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ABSTRACT 

A new spherical grid system whose grid density on the globe is almost homogeneous is proposed. The elementary 
rules of finite differencing on the grid system  are defined so that a  desirable  condition for numerical area  integration 
is satisfied. 

The integrations of primitive  equations for a barotropic  atmosphere  with  free  surface are made. The  patterns 
of initial fields are  the  same as Phillips used in 1959 for a test of his map projection  system and computation schemes. 
Ten test runs are performed for a period of 16’ days. Three of these are  without viscosity and integrated with 
different time  integration schemes. Four runs include the effect of non-linear viscosity with different coefficients, 
and the remaining three are computed  with different amounts of linear viscosity. A noticeable distortion of the 
flow pattern does not occur in an  early period in any  run. Analyses of the results suggest that  the damping of 
high frequency oscillation of both long and  short wavelengths can be achieved by  an  iterative  time integration 
scheme, e.~.,  the modified Euler-backward iteration method, with  little effect on the  prediction of a trend of the 
meteorological wave, Either  the non-linear or the linear viscosity can be used to suppress a growth of short waves 
of both low and high frequency modes, if the  optimum  amount of viscosity for that  purpose does not exceed the 
amount  repwsenting the  actual diffusion process in the  atmosphere. Analyses are also made concerning the 
effects caused by different specifications of the  parameter in the viscosity term in the equations. 

1. INTRODUCTION 

In  an application of grid methods to a  meteorological 
problem, which requires  a treatment on  a  global scale and 
also a  time  integration for a long period, we assume that 
two  conditions are desirable. One  is  a homogeneous 
density of grid points  on the globe. The  other  is  the 
integral  condition, i.e., that numerical  integration of the 
difference analog of a quantity  must correspond to  the 
integral of its continuous  form.  Smagorinsky [lo] con- 
sidered this  condition for establishing suitable  computa- 
tional  boundary  conditions which were required by the 
finitedifference  system he used for a closed region. I n  
this  paper, however, the  integral condition  is used in the 
definition of the  computational  form of the flux divergence 
of a quantity. Namely, the estimation of flux divergence 
is related to an  approximation of Gauss’ theorem  applied 
to  an  area  element  centered at  a  grid  point. As a  result, 

1 On leave from the Meteorolwlcal ReJAarch Institute, Tokyo, Japan. 

looseness a t  boundaries is avoided and  the finitedifference 
sum of a quantity is exactly preserved.* 

We  often place  a net of points on a projection of a 
spherical  surface. I n  this case, we can consider that  it is 
a  projection of grid points originally fixed on the globe. 
Hereafter? we shall  call the  latter  the original grid points. 

A square mesh  on a stereographic projection of one 
hemisphere  satisfies  approximately the requirement of 
homogeneous density of the original  grid. A space incre- 
ment on the  earth increases  from the  equator  to  the pole 
by a factor of two. It is possible to establish  a finite 
difference scheme so that  the integral condition holds 
with respect to a quantity of the flux divergence type. 
Therefore?  assuming  lateral  boundary conditions, we can 

1 Recently, Bryan (1965, personal communication) ha! sumted an  approximatlon 

form is applied to a conservation  equation,  not  only  the  flnlk-diflrrenee  sum of the  quan- 
form of Gauss’ theorem for a volume  element hounded hy surbcas of any ahape. If his 

tity  but also ita variance is preserved  except for truncation due to time differencing. 
Accordingly, it is possible to formulate  the so-called energy  eonservina  schemes for the 
present spherical grid system. 

3 9 9  
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apply  this  square mesh for a closed domain. It seems 
possible to  treat a global scale problem by using two 
stereographic  maps. In  this case, a square mesh on  each 
map  has some estra  points a t  the  outside of the  equator. 
Each of these  points has a corresponding  position  within 
the  equator on the  other  map.  But  the corresponding 
position does not always coincide with a point on the 
other  map.  Consequent>ly a kind of interpolation is 
necessary for connecting the two maps. It is from this 
circumstance that a difficult problem arises. Namely, 
the scheme of interpolation,  together  with  those of finite 
diffe,rencing and of area  int.egrat,ion for an  overlapping 
region, has to be  determined so as to sat,isfy the int,egral 
condition. These schemes cannot  be  independent. of each 
other.  Even if we could formulate  them,  they  might  be 
too complicated to be  practical. If we adopt a square 
mesh on a  Mercator  projection, we can easily extend a 
domain of integrat,ion without  violating the integral con- 
dition.  However, in this case, the  change  in  density of 
t,he original grid is t'oo large.  A  space  increment is 
infinitesimally small a t  very  high latitudes  and  the grid 
cannot  reach  the pole. 

