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ABSTRACT

Spectral formulas are derived to compute nonlinear energy transfer spectra by use of the cross-spectral
technique. Nonlinear product terms are calculated directly from dependent variables without using the
conventional interaction Fourier coefficients. The proposed method of computation is simpler than the
conventional method and is applicable not only to wavenumber spectra but also to frequency or wave-
number-frequency spectra. Nonlinear aliasing errors associated with this approach can be either neglected
or completely eliminated by Fourier interpolation. An example of the application of this method to

atmospheric waves is given.

1. Introduction

Saltzman (1957) proposed a wavenumber spectral
analysis’ of the energetics of atmospheric disturb-
ances in order to study the generation and transfer
of energy among different wavenumbers. This tech-
nique has been applied not only to observed data
[for a review see Saltzman (1970)], but also to gen-
eral circulation models (Manabe et al. 1970; Tenen-
baum 1976; Baker and Kung, 1977). Saltzman (1957)
formulated nonlinear energy transfer spectra based
on the Fourier transformed nonlinear equations of
motion which involve product sums (convolution)
of the Fourier transform of dependent variables.
This transformation, in principle, is the same as that
of a spherical harmonics transform of nonlinear
equations as proposed by Silberman (1954), Kubota
(1959) and Platzman (1960).

Alternatively, Manabe et al. (1970) computed non-
linear energy transfer wavenumber spectra more
simply by taking a Fourier transform of the product
of dependeént variables which are multiplied directly
at the grid points. In principle, their ‘‘grid’’ method
is the same as that of computing a spherical har-
monics transform of nonlinear equations as pro-
posed by Orszag (1970) to make spectral models
efficient. Burrows (1976) computed two-dimensional
energy transfer spectra using spherical harmonics
by the grid method. Murakami (1978) further sepa-
rated one-dimensional nonlinear energy transfer
spectra, computed by the grid method, into sta-
tionary and transient, as well as zonal and wave
parts. _

On the other hand, Hayashi, (1971, 1973,
1977a,b, 1979a,b) proposed a method of computing
wavenumber-frequency cross spectra by use of fre-
quency cross-spectral techniques without using the

two-dimensional Fourier transform method by Kao
(1968) [see reviews by Tsay (1974) and Pratt (1976)].
In the present paper, we shall propose a method
of computing nonlinear energy transfer spectra
using the cross-spectral technique by generalizing
the grid method. The advantage of the present
method is that it is simpler than Saltzman's and
is applicable not only to wavenumber spectra but
also to frequency spectra and wavenumber-
frequency spectra.

In Section 2 cross spectra are defined. Formulas
for computing nonlinear transfer spectra of kinetic
energy are given in Section 3. An example of its ap-
plication is given in Section 4. Notations are given
in Appendix A. Formulas for available potential
energy spectra are given in Appendix B. Nonlinear
aliasing error is discussed in Appendix C.

2. Cross spectra

In this section cross spectra are defined since
these spectra are used to compute the nonlinear
spectra discussed in Section 3.

a. Wavenumber cross spectra

It is assumed that space-time series data u(A,f)
and v(A,?) are cyclic and discrete in longitude. These
series are represented by a space-Fourier series with
discrete wavenumbers (n) and Nyquist wavenumber
(N) as

N
u(rt) =Re Y U,(t)e™ (2.1a)

n=0

=Re % [Cu(¢) cosnh + S%(t) sinnA], (2.1b)

n=0
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where
Un(t) = Ci(t) — iS¥D).

