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                              Abstract 

   Space-time cross spectra are experimentally estimated from given sinusoidal waves by 

use of the multivariate maximum entropy method. This method gives not only power spectra 

but also cospectra, phase difference and coherence with fine frequency resolutions from short 

time records. As an example of its application, a space-time spectral analysis is made of 

external Rossby waves simulated by a GFDL spectral general circulation model.

1. Introduction 

 In previous papers (Hayashi, 1977; Hayashi 
and Golder, 1978, 1980) space-time power 
spectra have been estimated from short time 
records by the use of the maximum entropy 
method (MEM) proposed by Burg (1967) and 
reviewed by Ulrych and Bishop (1977), Hino 
(1977) and Childers (1978). Recently, the MEM 
was generalized by Nutall (1976), Strand (1977), 
Morf et al. (1978), and Jones (1978) to estimate 
not only power spectra but also cross spectra, 

phase and coherence. 
  In the present paper Morf et al's formulation 

is used to estimate space-time cross spectra. 
Section 2 describes the principle of the maximum 
entropy cross spectra, while Section 3 summarizes 
space-time cross spectral formulas. Section 4 tests 
the proposed method with given sinusoidal waves, 
while Section 5 applies the proposed method to 
external Rossby waves simulated by a GFDL 
spectral general circulation model. Remarks are 

given in Section 6. 

2. Maximum entropy cross spectra 

  In principle, the maximum entropy spectral 
distribution is determined by extrapolating the 
known lag correlations to an infinite lag in such 
a way that the entropy (a measure of infor-
mation) is maximized. In practice, the MEM 
spectrum is estimated by predicting the available 
data to infinite time by an autoregressive fitting. 

  Multivariate autoregressive process of order M

is given (see Jenkins and Watts, 1968, p. 473) by

where xt is a vector process, zt is a vector process 
of white noise and *1**M are the matrices of 

prediction error filter coefficients. 
  For a bivariate process xt=(ut,*t), ut depends 

not only on ut-m but also on *t-m. 
 The cross spectral matrix cx(f) for a continuous 

frequency f of xt is given by the Fourier trans-
form of (2.1) as

where *t is the time increment, I is a unit matrix 
and the asterisk denotes the complex conjugate 
transpose. 

  In the above, *m and R (variance matrix of 
zt) are determined from available data by a 
covariance fitting and prediction error minimi-
zation. The formulation proposed by Morf et 
al. (1978) and coded by Jones (1978) appears to 
be superior to other formulations which yield 
different cross spectra for forward and backward 

predictions. 
 According to Jones (1978), the optimum order 

(M) of the bivariate autoregressive process is less 
than 1/4 of the length of the record and is deter-
mined by minimizing Akaike's Information 
Criterion. However, from the author's experience ,
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this criterion should not be strictly followed. 
Rather, the order should be regarded as proper 
if the smoothed spectral distribution is not 
drastically altered with a slight change in the 
order. 
  It is also of importance to note that an inte-

gration of the above MEM cross spectrum matrix 
cx(f) over positive and negative frequencies results 
in exactly twice the cross covariance matrix of 
the original data. 

 An alternative MEM cross spectral estimation 

proposed by Ulrych and Jensen (1974) often 
gives quite erroneous results. This is due to the 
fact that the multivariate time series are fitted 
to different single-variate autoregressive processes 
which are independent of each other. For example 
the cospectrum K* between u and * is estimated 
by use of the identity

However, the three power spectra on the right-

hand side estimated by the MEM are not con-

sistent with each other and can cause a large 

error.

3. Space-time cross spectra 

 First, the space complex Fourier transform 
of space-time series w(x,t) is computed as

where ck and sk are the space cosine and sine 
coefficients computed by a conventional method.1 

 The space-time MEM power spectrum of one 
set of a space-time series w(x, t) is given (see 
Hayashi 1977, 1979) by

where P*w is the time MEM power spectrum 
of a complex time series. The positive and 
negative frequencies represent westward and east-
ward phase propagations, respectively. 

  Space-time MEM cross spectra between the 

progressive (or retrogressive) wave components 
of two sets of space-time series w(x, t) and 
w'(x,t) are given by

where

are the space-time MEM power, cospectra, 

quadrature spectra, phase difference and co-
herence, respectively. K*w, Q*w are the time 
MEM cospectra and quadrature spectra of the 
complex time series.2 

 The bivariate MEM power spectra (3.3) de-

pends not only on w but also w'. This ambiguity 
can be avoided by using the bivariate power 
spectra only to compute coherence and replacing 
them by the univariate power spectra (3.2). In 
order to obtain stable estimates of phase and 
coherence, the cross spectra should be smoothed 
by a frequency band average before computing 
(3.7) and (3.8). 

  The MEM power spectra are non-negative and 
the coherence has a value between 0.0 and 1.0. 
An integration of the MEM space-time power 
and cospectra over positive and negative fre-

quencies yields the exact space-time variance and 
covariance, respectively. If w and w' are exactly 

proportional to each other, pure sinusoidal waves 
or constant, the autoregressive process has a 
singularity. In this case, a small random noise 
must be added to the data to remove the 
singularity. 

4. Test 

  In order to test the MEM space-time cross 
spectral method, the following two sets of space-
time series are given.

and

1 A modified Fourier transform (see Hayashi, 1980) 
 should be used for correctly estimating space-time 

 spectra from polar-orbiting satellite data.

2 The computer code of the MEM cross spectra of 

 complex time series written by the author is avail-

  able upon request. It is also available from Dr. T. 