Phillips [5] proposed to use a Mercator  map for  low 
latitudes  and stereographic  projections  for  high latitudes 
and connect  them a t  middle latitudes by overlapping 
grids. In  his  test  system  the  distance between  original 
grid  points  changes  only by  the  factor of 1.4. Phillips 
[6, 71 used this  map  projection  system  in  a  numerical 
integration of primitive  equations  on a hemisphere. The 
integration was successfully performed  for  a barotropic 
divergent model for two or three  days. A development of a 
discontinuity in the flow pattern in the overlapping 
region could be avoided  with an  interpolation scheme 
which was determined  carefully. Also, an  alternating 
uncentered-centered difference scheme  in time  derivative 
could not only  eliminate the  computational  mode  but also 
make a selective damping of short waves. The integral 
condition on this  map  system  has  not  yet been discussed. 

One way to make  the  density of the original  grid  nearly 
homogeneous is to change  longitudinal  and  latitudinal 
increments at  high latitudes as suggested by Richardson 
[8]. His plan was equivalent to using square meshes  with 
variable size on a  Jfercat.or  map.  Kuo  and  Nordo [3] 
used this kind of grid system for integration of four-level 
prognostic equations over a hemisphere. An inc.rement  on 
the  map was doubled at 60" latitude  and  doubled  again 
at two higher latitudes. In  their case, a certain  computa- 
tional  instability, which was apparently connected with a 
change of mesh size, developed at  the end of the fifth day. 

A  spherical  grid  syst,em,  in which a meridional  incre- 
ment is fixed and a zonal distance  alone is doubled a t  
higher latitudes,  has been used by  Gates  and Riegel 
[ I ,  21 in  the  integration of simple  atmospheric models. 
The results show that an  abrupt  change of zonal  increment 
should not  be  made in the region of large  tendency of 
stream  function. Ot,herwise, a tearing of the  stream func- 
tion will be  produced.  Therefore, the doubling of the 

increment  can  be  done  only at  high latitude. Because of 
this,  the change of grid  density becomes large.  They also 
pointed out  the  importance of the  integral condition. 

Based  upon the previously used grid  systems described 
briefly above we propose a new grid  method.  The  pur- 
poses of this  study  are as follows: (1) to est,ablish H new 
spherical  grid  system and set up  the element'ary  rules of 
finite differencing on the  system, (2) t,o test  the usefulness 
of the new grid  system  and  the  computation schemes by 
integrations of primitive  equat'ions for a  barotropic model 
with  a  free  surface, (3) to  invedigate  the ways t.o suppress 
a high  frequency oscillation as well as a  growth of short' 
waves in the  results,  and (4) t,o  analyze the effects of t'he 
different types  and  the different amounts of viscosit'y. 

2. A SPHERICAL GRID SYSTEM 
In  t,his section, we describe t'he new grid s>-st'em. 

First, we put N+1 grid points  at,  equal  ist.ervals along 
the meridian of 0' lonpitude from t,he no& pole t o  the 
equator. We use an index (i, j )  t,o identify a grid point 
on the  earth.  The grid  points defined above  are denot,ed 
by (1, I) ,  (1, 2),  . . . , (1, N+ 1)  respectively from t . 1 ~  
north pole toward  the  equator. We shall refer t o  the 
lat,itude circle which passes through the grid  paint ( I ,  j) 
as the  jth lat,itude.  The (L\7+l)t,11 latitude coincides 
with  the  eqlmtor.  Then, we place on each j th  latitude, 
from j = 2  t,o j = S + l ,  equally  spaced 4 x 6 - 1 )  ?rid 
points, one of which is (1, j ) .  An index i increases in 
t,he  eastward  direction  up to 4j-4. In t,his ~ " w J - ,  the 
positions of grid points in the  Sorthern Hemisphere are 
determined.  Those in the  Southern  Hemisphere tire 
symmetric t,o those i n  the  Northern Hemisphere with 
respect to t.he equator. K e  call t,he  system of all $rid 
points thus located  System 1 for tmhe resolut,ion A'. Fig- 
ure 1 is a schemat.ic illustration of System 1 for t'he 
Northern Hemisphere and for a  longitudinal rtlnge, 
X=Oo t,hrongh goo E. The  strnct,ures for the ot'ller 
three  quarters  are  the  same as in fipre 1. The nrunber 
of grid  point8s on the  entire surface for the ,V-resolutior) 
is 4N2+2. 