In particular,
= 8% =0.
The sample wavenumber cospectra P,(u,v) and
" quadrature spectra Q,(u,v) (see Jenkins and Watts
1968, p. 209) are defined as

2.2)

¥ = u, (zonal mean) and S¥

P,(u,v) = VaRe (U}¥V,) (2.3a)
= W(C¥Ch + SiS?), (2.3b)
O.(u,v) = VLIm (U}V,) (2.4a)
= 15(SUCy — CuSY), (2.4b)

where the asterisk in this section denotes the com-
plex conjugate and the cospectra (2.3) should be
doubled forn = 0andn = N

The sample cospectrum is interpreted as the spec-
trum of the sample covariance averaged over A as

% P.(u,v).

n=0

a(o(N) = (2.5)

The sample quadrature spectrum is interpreted
as the cospectrum between u and v with a 90° phase
shift. The following relation is useful:

ov
P lu,—| =
( ax)

More generally, the sample cross spectra R,(u,v)
are defined as

—nQ,(u,v). (2.6)

R (u,v) = P(u,0) + iQ,(u,v). 2.7
The sample cross spectra are interpreted as the
spectrum of the sample cross covariance as

u(MO(A+A). = Re Y Ry(u,v)e™.

n=0

2.8)

The true wavenumber cross spectra are defined
as the ensemble average of the sample wavenumber
cross spectra. In practice, this ensemble average
can be replaced by the time average of the sample
wavenumber spectra for an ergodic time series.

The time-averaged wavenumber cross spectra can
be decomposed into stationary (time mean) and
transient (deviation from time mean) parts as

P (u,0) = Ps(u,v) + Pi(u,v), 2.9
0.(u,0) = Qi(u,0) + Qh(u,w),  (2.10)

where the overbar without A denotes the time av-
erage. Here these parts are computed as

Ps(u,v) = B(CCy + Su8y), (.11

. O5(u,w) = %(SECE — CiSY), (2.12)

Pi(u,v) = P(u,v) — Ps(u,v), (2.13)
L(u,) = Qn(u,v) ~ Q5(u,0).
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The transient wavenumber cross spectra can be
interpreted as wavenumber-frequency cross spectra
which are integrated over all the progressive and
retrogressive frequencies. If a particular wave-
number is associated with a particular frequency
band due to the dispersion relation, the transient
wavenumber cross spectra can be interpreted as
wavenumber-frequency cross spectra.

The wavenumber coherence Coh' and phase dif-
ference Ph’ between transient waves « and v are
defined as

[Pi(u, ) + [Q5(u,0)])?
Pi(u,u) Pi(v,v)
Phi(u,v) = tan"{Q%4(u,v)/ Pi(u,v)]. (2.16)

These transient wavenumber spectra can also be
used to estimate the horizontal and vertical coher-
ence and phase difference of transient waves.

[Coh!(u,v)]* = , (2.15)

b. Wavenumber cross bispectra

If v(\) is expressed as a product of two sets of

series b(\) and c(\) as

v(A) = b(M)c(N), (2.17)

the Fourier transform of »(A) is related to that of
b(A\) and c(\) by the convolution theorem (see
Jenkins and Watts, 1968, p. 44) as

N-n

28‘ l?;(jn+m,

m=-N

Vo=1% (2.18)
where B,, C, are the complex Fourier transform
of b(A) and c(M), respectively.

Inserting (2.18) into (2.3a) gives

N—n .
P, (u,v) =Re Y VaU}BiCpim (2.192)
m=—N
N-n
=Re Y R,n.(ub,c), (2.19b)
m=—N

where R, .(a,b,c) is the wavenumber cross bi-
spectrum of three sets of space series a, b and ¢
as defined by

Ry mla,b,c) = VAaAFBRCrim. (2.20)

R, .(a,b,c) is also interpreted as the spectrum of
the cross-bicovariance as follows [for frequency bi-
spectra see Hasselman et al. (1963), Hinich and
Clay, (1968) and Roden and Bendiner (1973)]

a(Mb(h + A)e(h + Ay)

= Re 2 2 Rn m(a b c)eun)\ﬂm)\z)

n=0 m=—N

(2.21)

