
April 1983 Y. Hayashi 263

Modified Methods of Estimating Space-Time Spectra from 

           Polar-orbiting Satellite Data 

     Part II : The Wavenumber Transform Method 

                      By Yoshikazu Hayashi 

 Geophysical Fluid Dynamics Laboratory/NOAA, Princeton University, P.O. Box 308 
                       Princeton, New Jersey 08540, U.S.A. 

       (Manuscript received 25 May 1982, in revised form 10 February 1983) 

                             Abstract

   In order to estimate space-time spectra correctly from uneven twice-daily data sampled 
by a polar-orbiting satellite, the wavenumber transform method (Hayashi, 1980) is modified 
by the use of a nonorthogonal Fourier inversion. The space-time spectra are obtained from 
the time-Fourier coefficients of the space-Fourier transforms of the asynoptic field with 
respect to its frequency-shifted wavenumber. Since this method requires the spatial inter-
polation of asynoptic data, it is effective only for ultralong waves. The wavenumber-
frequency aliasing characteristics are examined and the computer code is exemplified.

1. Introduction 

  In Part I (Hayashi, 1983), the non-orthogonal 
Fourier transform method (Salby, 1982) is sim-

plified by transforming frequency only. In the 
present paper (Part II), the wavenumber trans-
form method (Hayashi, 1980) is also modified by 
use of the nonorthogonal Fourier inversion in 
order to eliminate the aliasing errors due to un-
even twice-daily data. Also, a more efficient com-

putational scheme is given. Section 2 modifies the 
wavenumber transform method, while Section 3 
tests the method. Summary and remarks are 

given in Section 4. Appendix A gives the deriva-
tion of the nonorthogonal Fourier inversion, while 
Appendix B exemplifies the computer code of the 
modified method. 

2. The modified wavenumber transform 
   method 

2.1 Space-time Fourier series 
  The space-time Fourier series for a continuous 

longitude * and time t is given by

2.2 Time coordinate transformation 
 The standard time t and local time tl of a 

satellite at the longitude * are related by

where * is the zonal angular velocity (22* day-1) 
of a sun-synchronous satellite.1) 

 Inserting (2.3) into (2.1) gives

where m* is the frequency-shifted wavenumber of 

the asynoptic field and is given by

2.3 Space-time Fourier inversion 
 The above space-time Fourier series (2.4) is 

not orthogonal in the space-time domain when 
t1 is not of equal time intervals. Nevertheless, 
its coefficients can be determined explicitly as

where Fm, * is the space-Fourier transform of the

where *m, * are the space-time Fourier coefficients 

and

1) For a non-sunsynchronous satellite which drifts 
 around the earth once per * day (*1), time 
 and period must be measured in units of * days 
 to apply the present method.
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asynoptic field with respect to m* as defined by

and Fm, * is the time-Fourier coefficient of Fm, * 
and is determined by the nonorthogonal time-
Fourier inversion described in the following. 

2.4 Nonorthogonal time-Fourier inversion 
  The twice-daily time series w(t) with incre-

ments of 0.5(1+*) and 0.5(1-*) days consists 
of two sets of once-daily time series as

 The twice-daily series is expanded into a 

Fourier series as

  Due to the unevenness of the increments, the 
Fourier series is not orthogonal. Nevertheless 

(2.10) can be inverted, as derived in Appendix 
A as

where the asterisk denotes the complex conjugate 
and

 In the above, Xn and Yn are the Fourier 
transforms of Xp and Yp, and are given by

follows: 
  1) Compute the space-Fourier trasnform (2.7) 

of the given asynoptic data set with respect to 
a specified wavenumber and frequency. 

  2) The space-time Fourier coefficients (2.6) 
are then obtained by computing the time Fourier 
coefficients of this space-Fourier transform with 
respect to the specified frequency. 

  3) The space-time cross spectra can be ob-
tained from the space-time Fourier coefficients 
by the use of formulas given in the Appendix C 
of Part I. 

