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                              Abstract

   A simplification is made of the nonorthogonal Fourier transform method (Salby, 1982) 
for estimating space-time spectra from uneven twice-daily data sampled by a polar-orbiting 
satellite. The modified method transforms frequency only by the use of the Galilean trans-
formation, while Salby's method transforms both frequency and wavenumber. Space-time 
spectra are obtained from the time-Fourier transform with respect to the Doppler-shifted 
frequency as viewed from the satellite. They wavenumber-frequency aliasing characteristics 
are examined and the computer code is exemplified.

1. Introduction 

  Space-time spectral analysis is a powerful tool 
for studying the dynamics of large-scale atmos-

pheric waves. By this analysis, waves are decom-
posed into eastward and westward moving wave-
number-frequency components and their struc-
ture and energetics can be examined (see Hayashi, 
1982 for a review of the methods and their ap-

plications). However, as pointed out by Hart-
mann (1976), a direct application of the conven-
tional methods (e.g. Hayashi, 1971) of space-time 
spectral analysis to polar-orbiting satellite data 
suffers from serious errors in the spectra of waves 
with periods shorter than 5 days or so. This is 
because these data are sampled at the same local 
time but different hours of the day due to the 
earth's rotation relative to the orbit of the satel-
lite (see Fig. 1). 

  Instead of applying the conventional space-
time spectral analysis, Chapman et. al. (1974) 
computed the power spectra of time series data 
which are viewed from a westward drifting sun-
synchronous satellite as indicated by the dots 
along the disconnected slanted lines in Fig. 2a. 
These data are associated with the Doppler-
shifted frequency1) F which is equal to * -m

1) This F itself is ambiguous, since it can be one of 
 the aliased frequencies due to discrete sampling 

 (see Section 2.1 for detail).

and is contributed to by various combinations of 
wavenumber m and frequency *(day-1). If only 
one pair of * and m is dominant and known, 
these time spectra can also be regarded as space-
time spectra. This method, however, cannot use 
twice-daily data to estimate the space-time spec-
tra of high frequency waves such as the observed

Fig. 1 The orbit of a polar-orbiting sun-syn-
   chronous satellite. Twice daily observations 

   are available on the day and night sides. 
   The orbits drift 360* per solar day relative 

   to the rotating earth (after Hayashi, 1980).
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Fig. 2a Longitude-time section of the position 
   of a hypothetical satellite with 2.3 orbits 

   (actually 12*14 orbits) per day at midnight 
   (full circle) and noon (open circle) at the 

   equator. Solid and dashed lines connect the 
   night and day side points, respectively. 

   These lines are continuous at 180*. The 
   numerals indicate local time at 180*W (left) 

   and 180*E (right) (after Hayashi, 1980).

Fig. 2b Longitude-time section of an eastward 
   moving wave (indicated by shading) with 

   wavenumber 1 and a period of 4 days. The 
    wavenumber 1 is measured as 1.25 along 

   the slanted lines connecting the same local 
   time (after Hayashi, 1980).

2-day period planetary waves (Rogers and Prata, 
1981; Salby, 1981). Moreover, once-daily data 
are associated with more aliasing errors than 
twice-daily data. 

  On the other hand, Hayashi (1980) modified 
the conventional method of Hayashi (1971) in 
order to estimate space-time spectra correctly 
from asynoptic satellite data which are sampled 
at the same local time. When these data are 
regarded as spatial data, the wavenumber m is 
shifted by the frequency * (see Fig. 2b), as 

pointed out by Hartmann (1976). Hayashi (1980) 
showed that the correct spectra can be retrieved 
by a time spectral analysis of the Fourier trans-
form of the asynoptic field with respect to 
the frequency-shifted wavenumber (m-*). This 
method assumes that twice-daily satellite data are 
of equal time increments. However, this assump-
tion does not hold well in high latitudes due to 
the orbital tilt of the sun-synchronous satellite. 
For example, Nimbus III sample data at inter-
vals of 10 and 14 hours at 60*N. This method 
also assumes that asynoptic data are somehow 
interpolated to regular longitude-latitude grid 

points. A simple linear interpolation will greatly 
distort the high wavenumbers components. 