The relation (2.19) is the principle of Saltzman’s
(1957) formulation of nonlinear energy transfer
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spectra. In the present paper, however, we make
use of wavenumber cospectra (2.3) directly instead
of (2.19). The advantage of the present approach is
that it is simpler to program and the wavenumber
cospectra can be formally replaced by either fre-
quency or wavenumber-frequency cospectra as de-
scribed below.

c. Frequency cross spectra

The true frequency cross spectra are defined as
the ensemble average of the sample frequency cross
spectra. However, unlike the time-averaged sample
wavenumber spectra, the true frequency spectra
are not directly replaced by unsmoothed discrete
sample frequency spectra. These time spectra
should be estimated by use of more refined methods
(see Bendat and Piersol, 1971, p. 330) such as the
lag correlation method, direct Fourier transform
method, segment method and filtering method. By
use of these time-spectral techniques, wavenumber-
frequency cross spectra can also be computed
through spectra formulas derived by Hayashi (1971).

3. Kinetic energy spectra

a. Nonlinear energy transfer spectra

The equations of motion and continuity in spheri-
cal coordinates are written in flux form (see Ap-
pendix A for notations) as

du ouu ovu Jwu tanf ]
— —_— p— p— + )y uv
ot [ ax dy dp r
+ 2() sinfv — % + F,, (3.1
ox
ov [ ouv dvv owv tanf ]
—_ - - - - uu
ot ox ady ap r
. 0
— 2Q sinfu — —i + F,, (3.2)
roe
ou ov w
—_—t —+ —=0, 3.3)
ox ay op
where
o( ) a( )
= , 3.4
Qx r COSHON (3.42)
0 0 cosd
) = ( ). (3.4b)

dy r cosfoo

The terms in the brackets in (3.1) and (3.2) are non-
linear terms due to advection and sphericity.

Kinetic energy per unit mass K, for the wave-
~ number (or frequency) n is defined by

Ky = Va[Py(u,u) + Py(v,0)], (3.5)
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where P, is the wavenumber (or frequency)
cospectrum.

The time change of wavenumber (or frequency)
kinetic energy is given by
0K,

ot

= Nn(a,bc) - Pn(a’w)

_ I:apn(d)’u) + aPn(d)’v) + aPn(d)aw) :I
Ox dy ap

+ [Po(u,Fy) + Py(v,Fy)]. (3.6)

This equation has been derived by taking a cospec-
trum between « (or v) and both sides of Eq. (3.1)
[or (3.2)] and making use of (3.3). In case of wave-
number spectra (not frequency spectra), the third
term on the right-hand side of (3.6) which involves
the x derivative vanishes.

The nonlinear kinetic energy transfer spectrum
N,(a,bc) in (3.6) is defined by

_ [P,,(u, Buu) + Pn(v, auv)}
' Ox ox

F ouv ovv
o) o5
oy ay
tanf
+ —— [Py(u,uv) — Py(v,uu)]
P

/U ovw
- [Pl )+ B )| - B

Here the symbol a represents u or v, while bc de-
notes a nonlinear product term.

A transfer of kinetic energy from or into wave-
number n occurs when the wavenumber of a, b and
¢ are respectively n, (n = m) and m {see Eq. (2.19)]
as related by

I

N,(a,bc)

n=(n=xm)F m. (3.8)
It can be proven that the following relation holds:
N 2 + 2
S Na(a,bc) = — i(u A )
n=0 ox 2 0
/ 2 + 2 . 2 + 2
- i(v “ Y ) —i(w “ d ) , (3.9
dy 2 Jy Op 2

where the suffix 0 denotes the zonal (or time) mean.
Thus, the nonlinear kinetic energy transfer spectra
tend to vanish, when they are integrated over the
whole atmosphere as well as all the wavenumbers
(or frequencies) 0 ~ N.