The  latitude  and  the lon$nde of a point A(i. j ) ,  
j #  1 , on the ?r;ort,hern Hemisphere  are as follon-s, 

Hence, we can define the  increment's in lat~it~utle i ~ n c l  

longitude, A0 and AXj, respectivelv, 

A0=-- r l  
2 N  
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FIQURE 1.-Schematic illustration of System 1 for a quarter of the 
Northern  Hemisphere. 

The meridional and zonal increments on the  earth  are 
aAB and acose, AX, where a is the  radius of the  earth. 
The  ratio of the  latter  to  the former is unity if j = N +  1. 
It is between 1 and ~ / 2  for other j ' s ;  e.g.,  34314 for Bj=3Oo, 
@ for 6 ,=45O,  312 for e,=6oo, and r / 2  for 8,=90°. 
The network of grid  points  is,  therefore,  slightly  elongated 
in the zonal direction.  However,  for a given N, the me- 
ridional  increment  is fixed and  the  latitudinal  change 
of zonal increment is gradual  and varies by a  factor of 
only ~ / 2 .  Accordingly, the degree of homogeneity of 
grid density  is  very high in this new system  as  compared 
with  other spherical grid systems used so far.  Table 1 
shows the  increments at  the  equator, a  middle latitude, 
and  the pole for N=20. The corresponding  values  in 
the case of a square mesh on a  stereographic map are also 
listed.  (In  this case, N means  the  number of equal 
subdivisions between the pole and  the  equator on the 
map.)  The necessary number of grid  points to cover the 
entire Northern Hemisphere  including the  equator for 
various N values on the new grid system  and  on the 
stereographic map  are shown in table 2. 

TABLE 1.-The  space  increments  at  the equator, a middle  latitude,  and 

system  and a square  mesh on a stereographic map 
the pole.  The values for N = 20 are shown  for the new  spherical  grid 

New spherical @id 
(aAe)X(a cos .9i Mi) 

Square  mesh on 
stereographic map 

A z X A y  (on the earth) 

0' w * 

F'IQURE 2.-The locations of grid points on Systems 1, 2, and 3. The 
grid point Y (in System 2) and grid point K (in System 3) for 
the given base point A (in System 1) are shown. 

In  the following sections,  most of the descript,ion of 
the grid system  and  the  scheme of finite differencing will 
be rnctde for a quarter of  the Northern  Hemisphere, 
from X=Oo to 90'. The results  are to be  applied to the 
other  quarters  and also to the Southern  Hernispherc. 

TABLE 2.-The number of grid points necessary to cover  the Northern 
Hemisphere  including the Equator. N is  the resolution 

. N 1 mid 1 New spherical Sauare  mesh on 
stcreomaphlc 

nlnp 
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For writing  up a scheme of finite differencing, it is very 
convenient to define two  other grid systems.  Figure 2 
shows the  locations of grid  points  in  Systems 1, 2, and 3, 
respectively. Let a point A(i, j )  in  System 1 be a base 
point.  We construct  System 2 by shifting  each grid 
point of System 1 northward  by AO. Therefore,  a  base 
point A(i, j )  has  the corresponding  grid point Y in  System 
2, a t  e=ej+Ae=ej-l and X = X f , f .  On  the  other  hand, 
moving  a grid point A(i, j )  westward by AXj/2 then  north- 
ward by A012 gives  a  corresponding  position K a t  e=e,+ 
(A0/2)=Oj+ and X = & -  (AXj/2). By relocating  each 
grid  point in System 1 in  the  above  way, we obtain 
System 3. 