 Recently, Salby (1982) discussed a sampling 
theory for asynoptic satellite observations and 

proposed an ingeneous method of retrieving 
space-time spectra and synoptic fields from un-
even twice-daily satellite data. This method 
rotates both space and time axes and transforms 
both wavenumber and frequency. This transfor-
mation is similar to but different from the rela-
tivistic Lorentz transformation. The transformed 
"space" -like data points consist of only two un-

even interval points, while the transformed 
"time" -like data points consist of many equal 

interval points. This data configuration gives only 
two transformed "wavenumbers" for each trans-
formed "frequency" in a resolvable wavenum-
ber-frequency range. The non-orthogonal two-

point Fourier series are correctly inverted by 
solving for two unknown space-time Fourier co-
efficients for each transformed "frequency." Syn-
optic fields can then be retrieved by a space-time 
Fourier resynthesis. 

  In order to make use of twice-daily data, how-
ever, there is no need to transform both space 
and time coordinates. In Part I of the present 

paper, Salby's non-orthogonal Fourier transform 
method is simplified by transforming frequency 
only by the use of the Galilean transformation
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as in Chapman et al. (1974). In Part II (Hayashi, 
1983), the wavenumber transform method of 
Hayashi (1980) is also modified by the use of the 
non-orthogonal Fourier inversion. It is also the 

purpose of the present paper to describe the com-
putational scheme in detail. 

  In Section 2 the modified frequency transform 
method is described. In Section 3, this method 
is tested with respect to its aliasing characteris-
tics. Summary and remarks are given in Section 
4. Appendix A lists symbols, while Appendix B 
lists the computer code of this method. Appendix 
C gives space-time spectral formulas. 

2. The modified frequency transform method 

2.1 Space-time Fourier series 
  The space-time Fourier series for continuous 

longitude 2 and time t is given by

where l is an arbitrary integer. 

 The Nyquist frequency FN is given by

where N is the number of data in T days. 

2.3 Space-Fourier series 

 By virtue of orthogonality and (2.5), taking a 
discrete time Fourier transform of (2.3) with 
respect to F= F0 gives

where

and the summation in (2.7) is taken over such 

f and m that satisfy

where *(m, *) are the space-time Fourier co-
efficients and *m=1 except for *0=0.5. Posi-
tive and negative frequencies * indicate westward 
and eastward phase velocities, respectively, for 

positive wavenumber m. 

2.2 Space coordinate transformation 
 The zonal coordinate *' whose origin moves 

westward relative to the earth with the zonal 
angular velocity (2* day-1) of a sun-synchronous 
satellite is related to * as

where *' coincides with * at t=0 
 Inserting (2.2) into (2.1b) gives

where F is the Doppler-shifted frequency (day-1) 
measured along the rotated time axis (slanted 
lines in Fig. 2a) and is given by 

    F=*-m. (2.4) 

 When data are sampled at discrete t, aliasing

2) For a non-sunsynchronous satellite which drifts 
 around the earth once per * day (*1), time and 

 period must be measured in units of * days to 
 apply the present method. (See Fig. 1).

for a given F0 and arbitrary integers l. 
 In order to determine the coefficients *(m, *) in 

(2.7) uniquely from two sets of ascending and 
descending branches of satellite data, these co-
efficients are assumed to be zero except for

where *N is the Nyquist frequency of twice-daily 
data and mN is the largest integer satisfying 
mN *FN* 2FN is defined by (2.6) and is equal 
to the average number of data in a longitude 
circle sampled during one day. 