The nonlinear products in (3.7) are computed at
grid points, and the derivatives are replaced by finite
difference. In case of wavenumber spectra the first
two terms on the right-hand side of (3.7) can be
computed without explicitly computing the x deriva-
tive by use of (2.6) as



[Qn(u,uu) + Qu(v,uv)], (3.10)

r00

where @, is the wavenumber quadrature spectrum
defined in Section 2.

b. Partition of spectra into wave-wave and wave-
mean interaction parts

The nonlinear energy transfer spectra N,(a,bc)
can be partitioned into two parts as

N.(a,bc) = (Kn-K,) + (Ko'K,). (3.11)

Here (K,,*K,) is the transfer of energy into wave-
number (frequency) n by interaction among different
wavenumbers (frequencies) excluding 0, while
(K, K,) is the transfer of energy into wavenumber
(frequency) n by interaction between the mean flow
and wavenumber (frequency) n.

By definition, (K,,-K,) is given as

(KmKy) = Ny(a,b'c"), (3.12a)

where

Nyab'c) = — [P,,(u, Ou'u ) + P,L(v, Ou’v )}

ox Ox
- [Pn(u, Qu’v ) + Pn(v, 9v'v )J
ay dy
tané
+ [Po(u,u'v') — Py(v,u'u’)]
ou'w’ o'’
_ [P,,(u, )+Pn(u, )} . (3.12b)
op op

Here, the prime denotes deviation from the zonal
mean (or time mean) for wavenumber (or frequency)
spectra.

It can be proven that the following relation holds
as in (3.9):

] ( ,u’2+v'2) 0 [ ,u?+ "
= - —lt —) ——| ' —
(')x 2 0 ay( 2 )0

6 12 + 2
- —(w’ ”—v—) . (3.13)
op 2 0

Thus the wave-wave interaction part (K, - K, ) tends
to vanish when integrated over all the wavenumbers
(or frequencies) 1 ~ N and over the whole
atmosphere.

The mean-wave interaction part (K o
as a residual by

K,) is given
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(KyK,) = Ny(a,bc) — N,(a,b'c’). (3.14a)

This residual is not a small difference of large num-
bers and no roundoff error occurs (see Table 2 in
Section 4).

Alternatively, the above part (K, K,) is given
explicitly by linearized equations as

= - {%’ P,(u,u) + Z—Pn(u v)}

du, AV,
[raa Buuv) + 2 roo Pulo, U)]

tand

— —— [ugPo(u,v) — voPy(u,u)]

EYR av,
- ——P,,
{BP Prluso) ap . w)}

_ [auoKn + av()Kn + awoKn

} , (3.14b)
ox 8y dp

where the suffix 0 denotes zonal mean for wave-
number spectra and time mean for frequency
spectra.

The formula (3.14a) is more convenient for com-
putation than (3.14b), since the wave-mean interac-
tion spectra can be computed in the same manner
as the wave-wave interaction spectra. It should be
noted that the last three terms of (3.14b) are inter-
preted as the convergence of the wave kinetic energy
advected by the mean flow and are usually dis-
tinguished from the rest of the terms. In Saltzman’s
(1957) formulation these terms are implicitly con-
tained in wave-wave interaction terms rather than
in zonal-wave interaction terms. These three terms,
however, tend to vanish when integrated over the
entire atmosphere. In case of wavenumber spectra,
terms in (3.14b) involving the x derivative vanish.

It should be noted that for n = 0, (3.11) is

written as
No(a,bc) = (Kn-Ko) + (Ko-Ky), (3.15)

where (K,,-K,) is given by puttingn = 01in (3.12b)
and (K, -K,) is defined by

BUOKO _ BDOKO _ awoKO
ox oy op ’

(Ko'Ky) = — (3.16)

Here (K, -K,) is interpreted as the transfer of
kinetic energy into the mean flow by interaction be-
tween the mean flow and wave, while (K,-K,) is
the convergence of kinetic energy of the mean flow
advected by the mean flow itself.

