sign in S and Q4 on the right-
hand side terms of (3.8)-(3.11) can be placed in front
of each term. In some papers the sign of quadrature
spectrum (3.15) is reversed.

In a special case where w does not depend on z,
we have by putting 2=0 in (3.5a):

2Py 15(w) =P (Ug+iVy). (3.16)

This coincides with the time-rotary power spectrum (see
Appendix A for its real representation).

On the other hand, if w is real, we have by putting
=0 1in (3.5a)

4Py, 1 (u) = P, (C3—1S3), 3.17)

where the clockwise and anticlockwise components
are summed as

P,y ()=Puyy, o)+ P_ 55 (u).

This formula (3.17) gives the space-time power spec-
trum in complex representation (Hayashi, 1977b). It
should be noted that space-time spectrum can be in-
terpreted as the rotary spectrum of a wave vector.
The formula (3.5a) in complex representation is
suitable for applying the maximum entropy method to
obtain fine frequency resolutions even for a short
record (see Hayashi, 1977b), while the formula (3.5b)
in real representation is convenient for applying

(3.18)
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F1c. 3. A schematic flow pattern of mixed Rossby-gravity waves. The circles
represent streamlines. The wind vector at the northern (southern) latitude rotates

clockwise (anticlockwise) with longitude.
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Fi1G. 4. Space-time rotary power spectrum of horizontal wind (wavenumber 4) at
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general circulation model. The solid and dotted curves denote clockwise and anticlock-
wise rotations, respectively. Frequency bandwidth 0.05 day™.
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conventional methods of computing cross spectra (see
Bendat and Piersol, 1971). '

4, Example of application

As an example of the application of the space-time
rotary spectrum, an analysis is made of mixed Rossby-
gravity waves simulated by a GFDL general circulation
model (Manabe e/ al., 1974). An application of time-
rotary spectrum to an analysis of oceanic mixed
Rossby-gravity has been made by Weisberg et al.
(1979a,b). )

Atmospheric mixed Rossby-gravity waves are char-
acterized by wavenumber 4, a period of 4 days and a
westward phase velocity [see Yanai e/ al. (1968)
for observation and Hayashi (1974) for simulation].
Theoretically, these waves take the form of vortices
centered over the equator (Matsuno, 1966). As illus-
trated schematically by Fig. 3 (see also Fig. 2), the
flow pattern of mixed Rossby-gravity waves is asso-
ciated with clockwise (anticlockwise) elliptical rotation
of the wind vector with longitude on the northern
(southern) side of the equator. When this pattern
' propagates westward, the wind vectors also rotate
clockwise (anticlockwise) with time on the northern
(southern) side of the equator. These characteristics of
mixed Rossby-gravity waves can be detected by the
following spectral analysis.

The horizontal wind at 110 mb in the tropics is
analyzed during the period June through September.
The time spectrum was computed by the use of a lag-
correlation method with the hanning lag window.
The maximum lag is 10 days and the equivalent degree
of freedom is 24 (see Blackman and Tukey, 1958).
Figs. 4a and 4b show a space-time rotary power
spectrum for wavenumber 4 at 2.4°N and 2.4°S,
respectively. It is seen that the 4-day spectral peak
for westward phase velocity is dominated at 2.4°N(S)
by clockwise (anticlockwise) rotation. This result is
consistent with the westward propagation of the flow
pattern of mixed Rossby-gravity waves. Even for the
ideal flow pattern (Fig. 3), the clockwise or anticlock-
wise component is not expected to vanish completely
on either side of the equator.

Fig. 5 shows the latitudinal distribution of the
space-time rotary power spectrum (left) and the
degree of polarization and the coherence between
clockwise and anticlockwise components (right) for
wavenumber 4, period of 4 days (westward moving).
It is seen that the clockwise and anticlockwise compo-
nents attain their maximum amplitudes at 4.8°N and
2.4°S, respectively, while they have the same amplitude
at the equator. For the idealized flow pattern (Fig. 3),
these maxima should occur symmetrically with respect
to the equator.

The degree of polarization is a measure of elliptical
or rectilinear rotation. For the ideal flow (Fig. 3) the
degree of polarization is expected to be 1.0 for all
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Fi1c. 5. The latitudinal distribution (110 mb level) of the
space-time rotary power spectrum (left) and the coherence
between clockwise and anticlockwise components and the degree
of polarization (right) of the horizontal wind of wavenumber 4,
period of 4 days (westward moving frequency bandwidth 0.05
day™1).

latitudes in the absence of random noise. In the present
example (Fig. 5), the degree of polarization exceeds
0.5 a few degrees away from the equator, being con-
sistent with the elliptical rotation of the wind vectors.
However, it does not exceed 0.5 at the equator where
a rectilinear oscillation is expected for the ideal flow
pattern. This is probably due to the fact that the
centers of the vortices often drift from the equator,
resulting in alternating clockwise and anticlockwise
rotation.