 As illustrated in Fig. 3, only one or two pairs 
of integer wavenumber and frequency satisfy 
(2.10) and (2.11) for given F0 and arbitrary l in 
(2.9). If the coefficients of the Nyquist wave-
number were not assumed to be zero, the Nyquist 
region should be parallel to the isoline of m-f 
as in Salby (1982). On the other hand, there is 
no reason why the Nyquist region should not be 

parallel to the wavenumber axis, although Salby 
(1982) oriented this region in the direction of 
aliasing. 
 The above wavenumber-frequency pairs (p, *p) 

and (q, *q) can be explicitly determined, follow-
ing Salby (1982), as 

 First, integer p, integer T*p, and F0 are chosen
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data increments are non-orthogonal, the coeffi-
cients must be determined by explicitly solving 
the above two equations, following Salby (1982), 
as

Fig. 3 Wavenumber-frequency points in a wave-
    number-frequency domain. The mesh indi-

   cates the region bounded by the isolines 
   of the Nyquist wavenumber and frequency 

   (day-1) of discrete data (twice-daily in 6 
   days and 12 points in longitude). The 

   slanted lines are the isolines of the Doppler-
   shifted frequencies (F=-1.67) and its 

   aliased value (F=-1.67+12). The dots 
    indicate two pairs of wavenumber-frequency 

   point which fall at integer wavenumbers 
   inside the Nyquist region.

to satisfy

Eqs. (2.18) and (2.19) correspond to Eqs. (39.1) 
and (39.2) of Salby (1982). 

  If the twice-daily data are of equal interval 

(*a'=0, *d'=*), the above coefficients are re-
duced to

where p and q are odd and even numbers, re-
spectively. 
 These coefficients are just the half sum and 

difference of the Fourier transforms of ascending 
and descending data as expected intuitively. 

 For once-daily data, the coefficients w(p,*p) 
are given by

and

Second, (q,*q) is determined as

where the choice of the sign in (2.15) is to satisfy

 Since *(m, f) is zero except for the above two 

pairs, (2.7) can be truncated as

where w(p,*p) have been determined uniquely 
from (2.7) by assuming that the space-time 
Fourier components are zero except for |p|<mN 
and |f|<0.5.

2.5 Time-Fourier transform 

 Since the initial data points are not exactly at 
the same synoptic time due to the finite orbital 
velocity of a satellite, t must be replaced by t', 
defined by

where *'a and *'d are given by the longitude of 

the ascending and descending branches of the 

orbits at t=0. 

2.4 Nonorthogonal Fourier inversion 

 Since the above Fourier series with uneven

where * is a small time correction (*1 hour) 
for the initial data. 

 Inserting (2.26) and F0 =*-m into (2.8) gives
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The Fourier transform (2.27a) is made with re-
spect to the Doppler-shifted frequency F0 in the 
t' coordinate. On the other hand, the Fourier 
transform (2.27b) can be made with respect to 
the ordinary frequency * with w multiplied by 
a factor exp (i2**mt'). 

2.6 Computational procedure 
 The computational procedure of the modified 

frequency transform method is summarized as 
follows (see Appendix B for the computer code). 

  1) Compute the Fourier coefficients (2.27) of 
day and night time data in the range 0*m<mN 
and |f\<1 with F0 =*-m. 

  2) Compute the space-time Fourier coefficients 

(2.18) with p=m and q defined by (2.21). 
  3) Space-time cross spectra are obtained from 

the space-time Fourier coefficients by the use of 
formulas given in Appendix C. 

 In order to reduce leakage, the original time 
series should be tapered at each end (see Bendat 
and Piersol, 1971, p. 323). An improved taper-
ing procedure is suggested by Garcia and Geisler 
(1981, p. 2196). 

3. Test of the method 

 The input wave is given by

which consists of a pair of complex conjugates as

The satellite sampling of (3.1) is given by use 
of (2.2) and (2.26) as

 The response to this input has actually been 
computed by use of the conventional and the 
modified method. 

  Fig. 4 shows aliased wavenumber-frequency 

points for an ordinary space-time spectral analy-
sis applied to once-daily synoptic data (T=6 
days and 12 longitudinal points). The dots and 
crosses which are symmetric with respect to the 
origin represent complex conjugates. For exam-

ple, one of the conjugate pairs (m,*) = (*3, 
*1.33) is indicated by a large dot and a large 

cross. The mesh indicates the Nyquist wave-

Fig. 4 Aliased wavenumber-frequency points for 
   an ordinary space-time spectral analysis ap-

   plied to a regular space-time sampling (once 
   daily in 6 days and 12 points in longitude). 