By virtue of (3.11) and (3.15), we have the relation
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N N
<Km'K0> = - 2 <K0Kn> + [Z Ny(a,bc)
n=1

n=0
- z_: (Km'Kn> - <K0KO>] (317)

Here, the last three terms are given explicitly by
(3.9), (3.13) and (3.16) and tend to vanish when in-
tegrated over the entire atmosphere.

c¢. Partition of wavenumber spectra into stationary
and transient parts

The time-averaged wavenumber nonlinear energy
transfer spectra can be further partitioned into sta-
tionary (time mean) and transient (deviation from
time mean) parts as

(KmKn> = <KmK£L> + (Kszt>9

(3.18)
<K0‘Kn> = <K0'K181> + <K0'K£z>’ (3~19)

where the overbar denotes a time mean. These parts
are interpreted as follows:

(K,,-K$) Transfer of kinetic energy into sta-
tionary wavenumber n by interaction
between different stationary waves or
between different transient waves

(K,,-K%) Transfer of kinetic energy into transient

wavenumber n by interaction between
transient waves and stationary (or
transient) waves

Transfer of kinetic energy into sta-

tionary wavenumber n by interaction
between stationary zonal mean flow
and stationary wavenumber n or be-
tween transient zonal mean flow and
transient wavenumber 7.

(Ko‘Kfz>
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(Ky-K%) Transfer of kinetic energy into transient
wavenumber n by interaction between
stationary zonal mean flow and transi-
ent wavenumber n or between transi-
ent zonal mean flow and stationary
(or transient) wavenumber ».

These parts are computed as

(Kn-K$) = Ni(a,b'c"), (3.20)
(Kn-KL) = Ni(a,b'c"), (3.21)
(Ko K3) = Ni(a,bc) — Ni(a,b'c’), (3.22)
(Ko-KL) = Nia,be) — Nifa,b'c). (3.23)

Here, the prime denotes deviation from the zonal
mean. N§{ and N} are defined by (3.7) and (3.12)
with their cross spectra replaced by (2.11)—(2.14).

In addition to the above parts, it will also be useful
to define the following spectra:

(K K3) = Niab'eh, (3.29)
(Kw'K3) = Ni(a,b’*c’*), (3.25)

where the overbar denotes a time mean‘and the
asterisk a deviation from the time mean.
These spectra are interpreted as follows:

(K3, K$%) Transfer of kinetic energy into station-
ary wavenumber by interaction only
between different stationary wave-
numbers.

(K%, -K%) Transfer of kinetic energy into transient
wavenumber n by interaction only
between different transient wave-
numbers.

These spectra correspond to steady and transient

TABLE 1. Simulated and observed wavenumber kinetic energy spectra (10°J m~2), wave-wave interaction part (W m~2), and
zonal-wave interaction part (W m~2) as a function of wavenumber n. These spectra are integrated between the 100 and 1000 mb levels
and averaged over the entire Northern Hemisphere during January.

K, (Kn Ky) (Kqy-Ky)

n Simulated Observed Simulated Observed Simulated Observed
1 2.0 1.1 0.09 0.09 -0.19 —0.01
2 0.8 1.1 -0.12 -0.03 -0.04 -0.06
3 0.7 1.3 -0.05 0.16 =0.10 -0.03
4 0.7 0.5 0.03 -0.07 -0.05 -0.01
5 0.6 0.6 -0.02 0.05 —0.13 0.00
6 0.4 0.7 0.02 0.07 —0.08 -0.07
7 0.3 0.4 0.00 -0.14 —0.06 0.03
8 0.2 0.3 -0.02 —0.05 -0.02 —0.03
9 0.2 0.2 -0.01 —0.04 —-0.02 0.01

10 0.1 0.2 -0.02 —0.01 —0.01 0.00

11 0.1 0.1 0.00 -0.01 -0.01 0.01

12 0.1 0.1 0.00 0.00 0.00 0.01

13 0.05 0.1 0.02 —0.02 0.00 0.00

14 0.04 0.04 0.01 0.01 0.00 0.01

15 0.03 0.04 0.01 0.02 0.00 0.00
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TABLE 2a. As in Table 1 except for simulated stationary and transient wavenumber kinetic energy spectra. These spectra (January
mean) are integrated between the 100 and 1000 mb levels and averaged over 30-60°N.