The coherence between clockwise and anticlockwise
components is a measure of interference between these
components. For the ideal pattern (Fig. 3) it is expected
to be 1.0 for all latitudes in the absence of noise. If
either clockwise or anticlockwise component is com-
pletely absent (circular rotation), the coherence is
zero, while the degree of polarization is 1.0. If these
components have the same amplitude, the coherence
coincides with the degree of polarization as is the case at
the equator in the present example (Fig. 5). The
coherence never exceeds the degree of polarization
(see Appendix C) as is the case with the present
example (Fig. 5).

5. Remarks

The analogy between space-time and rotary spectrum
analyses is helpful in interpreting the results of space-
time spectrum analysis. By this analogy (see Appendix
B) we also find that the coherence and phase difference
between the zonal cosine and sine coefficients depend on
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a choice of the origin of the zonal coordinate, while the -

coherence between progressive and retrogressive compo-
nents is invariant. The degree of polarization (see
Appendix C) is also invariant and is analogous to a
measure of regular traveling or standing waves (see
Schifer, 1979 ; Hayashi, 1979). The degree of rectilinear
oscillation (see Appendix D) is invariant and is analo-
gous to a measure of standing waves (see Pratt, 1976;
Hayashi, 1977a).

The space-time spectral analysis of a rotary vector
series is useful for a statistical identification of traveling
vortices. Another approach is the empirical orthogonal
(principal component) analysis of a vector series as
proposed by Hardy and Walton (1978). By combining
these two techniques, traveling vortices can be further
decomposed into meridional or vertical principal
components.
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APPENDIX A

Formulas for Rotary Spectra

This appendix is essentially based on Gonella (1973),
Mooers (1973) and Calman (1978) and is also analogous
to Hayashi (1971, 1977a). ‘

The time-cross spectra between the clockwise (— f)
and anticlockwise (4 f) components of a rotary vector
can be computed by use of the following formulas:

w(t) =u()+iv(), (A1)
Pyy(w)=3[P;(u)+Ps(v)JFQs (%), (A2)
K ;(w,w*)=3[P(u)—P;(v)], (A3)
Q;(wyw*)=—K(u;), (A4)

K 7 (w,w*)+Q 4 (w,w*)
coh 2 (w,w*) = B )P ) (AS)
Ph(w,w*) = tan~'[Q, (w,w*)/ K s (w;w*)], (A0)

where P;, K;, Qy, cohs, Ph; are the power spectrum,
cospectrum quadrature spectrum, coherence and phase
difference, respectively. The asterisk denotes the com-
plex conjugate. In some papers, the sign of the quad-
rature spectrum is reversed. For the cross spectra be-
tween two rotary vectors, see Mooers (1973).
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The rotary spectra are interpreted as follows:

Ps(w)=0 and cohs(w,w*)=0 (circular)
Pi(w)#=P_s(w) and cohs(w,w*)=1 (elliptical)
Ps(w)=P_;(w) and cohs(w,w*)=1 (rectilinear)
Py (w)#0 and coh;(w,w*)=0 (irregular).

The above formulas can be rewritten by use of
cross-spectrum matrices C;(w,0*) and C,(u,v) as

w U
< *)= m*( ) (A7)

w v
C(w,w*) =1C;(u,0)I, (A8)

where
!=|: Py K!‘l‘iQf]’ (49)
K;—iQ; Py
irt -1

I=6[1 1], (A10)
P(w*)=P_;(w). (A11)

Since the above two cross-spectrum matrices in (A8)
are related through a unitary matrix I, their traces
(Tr), determinants (Det) and eigenvalues (E.) coincide
with each other, i.e.,

Tr= P;(w)+ P () (A12a)
=P;(u)+Ps(v), (A12b)
Det=[1—coh/(w,w*) ]P;(w) P_;(w) (A13a)
=[1—coh2(u,v) JP;(w) P; (v), (A13b)

2E .= P;(w)+P_; (W) £{[Pr(w)—P_;(w) }

+4Pf (w)P~—f (w) COh/Z (w)w*)}%! (A14a)
= Ps(u)+P;(v)£{[P;(u)— P;(v) I
+4P;(u)P;(v) coh? (u,v)}t. (Al4b)

These values are non-negative and invariant with
coordinate rotation (see Appendix B). The trace is a
measure of the magnitude of oscillation, while the

- determinant vanishes for a polarized oscillation (see

Appendix C). The eigenvalues give the magnitude of
empirical orthogonal components in the frequency
domain (Wallace and Dickinson, 1972).