3. INTERPOLATION  AND RULES OF  FINITE 
DIFFERENCING 

Let  us assume that  the distribution of a  certain  quan- 
tity  is given discretely  for  grid points of System 1. We 
have  to  estimate  the  values of System 2 and  System 3. 
Figure 3 is a  composite of the  three  systems;  the  points 
A ,  B, C, and D are on System 1,  the  points Y and Z 
are on System 2, and  the  points K, L,  P, Q, R, and M 
belong to System 3. The grid  value of a quantity,  say X ,  
will be  denoted by a subscript  which  indicates  a  name 
or an index of the  point, e.g., XA or X f .  j .  Then, XY 
is  to  be  evaluated  by  the following linear  interpolation 
formula, 

where X y = X A .  A(i,j) is the  base  point.  With  the use of 
(2.1),  (3.1) is  rewritten, for a given j where j 2 3 .  

In general, A(0, j )=A(4j"4,  j ) .  We  can  evaluate Xz for 
the base  point B(i- 1, j )  in a  similar  way. 

For the base  point A({,  2 ) ,  the  point Y coincides with 
the  north pole. If X is a scalar quantity, X y  does not 
depend on the index i of the base  point.  On  the  other 
hand,  a  vector  quantity at   the pole may  be observed 
differently from base points  with different i-indices. Ac- 
cordingly, if X is a  component of a  vector  quantity, we 
have to assume that, for the base  point A(i, 2), Xlr=Xr, l  
(i= 1 ,2 ,3 ,4 ) .  We  shall  discuss the pole value, Xi . ] ,  in the 
next  section. 

The  interpolation formula (3.2) yields X,, 

The values a t   the  points L, P, Q, R, and M ,  the base  points 
for which are ( i + l , j ) ,   ( i , j + l ) ,   ( i + l ,  j+l), ( i + 2 , j + l )  
and (i- 1, j+ 1) respectively,  can be  estimated  by  the  same 
principle. 

Our next  problem is to  establish  the  rules for  finite 
differencing. As this problem is closely connected  with 

FIGURE 3."Composite of the  three  grid systems. Grid points in 
Systems 1, 2, and 3  are  indicated by black  circles,  cross marks, 
and  open circles, respectively. 

the scheme of area  integration, we first define an area 
element.  Figure 4 shows an area  element, which is cen- 
tered a t  A(i ,  j )  and surrounded by  the two  meridians, 
X,,,& (AX,/2), and  the two  parallels, O j  AZ (A0/2). For the 
point A(1,  l) ,  the  area  element is the small polar cap 
bounded by  the  latitude (r-A0)/2. The area of an 
element is exactly given by (3.3), 

We  make  the  rule  that  the  total  area integrat,ion of t.he 
quantity X is t.0 be computed  by  the right-hand side of 
(3.41, 

(3.4) 

where the summations  are  taken for all grid points of 
System 1. The  quantity in parentheses  in (3.4) shows an 
area  integral for the  j th  zonal ring which is formed by 
the two  latitudes ejf (~012) .  If X = X ,  j =  1, (3.4) gives 
the exact area of a  spherical  surface, i.e., h a 2 .  

It is convenient to define the side values of X .  These 
are the  integrated means of X along each of the  north, 
south,  east,  and west, sides of an  area element,. In case 
of t,he  small north polar cap, we have  only  the south 
side  value. The line  integrals along t8he  north and the 
south sides are  evaluated  by  linearly  interpolat'ing between 
grid values in System 3. For example, for the base point 
A(i, j )  in figure 3, the  north side  value is as follows, 

The  south side rwlue, except for t,he case i= 1, is given  by 
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I 

if j 2 2  and i = 1  (3.9) 

(Xs)t,, is a weighted  mean of X,,  Xp,  X,, and XR.  I n  
computer  programming, it is practical  to  calculate  these 
weights, a t   the  beginning  and  keep  them in storage. I t  
should  be  noted that (XN){.,+l and (Xs)I , j  are  integrated 
means  along  the  same  latitude, i.e., Bj+N=Oj- (Ae/2), 
although  the  longitudinal  ranges of integration  are dif- 
ferent.  Therefore,  the following  relation is satisfied, 

sented by X ,  (3.10) means  that inflow of the  quantity 

The  east  and  the  west  side  values  for  the base point. 
A(i, j )  are defined as follows,j 

Here,  the  point k between P and Q and  the  point 1 between 
Q and R are  the  southwestern  and  sout'heastern  corners L J e l f ( A e / 2 ) ~ ( h , , , + i ,  e d~-----" 

k takes a position  between M and P, we use (3.7) instead 
of (3.6), 'J e ,+w/z )  x(X,,-%, e)&= xR+x'=(Xw),., (3.12) 

of an area  element,  respectively. In  the case i= 1,  when *e @ ~ - ( w w  ) xL+x'=(XE),, j  2 (3.11) 