K, (Km'Kn) (Ko'Kn)
n Stationary Transient Stationary Transient Stationary Transient
1 2.43 0.31 0.54 -0.05 -0.21 -0.01
2 0.37 0.66 —-0.04 -0.01 -0.07 0.05
3 0.56 0.55 —0.02 0.09 -0.13 -0.04
4 0.35 0.89 -0.11 -0.05 —-0.04 0.03
5 0.29 0.66 0.01 0.06 -0.07 -0.09
6 0.04 0.53 0.02 -0.02 -0.02 -0.04
7 0.02 0.53 —-0.02 -0.07 0.00 -0.09
8 0.01 0.28 -0.01 -0.09 —0.00 -0.01
9 0.01 0.27 0.00 —0.06 0.00 -0.03
10 0.01 0.15 -0.01 —-0.01 -£0.00 —0.00
11 0.00 0.13 -0.00 -0.04 —0.00 -0.00
12 0.00 0.09 —0.00 -0.02 0.00 -0.00
13 0.00 0.06 —0.00 0.03 -0.00 0.00
14 0.00 0.05 0.00 —0.00 0.00 -0.00
15 0.00 0.03 -0.00 0.00 0.00 -0.00
wave-wave interaction terms defined by Kanamitsu
et al. (1972). JJ[ K., (dp/g)(rd@)(r cos6d\)
d. Computational procedure J J (rd6)(r cos@)d\
Computational procedure of nonlinear wave-
number energy transfer spectra is as follows:
gy P K, dp(cos9do)
1) Compute nonlinear product at grid points and _ 4.1)

compute the y, p derivatives by finite difference.
In case of wavenumber spectra, it is not necessary
to compute the x derivative explicitly. Compute
N,(a,bc) by the formula (3.7) with (3.10), (2.3)
and (2.4).

2) Subtract the zonal mean and compute nonlinear
products. Compute (KK, ) by the formula (3.12b)
with (3.10), (2.3) and (2.4). The computer code can
be checked by use of the identity (3.13).

3) Compute (K,'K,) by the formula (3.14a) or
(3.14b).

4) These spectra are further partitioned into sta-
tionary and transient parts by use of (3.20)-(3.25)
with (2.11)-(2.14).

4. Example of application

As an example of the application of the present
method, a wavenumber-spectral analysis is made of
a spectral GFDL general circulation model (Manabe
et al. 1979). This model has 30 zonal wavenumbers
and the nonlinear term is computed at grid points
following Orszag (1970). For a wavenumber analy-
sis the values on the constant sigma surface are
interpolated to the constant pressure surface and the
nonlinear terms are recomputed at 96 grid points in
longitude. This number of points is large enough
to avoid nonlinear aliasing error (see Appendix C).

The wavenumber spectra are vertically mass-
integrated and averaged over latitudes 8, ~ 6, as

g(sinb, — sind,)

This gives kinetic energy in a vertical column per
unit area.

Table 1 shows the simulated and observed wave-
number spectral distribution of kinetic energy K,
wave-wave interaction part (K, 'K,). and zonal-
wave interaction part (K,-K,) integrated through
the troposphere and averaged over the entire
Northern Hemisphere. The simulated spectra are
calculated by the present method using (3.5), (3.12b)
and (3.14a), while the observed spectra were cal-
culated (Tenenbaum, 1976) by the conventional
method from NMC observational analysis data in
January 1973. The simulated and observed spectra
agree in the following respects: The kinetic en-
ergy decreases as the wavenumbers increase. Wave-
number 1 gains kinetic energy from higher wave-
numbers as found observationally by Saltzman
(1970). The low wavenumbers lose kinetic energy by
zonal-wave interaction. However, there are some
discrepancies between the simulated and observed
interactions, particularly in (K,,-K,) for wave-
numbers 2, 3 and 7 and in (K- K, ) for wavenumbers
1,3 and 5.