APPENDIX B
Coordinate Transform of u-v Spectra

This appendix is essentially based on Fofonoff (1969)
and Mooers (1973).

If the (w,v) coordinate is rotated by an angle 6, the
rotary vector and the cross-spectrum matrix C,(u,v)



Mavy 1979

are transformed as

(B1)

w' =we 9,

()-<()

C!(u’vv,) = Gcf (u,']))@—l,
cos@

sinf
o ]
—sind cosb

. The maximum (P,) and minimum (P-) values of
P;(u) occurring for 6= 6y and = Oy=t7/2, respectively,
are given in rotary representation (see Appendix A) by

2P, =Ps(w)+P_;(w)
+ 2P (w)P_; (w) coby(w,w*),

20y = —Ph, (w,w*).

These values are interpreted as follows

(B2)

(B3)

where

(B4)

(BS)
(B6)

P,=P_ (circular or irregular)
P,>P_ (elliptical or irregular)
P_=0  (rectilinear).

The maximum (C;) and minimum (C_.) values of
the (u,9) coherence occurring for 6=6y=%w/4 and
6= 0y, respectively, are given in rotary representation
by

. [Ps@)+P_s(w)F—4 Det
+ = L]

[P, (w)+P_; ()T
_ [Pjw) P @)}
T [Py(w)—P_;(w)]+4 Det

(B7)

(B8)

where Det is the determinant given by (A13).
These values are interpreted as follows

C+= C_= 1
Cy=1, C_=0 (rectilinear)
C+= C_ =0

(circular or elliptical)

(irregular).

The following quantities are invariant with the
coordinate rotation:

Pys(w), P, Cg .
10s(w,0), Ps(w)+P;(v), LP;(u)~ P (v) P+4K /*(u,v)
Tr, Det, E,.

cohs(w,w*),

On the other hand, the following quantities are not
invariant:

P!(u)! Pf(v)y K/(’M,'IJ),
Kf(w,w*)’ Qf (w,w*),

COh! (u)v)’

Ph,(w,w*).
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It should be noted that
E——< P—y P+$E+7 (Bg)
C_220, (B10)

where E,. are the eigenvalues given by (Al4a).

The equality in the above relations holds when the
clockwise and anticlockwise components are of equal
magnitude.

APPENDIX C

Degree of Polarization

This appendix is essentially based on Born and Wolf
(1975).

The vector series w can be decomposed into polarized
w? and unpolarized w? components which are incoherent
with each other as

w(t) =wr{E)+w(t). (C1)

The polarized component represents a circular, elliptical-
or rectilinear oscillation, while the unpolarized compo-

nent represents irregular oscillations.

The cross-spectrum matrix C,(#,v) is partitioned into
the polarized and unpolarized parts as

e[l 740 ]

P1P,— | P;|?=0.

(C2)

where

(C3)

This means that

cohy (ur,p?)=1 or P;(u?)=0 or P,(v?)=0, (C4)
coh; (u%99)=0 and P,(u%)=P;(»?). (C5)

Alternatively, (#,9) in the above partition can be re-
placed by (w,w*) by virtue of (A2)-(A4). The mag-
nitudes (traces) of these parts are given respectively by
solving (C2) with (C3) as
P1+P2=E+—E_,

20=2E_,

(Cé)
(s0)
where E, are the eigenvalues of the matrix given by

(A14).
The degree of polarization D, is defined by

PP,  E—E_
T (PHP)+20 EA4E

where C, is given by (B7).

Thus the degree of polarization is interpreted as the
maximum value of the (#,%) coherence when the u,
coordinates are rotated by an angle 8y==m/4, where Oy
is given by (B6). The orientation of the major axis of
the polarized component coincides with 8.

o (C8)
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The degree of polarization is related to the (u,'u)
coherence as

4P (u)P(v)
[P;(w)+Ps()

By use of (A12) and (A13), this relation (C9) is rewritten
in terms of rotary coherence as

4Py (w)P_;(w)

(1—Dp)= [1—coh2(u,v)]. (C9)

(1-DpA= [1—coh(ww*)]. (C10)
[P;(w)+P—; ()T
It follows from (C10) that
D, 2 cohy (w,w™), (C1D

where the equality holds if P;(w)=P_;(w) or coh,(w,w*)
=1. Thus the rotary coherence never exceeds the
degree of polarization.