  It should be noted that day and night asynop-
tic data must be on the same equatorial local 
date (see Fig. 3a of Hayashi, 1980) rather than 
on the same standard date (see Fig. 2 of Hayashi, 
1980). In order to reduce leakage, the original 
time series data should be tapered at each end 

(see Section 2.6 of Part I). However, longitudinal 
data should not be tapered, although the data 
are discontinuous from one end to the other. 

3. Test of the method 

3.1 interpolation error 
  Since the wavenumber transform method as-

sumes that spatial data are somehow interpolated 
to regular grid points, it is of importance to 
examine the resulting interpolation error. Table 
1 shows the wavenumber (n) distribution of the 
amplitude of a cosine function with wavenumber 
m, which is linearly interpolated from 13.6 to 14 

points. The correct wavenumber amplitude is 1 
for n=m and 0 for n*m. It is seen that wave-
number 4-6 are greatly distorted. It is expected, 
however, that a more general objective analysis 
scheme has less distortion than a linear inter-

polation. 

3.2 Time spectra 
  Since the generalized method involves a non-

Table 1 The wavenumber (n) distribution of the 
    amplitude of a cosine function with wavenum-

   bers m which are linearly interpolated from 
    13.6 to 14 points. The correct wavenumber am-
   plitude should be 1 for n=m and 0 for n*m.

2.5 Coin putational procedure 

 The computational procedure of the generalized 

wavenumber transform method is summarized as
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Fig. 1 Frequency distribution of the power 
   spectra of a cosine function (period=1.33 

   days) estimated from uneven twice-daily 
   data with (upper) and without (lower) cor-

    rections for uneven time increments.

orthogonal time-Fourier inversion, time spectra 
given by this inversion are tested. Fig. 1 shows 
the time-power spectra of a cosine function 
(period =1.33 days) which are estimated from 
uneven interval time series data with increments 
of 18 and 6 hours (*=0.5). These spectra are 
correctly estimated by the nonorthogonal inver-
sion method with a correction for the uneven 
time increments. Without this correction (ordi-
nary method) the 1.33-day period peak is aliased 
to a 4-day period peak, as is the case with once-
daily data. 

 When the input is given at the Nyquist fre-

quency (1 day-1), it is aliased to the zero fre-
quency even when a correction for the uneven 
time increments is included (not illustrated). 

3.3 Space-time spectra 
 Fig. 2 shows the wavenumber distribution 

(period=2 days) of the space-time power spectra 
of a given sinusoidal wave which are estimated 
from asynoptic data hypothetically sampled at 
regular spatial grid points at uneven time inter-
vals of 18 and 6 hours. These spectra are cor-
rectly estimated by the wavenumber transform 
method with a correction for the uneven time 
increments (top), whereas they are aliased with-
out this correction (middle). They are severely 
aliased by the ordinary method (bottom). 

 It turns out (not illustrated) that the aliasing

Fig. 2 Wavenumber distributions (period=2 days) 
    of the space-time power spectra of sinusoidal 

    waves (wavenumber=3, period=2 days, 
    westward moving) estimated from asynoptic 

    data with time increments of 18 and 6 
    hours (*=0.5). The wavenumber transform 

   methods with (top) and without (middle) 
    a correction for uneven time increments. 

   The ordinary method (bottom).

configurations of the generalized wavenumber 
transform method are identical to those (see 
Part I) of the generalized frequency transform 
method for mN=FN, provided that there is no 

distortion due to the spatial interpolation. 

4. Summary and remarks 

  In order to estimate space-time spectra from 
uneven twice-daily data sampled by a polar-orbit-
ing satellite, the wavenumber transform method 
of Hayashi (1980) is modified by the use of non-
orthogonal Fourier inversion. The modified 

method is summarized as follows: 
  1) The space-time spectra are obtained from 

the time-Fourier coefficients of the space-Fourier 
transforms of the asynoptic field which is asso-
ciated with the frequency-shifted wavenumbers.
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  2) The nonorthogonal Fourier series of un-
even twice-daily data is inverted by splitting them 
into two sets of once-daily data. Their coefficients 
are reduced to a linear combination of the 
Fourier transforms of the day and night data. 