A0 e j -  ( w z )  

+" 

X ,  and X ,  in (3.6) and (3.7) are  linearly  interpolated 
values.  Namely,  for  a specified base point A ( i , j ) ,  

j-i+O.5 xp+( l-j-i+o-5) x, 
j- 1 j-1 

X'= if j 2 3  and j-l>iz 2 

- 0.5 X M + ( l - = )  X p ,  if j 2 2  and i=1  
(3-1 j- 1 

I i--0.5 
j- 1 XR, if j 2 2  and j - l Z l i > .  

Then, (Xs)*,, takes  the following form, 

(j-i+0.5)2 
(Xs>w= 2j   o"1)  XP 

+ { - (j-i+O.5)'+ (i"0.5)' 
2 j  (j-1) 

+--" (i-0.5)' 
2 j  ( j - 1 )  XR,  if j 2 3  and j - - l l i > 2  (3.8) 

The  requirement 
(XE)**,=(XW)t+l,, (3.13) 

is satisfied by  the  above  definitions. 
The elementary rules of finite differencing  on the new p i i d  

system  are  written below. The  subscript i, j which is 
attached to the side  values in (3.5),  (3.6),  (3.7),  (3.11), 
and (3.12) will be  omitted  hereafter. 

FLUX DIVERGENCE 

We define the zonal  component of the flux divergence 
of a  quantity, say X ,  by (3.14), 

for j 2 2  (3.14) 

where u ' is   the  eastward  component of the wind. The 
meridional  component of the flux divergence  is  obtained 
by (3.15) 

1 AB X 

where v is the  northward  component of t'he wind. 
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The above definitions of flux divergence rest on the 
following basis. If we multiply  the  sum of (3.14) and 2a COS 8, sin (A8/2) 
(3.15) by (3.3), we have 

J 

(3.20) 

-uwXw - aA8+ ( u r n ,  - aAX, cos ej-S If X is  a  function of latitude  only, ( v X ) ~ = V ~ X ~ ,  (urns=  
vsXs, and XE=Xw= (XN+Xs) /2 .  Then, (3.20) becomes -(vX),  aAXj cos ej+% for j 2 2  (3.16) 

In (3.16), aA8 is the  length of the  east  and  the west  sides, VN COS 8j-%+Vs COS 8j+s COS (A8/2) 
&AXj cos Bj-% is that of t,he north  side, and aAXj cos 8,s (. % ) * . j z  COS 8j-s+cos ej+S 2a sin (AO/2) 
is that of the  south side. Consequently, the relation 
(3.16) is equivalent to Gauss’  theorem  and  the  integral HORIZONTAL  GRADIENT 
condition can be satisfied locally a t  each  area  element.  Putting u=l in (3.19)’ we get a formula to estimate 
Note that a  meridional  transfer is estimated  not  by zonal  gradient, 
vNXN or vsXs but  by ( v X ) ,  or (vas. This  procedure is 
necessary in  order that t,he important condition (3.10) (X) z.5 1 Ae 
with X replaced by V X  is satisfied. The  idea of an  appro- acos8aA i ,  a cos 8jAAj 2 sin ( ~ 8 / 2 )  
priate use of an  integrated  mean  value along  a  side of an 
area  element seems to be  applicable  generally to a  grid 

(XIr-Xw) (3.21) 

If we make  the definition 

system  with a variable  increment size. 

we use (3.17), 
To estimate  the flux divergence  for the small  polar  cap, cos ej-s+cos ej+s 

2 

. A8 it follows that 

1 1 
(a cZoaA+ZoY~~e.8s>i . j=(v~  v)f . jza  cos 8jAXj 2sin (A8/2) 

{ A8(UE-’Uw)+Ahj(Z1N COS &%-Us COS 8,s) 1 for j 1 2  

(3.18) 

The formula for j =  1 can  be  obtained by  putting X= 1 in 
(3.17). We can, therefore, estimate  the  vertical com- 
ponent of the wind at  each grid  point of System 1 with  the 
continuity  equation  and a proper boundary  condition. 