Table 2 shows stationary and transient parts of
simulated wavenumber spectra as calculated by
(2.11)-(2.14) and (3.20)—(3.23). These spectra are
further split into midlatitudes (30-60°N) and the
tropics (0—30°N) as shown by Tables 2a and 2b, re-
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TABLE 2b. As in Table 2a except that the spectra are averaged over 0-30°N.

K, (Kn'K,) (Ko Ky)

n Stationary Transient Stationary Transient Stationary Transient
1 1.62 0.36 -0.19 0.02 -0.29 0.06
2 0.31 0.31 —-0.21 0.02 —0.10 0.04
3 0.24 0.31 -0.14 0.00 -0.12 0.03
4 0.17 0.37 0.07 0.09 0.02 —0.11
5 0.15 0.35 -0.04 -0.04 —0.04 —-0.11
6 0.08 0.30 0.02 0.02 -0.01 —-0.12
7 0.03 0.22 0.00 0.05 -0.02 ~0.05
8 0.02 0.15 0.00 0.03 -0.00 —0.02
9 0.01 0.12 0.00 0.01 -0.01 -0.02
10 0.01 0.09 —0.00 0.03 -0.00 —0.01
11 0.01 0.07 ~0.01 0.02 0.00 ~0.00
12 0.01 0.06 -0.00 0.02 0.00 -0.00
13 0.00 0.04 0.00 0.02 0.00 0.00
14 0.00 0.04 -0.00 0.02 —-0.00 -0.00
15 0.00 0.03 0.00 0.01 0.00 0.00

spectively. In both the regions, stationary wave- APPENDIX A

number 1 has the largest kinetic energy. Unlike mid- .

latitude waves, however, the stationary wave- List of Symbols

?(;Hl?ibirs 1-3 in the btro;:xcs lgsetthelr kmetlfc engrﬁy Q angular velocity of earth
gher wavenumoer lransient waves as tound by radius of spherical earth 6371 km

Kanamitsu er al. (1972) observationally in the N longitude

northern summer season. 6 Jatitude

5. Remarks p pressure

A method is proposed for computing nonlinear oC ) oC )

energy transfer spectra by use of cross-spectral tech- ox r cosfOA

niques. Nonlinear product terms are calculated di- a ) dcosb( )

rectly from dependent variables without using the

conventional interaction Fourier coefficients. This ay r cos#dd

method is simpler than the conventional method and « eastward velocity

is applicable not only to wavenumber spectra but v northward velocity

also frequency or wavenumber-frequency spectra. ¢ geopotential

It should be noted that this grid method is, in @ vertical pressure velocity

principle, associated with a nonlinear aliasing error T temperature

(see Appendix C), while the Fourier transform o« specific volume

method (Saltzman, 1957) is free from this error. If J heating per unit mass

data are generated by a numerical spectral model F dissipation per unit mass

with the transform method (Orszag, 1970), the grid R gas constant (=2.8704 x 102 m? S~2 K™Y)

method is also free from this error, since the number « 1-C,/C, (= %)

of grid points of the model is large enough to elimi- ( )’ deviation from zonal mean

nate the nonlinear aliasing error. In order to esti- ( )* deviation from time mean

mate the magnitude of nonlinear aliasing error, the ( ) time mean

computation in Section 4 was repeated with 60 grid K, kinetic energy per unit mass for wave-

points to resolve only 30 wavenumbers instead of number (or frequency) n.