The above quantities are interpreted as follows:

D;=1 and coh;(w,w*)=0 (circular)
D;=coh,(w,w*)=1
Dj = COhf ('w,w*) =0

(elliptical or rectilinear)

(irregular).

APPENDIX D
Degree of Rectilinear Oscillation

This appendix is analogous to Hayashi (1977a, 1979).

The vector series w can be decomposed into recti-
linear (w%) and nonrectilinear (w") components which
are assumed to be incoherent with each other as

w(t) =wl () +w? (¢). (D1)

The rectilinear component represents a rectilinear oscil-
lation, while the nonrectilinear component represents a
circular or irregular oscillation.

The cospectrum matrix can be partitioned into the
rectilinear and nonrectilinear parts as

Ps(u) Kf(u,v)>_(L1 La>+ (N
(K,(u,-v) P,y / \L, L/ \o
where

L1L2—L32= 0 (DS)

Comparing (D2) with (C2) in Appendix C, we find that
the above parts can be obtained by replacing the %-v
cross spectrum (K,+#Q,) in the polarized and un-
polarized parts by the %-v cospectrum (Kj).

The above partition means that

Cor,(ukpt)==1 or P;(u¥)=0 or P,(»%)=0, (D4)
Cor;(u¥,p¥)=0 and P;(u")=P;(vV), (D5)

where Cor; is the correlation coefficient at frequency f
defined by

Cory (u,) = K 1 (w,9)/ P4 () P} (2). (D6)
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By virtue of (A2)-(A4), the partition (D2) is equiv-
alent to the partition of the cross spectrum matrix as

|2|>+<]::l Ai)' (D7),

This means that the clockwise and anticlockwise com-
ponents of the rectilinear component are coherent with
each other and of equal magnitude, while those of non-
rectilinear component are incoherent.

The magnitude of the rectilinear (L;+ L) and non-
rectilinear (2N) parts are given by

L1+Lz = P+—P_,
IN=2P_,

- (ILI
f(waw )=
L*

(D8)
(D9)

where P, and P_ are the maximum and minimum
values of P,(u) given by (BS5).
The above parts (D8) and (D9) are analogous to the

“standing” and ‘““‘traveling” parts given by Hayashi

(1977a). The orientation of the rectilinear oscillation
coincides with 8y given by (B6).
The degree of rectilinear oscillation (L;) is defined by

Li+Ls P.—P_
(Li+L)+2N P.+P_

It can be proven that L; coincides with the maximum
value of |Cor(%,2)| when the #-v coordinate is rotated
by an angle Oy==7/4.

The degree of rectilinear oscillation is expressed as

4P (u)P—4(v)

(D10)

(1-LA =m[1 —Cors*(u,v)] (D11)
or
=M coh,(w,w*). (D12)
Py(w)+P_g(w)
It follows from (D12) that
L;< cohy(w,w*), (D13)
where the equality holds if
Pi(w)=P_;(w) or Pis(w)=0. (D14)
From (D13) and (C11) we then have
L;< cohy(w,w*) < Dy. -(D15)

Thus the degree of rectilinear oscillation never exceeds
the rotary coherence nor the degree of polarization D,
and is interpreted as

Ly=1 (rectilinear)
"L;=0 and D;=1 (circular)
Ly=Ds= (irregular).
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1t should be noted that if the rectilinear and circular
components are of the same origin and hence are co-
herent with each other a decomposition into rectilinear
and nonrectilinear components is not possible by the
present method. In this case, L, should be interpreted
as merely the maximum value of the #-v correlation or
a measure of anisotrophy rather than the degree of
rectilinear oscillation. On the other hand, if the elliptical
and circular components are not of the same origin and
hence are incoherent with each other, a decomposition
into polarized and unpolarized components is not
possible by the present method. In this case D; should
be interpreted as merely the maximum value of the
u-v coherence rather than the degree of polarization.

REFERENCES

Bendat, J. S., and A. G. Piersol, 1971: Random Data: Analysis
and Measurement Procedures. Wiley, 407 pp.

Beran, M. J., and G. B. Parrent, Jr., 1964: Theory of Partial
Coherence. Prentice-Hall, 193 pp.

Blackman, R. B., and J. W. Tukey, 1958: The Measurement of
Power Spectra. Dover, 190 pp.