HORIZONTAL  ADVECTION 

By  subtracting (3.18) multiplied by ( X E + X w ) / 2  from 
the  sum of (3.14) and (3.15), we get  the  formula 
for horizontal  advect,ion. This process corresponds to 
V ‘ ( V X ) ” X V .  V=V . V X .  The results  written  sepa- 
rately  for each component  are 

1 A8 
2 a cos OjAAj2 sin (A8/2) ( X E - X W )  

(3.19) I 

These  are  almost  unity  and  approach i t  with increasing 
N or decreasing AO. When N=10, these  factors  are 
1.001 and 0.998, respectivelp. 

In  establishing the schemes of finite differencing, we 
have  examined many different schemes. Those  presented 
in  this  paper  are  the  best ones in the sense that  they 
yield the most  stable  integration of the  equations in the 
next section. The  study  by Shuman [9] was very usefd 
in many respects. It*  may be  worth  saying that the kay 
point of our work was not  to use the grid  values of Syst,em 
1 but  to use those of System 3 for estimating  the tendencies 
a t  grid  points of System 1. All t’he test  compntations 
which used the grid  values of System 1 directly  and did 
not  have  terms of viscosity became comput.at8ionally 
unstable  within  a  short  time.  This is probably  due t.o a 
rapid  growth of the  shortest resolvable wave. The grid 
values of System 3 are  obtained by (3.2). In this process, 
the waves of the scale of two space  increments  are filtered 
out. Therefore, if Syst,em 3 is used in  tendency calcula- 
tions,  a  direct  feedback of the influence of the  short waves 
to System 1 can  be  avoided. As for an  interpolation 
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to compute the grid  values of System 3, we 2 (,. cos i)+i - a (T cos X) B b  (. cos2 e 
examined several  forms and reached the conclusion that bt ax cos 6 b6 
we could continue the  test  integration  most  satisfactorily 
using the simplest  formula (3.2). +p - b (T COS 6 i)+- T ~ Q  - a (COS ) * 

bP cos 6 dB +T cos oak =o (4.3) 

4. EQUATIONS FOR A NUMERICAL TEST b b b a 
OF THE NEW  SPHERICAL  GRID bP 

<?.e>ti ( 4 + B  (dl+$ - (A) 

We tested the new spherical  grid  system and  the  rules -- 1 .  rx2 - b (cos2 ~ ) - T X Q  a b  - (cos2 e)+-=o a4 (4.4) 
of finite differencing by  the integration of primitive  equa- 2 a f 3  36 rbB 

tions. The atmospheric model and  the  initial fields we where  is the geopotential of an isobaric sllrface, rntro- 
adopted  are  the Same as those used by Phillips [71 in a test ducing i=u/(r cos 6)  and 8=v/r into (4.3) and (4.4), and, 

sis of the behavior of this  numerical  model and, accord- tions for and v, which are the  varia~~les, 
ingly, we can utilize it. In  the  test  computations, we 
also attempted  to overcome difficulties associated  with bu 
high-frequency oscillations and  the  growth of short waves. ==- U aces 6bX cos 6 abe 

absolute  angular  momentum, the Coriolis term'  and  the -__ V Q  ~- a  COR^ e 
metric  term in the longitudinal  component of the  equation cos 6 be a cos 6bX (4.5) 
of motion are  related  to  t'he flux divergence of the  angular dv 
momentum due  to  the  rotation of the  earth  and  that of z=-U 
the relative  angular  momentum,  respectively. In this 
study, these  terms in the difference form of the  equation UQ  COS^ e 
of motion can be combined with the  terms  in  the difference 
form of the  continuity  equation  to form the flux diver- 
gences ~ h i c h   C O ~ e s P o n ~   t o   t h e  above  interpretation- I n  (4.5), the so-called metric  term is included in the second 
COnSeqlRnt~ly, the COnserVRtiOn Of absolute  angular term  on  the right-hand  side and  the Coriolis term is 
momentum is highly Waranteed.  The  ProfPostic eQu*- represented by the  fourth  term.  They originate  from the 
tions  are derived as follows. advection of the absolute  angular  momentum,  i.e.,  the 