  3) The wavenumber-frequency aliasing con-
figurations of the generalized wavenumber trans-
form method are identical to those of the modi-
fied frequency transform method, provided that 
there is no distortion due to the spatial inter-

polation. 
  The modified wavenumber transform method 
is convenient when objectively analyzed satellite 
asynoptic data are available. However, this 
method is effective only for ultralong waves, since 
the high wavenumber components are seriously 
distorted by the spatial interpolation. This method 
is less efficient than the frequency transform 
method in computing wavenumber-frequency dis-
tribution of spectra, since different space-Fourier 
transforms must be computed for different fre-

quencies. However, this inefficiency is not a seri-
ous problem, since these spectra are computed 
for only a few wavenumbers. Moreover, the 

present computational scheme is more efficient 
and can more easily be automated than that of 
the wavenumber transform method of Hayashi 

(1980) which must discard all the frequencies 
except for the tuning frequency of the frequency-
shifted wavenumbers. 
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             Appendix A 

Derivation of Nonorthogonal Fourier Inversion 
  The Fourier series of a real time series is 

written as

This series can be rewritten as

where the asterisk denotes the complex conjugate 
and

since the two terms in (A.3a) coincide for n= 
N/2. 

  Following the principle of the fast Fourier 
transform, the above Fourier series is reduced to

and the identity exp (i2p*)=1 has been used. 
 The Fourier series (A.5) and (A.6) can be in-

verted by virtue of the orthogonality of the 
Fourier series with an equal increment as

where Xn and Yn are the Fourier transform of 
Xp and Yp and are given by (2.16) and (2.17). 

 Solving;(A. 8) and (A. 9) for wn and w*N-n gives 
(2.13) and (2.14), 

             Appendix B 

Computer Code of the Wavenumber Transform 
Method 

 SUBROUTINE WNT (List 1) computes the 
space-time Fourier coefficients from twice-daily 
or once-daily sunsynchronous satellite data (see 
footnote1)  for non-sunsynchronous satellite data) 
with respect to a specified wavenumber and fre-
quency. This program calls SUBROUTINE SFT 
(List 2) which computes the space-Fourier trans-
form (2.7b) and SUBROUTINE NFI (List 3) 
which computes the time Fourier coefficients 
(2.13) and (2.14). 

 SUBROUTINE SFT calls SUBROUTINE SFC 
which is exactly the same as SUBROUTINE TFC
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List 1 List 3

List 2

(List 2 in the Appendix in Part I) except that 
TFC and its dimension ID are replaced by SFC 
and JD, respectively. SUBROUTINE NFI calls 
SUBROUTINE TFC. 

 When SUBROUTINE WNT is called for the 
first time, set ITIME=1 and MTIME=1 to 

compute and store cosine and sine functions in 
the subroutines SFC and TFC. 

 The input arguments are given by 

    NX= even number of space points, 

     N=even number of half time point,

   EPS=* for twice-daily data 
       =0 for once-daily data 

WA(I, J)=w(tl, *) for daytime or odd day, 
WD(I, J)=w(tl, *) for nighttime or even day, 

    M=m(0 *M *NX/2), 
    NF=*n(-N*NF*N), 

and F=f=*n/N for twice-daily data 
         =*n/(2N) for once-daily data. 

The output argument is given by 

  WMN=wm, *n (complex). 
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時空間ス ペク トルを極 軌道衛星 データか ら求める修正方法

         第2部:波 数変換法

          林    良  一

GFDL/NOAA, Princeton University, U.S.A.

 極軌道衛 星に よ り採集 された1日2回 の不等時間隔デ ータか ら時空間スペ ク トルを正 確に求 め られ る ように波

数変換法(Hayashi,1980)を 非 直交 フー リエ変換 によ り修正 した。 時空間 スペ ク トルは 変換され た波数 につい

ての非綜観 場の空間 フー リエ変換の時間 フー リエ係数か ら求 まる。 この方法は非綜 観場 の空 間補間を必要 とす る

ので超 長波の解析 のみ に効果的 である。波数一振動数aliasingの 性質を調べ,計 算機 プ ログラムも例示 した。