 Maruyama at the Meteorological Research Insti-

  tute, Tateno/Nagamine 1-1, Yatabe-cho, Tsukuba-

 gun, Ibaraki-ken 305, Japan.
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where k corresponds to zonal wavenumber 1 and 

*1, *2 correspond to periods 5 and 20 days, 
respectively. r1, r2, r3, r4 are the time series of 
white noise which are added to remove the 
singularity and have a value between -0.1 and 
0.1. 
  Fig. 1 shows the space-time cross spectra for 
wavenumber 1 estimated by the MEM and the 
conventional lag correlation method. The data 
length is taken to be 30 days with a 1 day incre-
ment. The order of the autoregressive process 

(MAXM) is shosen to be 7. The MEM cross 
spectra are smoothed by a frequency band 
average at intervals of 1/60 day-1 to obtain 
stable estimates. The maximum lag for the lag 
method is chosen to be 10 days. It is seen that 
the MEM gives much sharper spectral peaks than 
the lag method and, in fact, shows spectral peaks 
which are not detected by the lag method. This 
is also true with nonsinusoidal oscillations (see

Fig. 1. Space-time cross spectra of sinusoidal 
 waves with white noise estimated by the MEM 

 (solid line) and by a lag correlation method 
 (dashed line). See the text for detail.

Fig. 2. Space-time power spectra density (wave-
 number 1) of simulated geopotential height at 

 515mb, 41.4*N in January.

Hayashi, 1977, Fig. 2). For the present example, 
both methods give the correct phase difference 
(90* and 0* for 5 and 20 day periods, respec-
tively) and show a high coherence for the given 
frequencies. 

5. An application 

 As reviewed by Madden (1979) and 
Walterscheid (1980), there is considerable obser-
vational evidence of westward moving pressure 
waves associated with wavenumber 1 and periods 
near 5 and 15 days. These waves are character-
ized by little phase variation in the vertical and 
attain their maximum and minimum amplitudes 
in the mid-latitudes and tropics, respectively. 
They are interpreted as external Rossby waves. 
These waves are likely to be a source of error 
in some numerical forecast models. 

 Hayashi (1974, Fig. 6f) found, among other 
equatorial planetary waves, spectral peaks at 
wavenumber 1 and westward moving periods of 
5 and 15 days in the geopotential height over the 
equator in an 11-layer GFDL grid type general 
circulation model. However, these westward 
moving waves were not clearly detected in the 
mid-latitudes of the same model (Hayashi and 
Golder, 1977; Pratt, 1979).3 It is of interest here 
to examine whether these waves are better simu-
lated by a current 9-layer GFDL spectral model 

(Manabe et al. 1979) with 30 wavenumber com-
ponents. 
  Space-time power spectra are estimated by use 
of the single-variate maximum entropy method,

3 This negative conclusion was based on the lag cor-

  relation method. It has, however, been confirmed 

 by the MEM.
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Fig. 3. Vertical structure of simulated geo-

 potential height (wavenumber 1) at 41.4*N 
 in January. Normalized amplitude (left), 

 phase difference (middle), coherence (right) 
 for westward moving periods of 15 days 

 (solid) and 5 days (dashed). The reference 
 level (515mb) is indicated by open circles.

Fig. 4. Meridional structure of simulated geo-
 potential height (wavenumber 1) at 515mb in 

 January. Normalized space-time amplitude 
 (left), phase difference (middle), coherence 
 (right) for westward moving periods of 15 

 days (solid) and 5 days (dashed). The refer-
 ence latitude is 1.1*N.

while phase difference and coherence are esti-
mated by the bivariate maximum entropy method. 

  Fig. 2 shows a power spectral density (wave-
number 1) of geopotential height at 515mb, 
41.4*N during January. Distinct spectral peaks 
are seen near 15 and 5 days, which correspond 
to those observed. 

  The vertical structure of these waves at 41.4*N 
is shown in Fig. 3. Both 15 and 5 day period 
waves exhibit little phase variation in the vertical 
in agreement with those observed. 

  The meridional structure of these waves at 
515mb is shown in Fig. 4. Both 15 and 5 day 

period waves attain their maximum and minimum 
amplitudes in the mid-latitudes and tropics, re-
spectively. They are nearly symmetric in the 
tropics with respect to the equator. 

6. Remarks 

 The MEM cross spectral analysis can be used 
to replace the conventional composite analysis 
to find the phase distribution of waves based on 
a short time record. The advantage of this 
spectral analysis is that it gives the additional 
information of coherence. Another advantage of 
space-time spectral analysis is that eastward and 
westward moving waves can be distinguished 
from each other. 

 The confidence limits of the MEM power 
spectra have been discussed by Reid (1979). 
However, his estimate of the upper confidence 
limit at times become infinite even if the esti-
mated spectra are close to the known true values, 
while the lower confidence limit is always finite. 
One should regard an MEM analysis as pre-
liminary until a statistical significance test is made 
of the conventional spectra of a longer time 
series. 
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    Maximum Entropy Methodに よ る

     時 空 間 ク ロ ス ・ス ペ ク ト ル 解 析 法

            林  良 一

Geophysical Fluid Dynamics Laboratory,プ リンス トン大学,

          プ リンス トン,ア メ リカ合衆国

 多変数最大 エ ン トロピー法 によ り試験的 に与え た正弦波動 の時空間 ク ロス ・スペ ク トルを計算 した。 この方法

は短い時系列か ら振動数分解能 の良いパ ワ ・スペ ク トルだけでな くコー ・スペ ク トル,位 相差,コ ヒー レンス も

与え る。 応用例 としてGFDLス ペ ク トル大循環 モデルの外部 ロス ビー波の時空間スペ ク トル解 析を行 った。