   The mesh represents the Nyquist wave-
    number-frequency region.

number-frequency region. When the input is 

given on any of the points outside the mesh, it 
is aliased to the points inside the mesh.3) These 
input and output points are located at the vector 
intervals of (2mN, 2*N)=(12,1). In a one-sided 
domain where the signs of wavenumber and 
frequency are disregarded, two of the dots and 
crosses become mirror images with respect to 
the multiples of mN and *N* 

  Fig. 5 shows the aliased wavenumber-frequen-
cy points for the modified frequency transform 
method (2.24) applied to the once-daily artificial 
asynoptic data (T= 6 days and N= 6*12). As 
expected from (2.9), aliasing occurs along the 
slanted isolines of *-m= constant at vector in-
tervals of (1, 2*N)- (1,1). Additional aliasing 
occurs at intervals of (0, 2FN)=(0,12). This 
aliasing occurs in parallel with the * axis and 
the aliased points fall outside the outer frame of 
Fig. 5. A linear combination of these two inter-
vals also results in (2mN, 2mN- 2FN) _ (12,0) 
which turns out to be parallel to the rn-axis for 
this particular example (mN=FN=integer) as il-
lustrated by Fig. 5. The aliasing configuration 
of the modified method for once-daily data is 
identical to that of the frequency transform

3) If the input frequency does not coincide with one 
 of the discrete frequencies of the finite length data, 

 the response spreads to the adjacent frequencies.
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is rotated to be parallel to the slanted isolines. 
 Fig. 6 is the same as Fig. 5 (modified method) 

except for uneven twice-daily data and the input 
which is given outside the Nyquist region. This 
input is aliased to the two points inside this 
region with their magnitude altered. In particu-

lar, a diurnal oscillation and its harmonics are 
aliased to one another and also to the zero fre-

quency along the slanted isoline. When the input 
is given only inside the Nyquist region, no alias-
ing occurs inside this region (not illustrated). 

The two aliasing directions of the frequency 
transform method are not necessarily perpendicu-
lar to each other, while those of the wavenum-
ber-frequency transform method of Salby (1982) 
are perpendicular. 

  Fig. 7 shows the space-time power spectra of

Fig. 5 As in Fig. 4 except for the frequency 
   transform method applied to artificial satel-

   lite data (once daily in 6 days and 12 points 
   in longitude). The slanted lines indicate the 

   isolines of the Doppler shifted frequency 
   (F=F0+2FN).

Fig. 6 As in Fig. 4 (frequency transform meth-
   od) except for uneven twice-daily data. This 

   aliasing configuration is for the input given 
   outside the Nyquist region. (When the input 
   is given inside, no aliasing occurs inside.)

method (Chapman et al. 1974) and the wave-
number transform method (Hayashi, 1980, 1982) 
for once-daily data. When the frequency is 
transformed, the wavenumber axis is rotated to 
be parallel to the slanted isolines. When the 
wavenumber is transformed, the frequency axis

Fig. 7 Wavenumber distributions (period=2 
   days) of the space-time power spectra of 

   sinusoidal waves (wavenumber=3, period= 
   2 days, westward moving) estimated from 

   asynoptic data with time increments of 6 
   and 18 hours. The frequency transform 

   method with (top) and without (middle) a 
   correction for uneven time increments. The 

   ordinary method (bottom).
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a given sinusoidal wave which are estimated from 
asynoptic data with uneven time intervals of 6 
and 18 hours. These spectra are correctly esti-
mated by the frequency transform method with 
a correction for the uneven time increments (top), 
whereas they are aliased without this correction 

(middle). They are also aliased by the ordinary 
method (Hayashi, 1971) of space-time spectral 
analysis (bottom). 

4, Summary and remarks 

  A simplification is made of the non-orthogonal 
Fourier transform method of Salby (1982) for 
estimating space-time spectra from uneven twice-
daily data sampled by a polar-orbiting satellite. 
The modified method transforms frequency only 
by the use of the Galilean transformation, while 
Salby's method transforms both frequency and 
wavenumber. The modified method is sum-
marized as follows: 

  1) The space-time spectra are obtained from 
a linear combination of the time-Fourier trans-
forms of day and night data which are associated 
with the Doppler-shifted frequency as viewed 
from a satellite. 