Lagrange's form of the  equation of motion  for an inviscid first tern in (4.1). The of the metric term and of 
fluid on n rotating  sphere is written in the spherical coordi- the coriolis term in (4.6), i.e., the  fourth  and  fifth terms 
nate system (X, 6, r )  on the right-hand  side  respectively, is the second term 

in (4.1). 
0, p=X,B,r (4.1) If the homogeneous  atmosphere  with a variable  depth 

z (=d/g) is assumed, the tendency of 4 is given by (4.7), 

Of the grid system which he proposecl* He made an analy-  putting  T=a=earth's  mean  radius, we obtain  t,he q u a -  

au v bu cos 6 . bu 
" ~- 

bp 
It is known that, from the viewpoint of the  budget of 

bV "2, " p  bv "+-.-" bv u2 ___ b cos' 6 
acos 6bX ab6 bp 2acos2 6 b6 

+"----"- 
COS 6 be ado (4 .fd 

where 
" a4 a& a+v COS 0 = 

b a a  at " a  cos 6bX-a cos 6b6- +i -+B -+i - 
(4.7) 

2% aX ae 
As the  integral  condition will be used in  the  estimation of 

T is t'he  radial  distance  from  the  center of the sphere  and  flux divergence of 4 in  the difference form of (4.7), the 
L is the Lagrangian  function. L is given by finite-difference sum of 4 will be  preserved. The equations 

for U=u+ and V = v 4  in the homogeneous atmosphere are 
derived  from (4.5)) (4.6), and (4.7), L=${ (f COS eA+r COS 6Q)24- ( r@4-~2} -~  (4.2) 

where Q is the angvlnr velocity of the sphere and 'P, the au - =_  MU) 1 a(w COS cos 6) 
potential of gravity force plus pressure gradient force. a cos 6bX cos a 6b6 
We can redefine the coordinate  system so that  the  mend- 
ional  component of centrifugal force cancels that of the -*' -' 
gravity force and the coordinate T is taken along the  true 
vertical.  Furthermore, we assume the  hydrostatic  rela- bv 
tion, which requires the elimination of some terms  in the -- 
equations  for  energetical  consistency.  Then,  converting 

b (cos2 6) 
cos e& a cos 6bA =GA (4.8) 

a(-) ~ ( W V  COS 6 )  ~ ' 4  b (COS* e) 
bt " a  cos 6bX- a cos 6b6 +a 2 cos2 6b0 

to  the (X, e, p )  coordinate system, where p is pressure, 
we obtain  the following equations, 
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A system of prognostic equations  for  the  barotropic 
divergent model consists of (4.7),  (4.8), and (4.9). From 
(4.7) and (4.8) we have  the  equation which is equivalent 
to (4.1), 

aR ~ R U  ~ R V  cos 
e-? y) at " a COS ea,- a COS e w  ax 2 

"- 

where R is the  absolute  angular  momentum of an  air 
column; R=(u+aQ cos O)a4 cos 0. As a similar  manipu- 
lation is possible with  respect  to  the following difference 
forms of (4.7) and (4.8), we can  anticipate  the conserva- 
tion of the  finitedifference sum of the  absolute  angular 
momentum. 

In order  to  estimate GA and G, by  the  rules of finite 
differencing defined in  the  previous  section, we have  to 
evaluate u, v and 4 in System 3. We  can easily obtain 
these values from the  System 1 values of u and w (obtained 
from U/t$ and V/+ respectively) by using the  interpolation 
formulae in section 3. The finite-difference forms of 
Gh and GO for j > 2  are 

(Gx)*.r---al(~B+Bug-u~W~W) 

2 - 
COS ej++cos e,+s a 2  x 

I (wIN cos2 e,+- (w), cos2 e j + d  

(wh COS e j + + ( w h  COS ej+% 
+ j j  cos ej++cOs e,+% 

-a1 4 s y W  ~ (4B-4,) (4.10) 

(Ge)(.f1:-al(Vl4&UB-O~WUW) 

-a2 I (*IN cos e,-%- (MU>, cos e j + d  

"m, (%?;us>' 4N;4s 

-a3 + q 4 w  - (4N"dJSS) (4.11) 

-f, 2 - uN+uS 4N++S 
2 

where 

1 AB 
u COS BjAXj 2 sin (A0/2) 

1 A0 
a cos 0,Ae 2 sin (A8/2) 

a1 = 

a3=- 
1 A0 cos (A0/2) 

uAc9 2 sin (Ae/Z) 