96 points used in the model. It was found that the A, available potential energy per unit mass for

error is less than 0.1%. This error can be neglected
or completely eliminated by Fourier interpolation of
grid data as described in Appendix C.
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APPENDIX B
Available Potential Energy Spectra
1. Wavenumber (frequency) energy equation

The thermodynamic equation is given by



ouT ovT
ot ox dy

5 :
- (— - i)wr +JIC,. (BI)
op p
The available potential energy (Lorenz, 1955)
associated with wavenumber (or frequency) n
(n # 0) is given approximately by

A, = YavPy(T), (B2)
where

< ,
- _ . B3
YT kT < oT%op] (B3)

Here, T is temperature averaged over globe and
time at a single level defined by

. 1 (72 _
TH = —J T, cosOdo. (B4)

—m/2

For alternative formulations of available potential
energy, see Boer (1975) and Pearce (1978).

The wavenumber (or frequency) available poten-
tial energy equation is given by

";‘t" = (A-A,) + (Ip)CAT,J),  (BS)
N, (a,bc)
__ V[PH[T,G—"T-] + Pn[T, EJ
dx dy
1] K
+ pn[r,(__ - —)wT]] . (B
: op p

In case of wavenumber spectra the first term on
the right-hand side of (B6) can be computed more
conveniently by making use of (2.6) as

(B7)

ouT
-VP,,(T, u_) =" O.(T,uT).
ox r cosé

2. Partition of spectra into wave-wave and wave-mean
interaction parts

The spectra N,(a,bc) can be partitioned into three
parts as '
N,(a,bc) = {A-A,) + (Ay-A,) + Pya,w), (B8)

where P,(a,w) is a conversion from wave kinetic
energy [see Eq. (3.6)]. These parts are defined as

, (An-An) = Nypla,b’c’), (B9)

= Ny(a,bc) — N,(a,b'c’) — P (a,) (B10a)

or equivalently
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oT, 0T,
A ‘Ap) = — Pn ’ - Pn »
(Ag-An) v (u,T) v—s ,T)
T oT, R '
+ {,,(2 - _0) _ __] P (0.T)
p op) p]

B OuyA B 0v,A _ OmyA
ox roé dp

1 2
+ (__ . _62 + _K_)m(,A. (B10b)
v dp p

Here, the prime denotes deviation from the zonal
mean for wavenumber spectra and from the time
mean for frequency spectra. The suffix 0 in (B10b)
denotes zonal mean for wavenumber spectra and
time mean for frequency spectra. For wavenumber
spectra, terms in (B10b) involving x derivative
vanish.

The third term in (B10b) vanishes if T# coincides
with T,. The last term is usually neglected.

APPENDIX C
Nonlinear Aliasing Error

Due to nonlinear interaction among wavenumbers
0 ~ N (N = Nyquist wavenumber, 2N = number
of grid points), wavenumbers 0 ~ 2N are produced.
However, due to aliasing error (see Bendat and
Piersol, 1971, p. 228) wavenumbers N 4+ 1 ~ 2N are
regarded as wavenumbers N — 1 ~ Qonthe 2N grid
points. Phillips (1959) first pointed out this nonlinear
aliasing error and proposed to eliminate it by Fourier
filtering the top half of wavenumber components
before computing the nonlinear products. Later,
Orszag (1971) pointed out that it is sufficient to
Fourier filter only the top third, since only wave-
number 0 ~ 4N/3 components are nonlinearly pro-
duced and wavenumber N + 1 ~ 4N/3 components
are aliased into only N — 1 ~ 2N/3 components.

Since we do not wish to filter high wavenumbers,
we can alternatively increase the number of grid
points 2N to at least 3N + 1 by Fourier inter-
polation as »

N
u; = 3 [C,cos(nr) + S, sin(nr)], (C.1)
n=0
where i denotes the new grid points and C, and
S, are the cosine and sine coefficients given by the
original data.

It should also be remarked that there is no non-
linear aliasing error in space covariance u(Mv(\) ,
since the average over space (A\) eliminates aliased
wavenumber components.
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