  2) The non-orthogonal Fourier series with un-
even increments is inverted by explicitly solving 
for its coefficients. These coefficients are uniquely 
determined by assuming that the spectra are con-
fined in the resolvable wavenumber-frequency 
region. 
  3) Aliasings occur among wavenumber-fre-

quency points when the input wave is imposed 
outside the resolvable wavenumber-frequency re-

gion. When the input wave is imposed inside 
this region, no aliasing occurs within this region. 

 The modified frequency transform method is 
convenient, when the original satellite data are 
available. This method is useful not only for 
analyzing short period planetary waves but for 
correctly isolating long period waves. It gives 
the correct spectra except for the zero and diur-
nal frequencies, even if a diurnal oscillation and 
its harmonics are present. 

 The modified frequency transform method 
uniquely determines wavenumber-frequency spec-
tra from once-daily data alone by assuming that 
these spectra are confined in the resolvable wave-
number-frequency range. Without this assump-
tion, Chapman et al.'s (1974) frequency trans-
form method does not by itself determine the 
spectra uniquely from once-daily data.
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             Appendix A 

Symbols 

    * 
: Latitude, 

    * : zonal coordinate, 
    *': moving zonal coordinate (*=*'- 2*t) , 

  *a'(*), *d'(*) : longitudes of ascending and de-
       scending orbits at t=0, 

     t : time (days, see footnote 2)) 
t':time relative to the initial data point 

 *a(*), *d(*) : time corrections for the initial data 

       points of ascending and descending orbits 
    T : length of time series (days, see footnote2)) 

   N : number of data points in T days, 

    * 
: frequency (day-1, see footnote2)) 

   *N : Nyquist frequency of *, 
    F : Doppler-shifted frequency (F=*-m), 

  FN : Nyquist frequency of F(2FN=N/T), 
    m : wavenumber, 

  mN : Nyquist wavenumber of m(mN*FN). 

  (p,*p), (q,*q) : wavenumber-frequency pairs as-
       sociated with the same F(*p-p=*q-q 

       =F). 

             Appendix B 

Computer Code o f the Frequency Transform 
Method 

 SUBROUTINE STFC (List 1) computes space-
time Fourier coefficients (2.18) from twice-daily 
sunsynchronous satellite data (see footnote 2 for 
non-sunsynchronous satellite data) for a given 
in and * by use of SUBROUTINE TFC (List 2) 
which computes time-Fourier coefficients (2.27a). 
When SUBROUTINE STFC is called for the 
first time, set ITIME=1 to compute and store 
cosine and sine functions in SUBROUTINE TFC. 

 The input arguments are given by 

       N=closest even number of data points 
         during IT days,

and
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List 1

where the asterisk denotes the complex conjugate 
and the angle brace denotes ensemble average 
which can be replaced by a narrow frequency 
band average. (*m=0.5 except for (*0=0.25). 

 In addition, the coherence Cohm, *(w) between 
eastward and westward moving components (Ha-

yashi, 1977, 1979) is given by

List 2

 The power spectra of standing (WS) and travel-
ing (wt) wave components are given by use of 
this coherence as

The output arguments are given by

             Appendix C 

Space-time Cross Spectra 
  The space-time power spectra Pm, *, cospectra 

Km, *, quadrature spectra Qm, *, phase difference 
Phm, *, and coherence Cohm, * between two sets 
of space-time series (w, w') are given by
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時 空 間 ス ペ ク トル を 極 軌 道 衛 星 デ ー タ か ら 求 め る 修 正 方 法

          第1部:振 動数 変換 法

           林    良  一

      GFDL/NOAA, Princeton University, U.S.A.

 極軌道衛星に よ り採集 され た1日2回 の不等時間隔 データか ら時空 間スペ ク トルを求 める非 直交 フー リエ変換

法(Salby,1982)を 簡単化 した。 Salbyの 方法は振 動数 と波数の両 方を変換す るのに対 し,こ の修正 方法 はガ レ

リー変換に よ り振動数だけを変換すれば良い。 波数一振動数aliasingの 性 質を調べ,計 算機 プ ログラムも例示

した。