Born, M., and E. Wolf, 1975: Principles of Optics, Sth ed.
Pergamon Press, 808 pp.

Bretherton, F. P., and J. C. McWilliams, 1979: Spectral estima-
tion from irregular arrays. Submitted to Rev. Geophys.

Calman, J., 1978: On the interpretation of ocean current spectra.
J. Phys. Oceanogr., 8, 627-652.

Capon, J., 1969 : High-resolution frequency-wavenumber spectrum
analysis. Proc. IEEE, 57, 1408-1419.

Chapman, W. A, M. J. Cross, D. A. Flower, G. E. Peckham and
S. D. Smith, 1974: A spectral analysis of global atmospheric
temperature fields observed by the selective chopper radiome-
ter on the Nimbus 4 satellite during the year 1970~71. Proc.
Roy. Soc. London, A338, 57-76.

Crew, H., and N. Plutchak, 1974: Time varying rotary spectra.
J. Oceanogr. Soc. Japan, 30, 61-66.

Deland, R. J., 1964: Traveling waves. Tellus, 16, 271-273.

——, 1972: On the spectral analysis of traveling waves. J. Meteor.
Soc. Japan, 50, 104-109.

Depradine, C., 1978: Energetics of long waves in the tropics
during the summer of 1974. Ph.D. thesis, Florida State
University, 210 pp. (Also Rep. 78-4, Dept. of Meteorlogy].

Fofonoff, N. P., 1969: Spectral characteristics of internal waves
in the ocean. Deep-See Res., 16, (Suppl.), 59-71.

Fraedrich, K., and H. Béttger, 1978: A wavenumber frequency
analysis of the 500 mb geopotential at 50N. J. Atmos. Sci.,
35, 745-750.

Gonella, J., 1972: A rotary-component method for analyzing
meteorological and oceanographic vector time series. Deep-
Sea. Res., 19, 833-846.

Gruber, A., 1974 : The wavenumber-frequency spectral of satellite
measured brightness in the tropics. J. Atmos. Sei., 31,
1675-1680.

Hardy, D. M., and J. J. Walton, 1978: Principal components
analysis of vector wind measurements. J. Appl. Meteor.,
17, 1153-1162.

Hartmann, D. L., 1976: The structure of the stratosphere in the
southern hemisphere during late winrer 1973 as observed by
satellite. J. Atmos. Sci., 33, 1141-1154.

Hayashi, Y., 1971 : A generalized method of resolving disturbances
into progressive and retrogressive waves by space Fourier
and time cross-spectral analyses. J. Meteor. Soc. Japan, 49,
125-128.

——, 1973 A method of analyzing transient waves by space-time
cross spectra. J. Appl. Meteor., 12, 404-408.

YOSHIKAZU HAYASHI

765

——, 1974: Spectral analysis of tropical disturbances appearing
in a GFDL general circulation model. J. A#mos. Sci., 31,
180-218.

——, 1977a: On the coherence between progressive and retro-
gressive waves and a partition of space-time power spectra
into standing and traveling parts. J. Appl. Meteor., 16,
368-373.

——, 1977b: Space-time power spectral analysis using the
maximum entropy method. J. Meteor. Soc. Japan, 55,
415-420.

——, 1979: A generalized method of resolving transient distur-
bances into standing and traveling waves by space-time
spectral analysis. J. Atmos. Sci., 36 (in press).

——, and D. G. Golder, 1977: Space-time spectral analysis of
mid-latitude disturbances appearing in a GFDL general
circulation model. J. A#mos. Sci., 34, 237-262.

—— and ——, 1978: The generation of equatorial transient
planetary waves: Control experiments with a GFDL general
circulation model. J. A¢mos. Sci., 35, 2068-2082.

Hirota, I., 1976: Seasonal variation of planetary waves in the
stratosphere observed by the Nimbus 5 SCR. Queart. J. Roy.
Meteor. Soc., 102, 757-770.

Izawa, T., 1972: Some considerations on the continuous space-
time spectral analysis of atmospheric disturbances. Pap.
Meteor. Geophys., 23, 33-71.

Kao, S. K., 1968 : Governing equations and spectra for atmospheric
motion and transports in frequency-wavenumber space.
J. Atmos. Sci., 25, 32-38.

Krishnamurti, T. N., 1978: Large-scale features of the tropical
atmosphere during GATE. Rep. No. 78-5, Dept. of Me-
teorology, Florida State University, 55 pp.

Leaman, K. D., and T. B. Sanford, 1975: Vertical energy propaga-
tion of inertial waves: A vector spectral analysis of velocity
profiles. J. Geophys. Res., 80, 1975-1978.

——, 1976: Observation on the vertical polarization and energy
flux of near-inertial waves. J. Phys. Oceanogr., 6, 894-908.

Leese, J. A, and E. S. Epstein, 1963 : Application of two-dimen-
sional spectral analysis to the quantification of satellite cloud
photographs. J. Appl. Meteor., 2, 629-644.

Lumley, J. L., and H. A. Panofsky, 1964: The Structure of Aimo-
spheric Turbulence. Interscience, 239 pp.

Manabe, S., D. G. Hahn and J. L. Holloway, Jr., 1974: The
seasonal variation of the tropical circulation as simulated by
a global model of the atmosphere. J. Atmos. Sci., 31, 43-83.

Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial
area. J. Meteor. Soc. Japan, 44, 25-43.

McDonough, R. N., 1974: Maximum-entropy spatial processing
of array data. Geophysics, 39, 843-851.

Mooers, C. N. K., 1973: A technique for the cross spectrum
analysis of pairs of complexed-valued time series, with
emphasis on properties of polarized components and rota-
tional invariants. Deep-Sea Res., 20, 1129-1141.

Miiller, P., D. J. Olbers and J. Willebrand, 1978: The Inex
spectrum. J. Geophys. Res., 83, 479-500.

O’Brien, J. J., and R. D. Pillsbury, 1974: Rotary wind spectra in
a sea breeze regime. J. A ppl. Meteor., 13, 820-825.

Perkins, H., 1972: Inertial oscillations in the Mediterranean.
Deep-Sea Res., 19, 289-296.

Pratt, R. W., 1976: The interpretation of space-time spectral
quantities. J. A¢mos. Sci., 33, 1060-1066.

——, and J. M. Wallace, 1976: Zonal propagation characteristics
of large-scale fluctuations in the mid-latitude troposphere.
J. Atmos. Sci., 33, 1184-1194.

Sato, Y., 1977: Transient planetary waves in the winter strato-
sphere. J. Meteor. Soc. Japan, 55, 89-106.

Schifer, J., 1979: A space-time analysis of tropospheric waves in
the Northern Hemisphere. Submitted to J. A¢mos. Sci.

Tompson, R. O. R. Y., 1978: Observations of inertial waves in
the stratosphere. Quart. J. Roy. Meteor. Soc., 104, 691-698.



766

Tsay, C. V., 1974: A note on the methods of analyzing traveling
waves. Tellus, 26, 412-415,

Wallace, J. M., and R. E. chkmson, 1972: Empirical orthogonal
repre«,entatlon of time series in the frequency domain. Part I.
Theoretical considerations. J. Appl. Meteor. 11, 887-892.

Weisberg, R. H., L. Miller, A Horigan and J. A. Knauss, 1979:
Velocity observations in the equatrial thermoclines during
GATE. Submitted to Deep-Sea Res.

——, A. Horigan and C. Colin, 1979b: Equatorially trapped
Rossby-gravity wave propagation in the Gulf of Guinea.
J. Mar. Sci., 37, 67-86.

Willebrand, J., 1978: Temporal and spatial scales of the wind field
over the North Pacific and North Atlantic. J. Phys. Oceanogr.,
8, 1080-1094.

Yaglom, A. M., 1962: An Introduction to the Theory of Stationary
Ramdom Functions. Prentice Hall, 235 pp.

JOURNAL OF THE ATMOSPHERIC SCIENCES

VOLUME 36

Yanai, M., T. Maruyama, T. Nitta and Y. Hayashi, 1968: Power
spectra of large-scale disturbances over the tropical Pacific.
J. Meteor. Soc. Japan, 46, 308-323.

Yao, N. C., S. Neshyba and H. Crew, 1975: Rotary cross-bispectra
and energy transfer functions between non-Gaussian vector
processes I. Development and example. J. Phys. Oceanogr.,
5, 164-172.

Zangvil, A., 1975a: Temporal and spatial behavior of large-scale
disturbances in tropical cloudiness deduced from satellite
brightness data. Mon. Wea. Rev., 103, 904-920.

——, 1975b: Upper tropospheric waves in the tropics and their
association with clouds in the wavenumber-frequency domain.
Ph.D. thesis, University of California, Los Angeles, 131 pp.
[Also Tropical Meteorology Papers, Nos. 13 and 14, Dept.
of Meteorology].