=2Q sin O j  cos (Ae/2) 

mj=l  ( 2 ) 2  a3(c0s2 e j + n - ~ ~ ~ 2  oj+J =- tan 0, 
2 COS e,++cos e,+% a 

(4.12) 

For the  factors u24 and u4 in (4.9), we have no rules of 
estimation.  Several  schemes, including weighting the 
north side and  the  south side values by cos e, were tested. 
The most  stable  numerical  integration was obtained  with 
the use of the simple  schemes as shown by  the  third  and 
the  fourth  terms  in (4.1  1). It may be  interesting that 
fj is equal  to  the  area mean of the Coriolis parameter, 
i.e., fj= f 2!l sin e dSI f d S ,  where f dS= ASjis the  area of 
an  area  element.  The  quant,ity m, is equal  to  the  area 
mean of tan O/a, i.e., mj=J(tan e/a)dS/JdS. In (4.10) 
and (4.11), the  north  and  the  south side values of a  quan- 
tity of the  product Qype are weighted  means of the prod- 
ucts a t  grid points of System 3. For example, ( U V ~ ) ~ .  
= ( U ~ V & ~ + U ~ V ~ ~ ~ ) / ~ .  (See  fig. 3.) The  computation 
scheme of (4.7) is writ.t.en 

H f .  ,= -a l (+B~E-4W~~W)-a2  I (&ON COS ej-% 
- (~$c) ,  COS ej+%llj for j > 2  (4.13) 

We use (3.17) to  obtain a scheme for j=1.  

Although we assumed  a  calm condition a t  the pole in 
our  test, we should consider how to  treat  the wind at  the  
pole in general. One  scheme,  which  should  be  tested in  
the  future, is described in the following. Figure 5 is  

/ I \4 

FIGURE 5.-Stereographic  projection of a polar  region. The 
corresponding  index in System 1 is shown for each grid point 
surrounding the pole. 2, and y, are components of the pole wind. 
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a  stereographic  projection of a  polar region. The  four 
grid  points which have  the index j = 2  in  System 1 are 
projected  around the pole. Taking  the  map axis as 
shown in  the figure, we can  define the  map velocity, x and 
9. For example, L and $ a t  the  point  to  the  right of the 
pole are  proportional to -v  and u a t  the grid point (2, 2) 
of System 1. By using 2, and 3, and 4 a t  the pole and 
the surrounding  points, we can estimate  the  tendencies of 
X and $ a t  the pole with  the  equations  written in map 
coordinates. We denote & and $ at   the  pole by x, and G,. 
Then, if we see the wind a t  the pole from the grid point 
(1, 2) of System 1, we will observe x, as an eastward 
component and Tj, as a northward  component. In  this 
case the pole is considered to  be  the  point (1, 1). While 
from the grid point (2 ,2) ,  $ p  will be observed as  an east- 
ward component and L,  as a  southward  component. The 
pole is then  taken as  the  point  (2,l).  In this way, the fol- 
lowing definition of the pole values  can be  made, 

U l . l = X p  v1, I = Y P  

and ID[={  (DS)2+(DZ')2}112 is pure deformation. We 
can  compute DT,  DS, and D in  System 3 from u and v in 
Systems 1 and 2. For instance,  referring to figure 3, 
we obtain 

+u3 COS ej+, { uy+uz U,+?,) 

2 COS 2 COS e, 

where u1 and as are  the  same as those defined in (4.12). 
Then, FX and Fe are given by 

% . 1 =  -9, v4.1=X, 

As mentioned in section 3, these  values  are  taken as uy 
and v y  for  the  base  point A(i, 2). In  the case of a scalar 
quantity,  the pole value  does not change  with  the index i. 
For example &,l=dp for i = l ,  2, 3 and 4. 

Smagorinsky  (to  be  published) made a  formulation of 
non-linear lateral diffusion which he  assumed to represent 
an effect of motions of unresolvable scale. In  some test 
computations, we add  this  kind of viscosity term to the 
tendency  equations (4.8) and (4.9). These  terms,  denoted 
by FX and Fe, take  the  form 

1 
+ffa =,I (4IDIDS)Nnj-H cos2 4-K4 

-(4lDlDS)&+H cos2 b+n I] (4.16) 

(Fdt,j=2(koaAe>2 [aln,(4~lDlsDS.-~,IDI,DSw) 

1 
-az - { (41DID%nj-H cos2 

COS e, 

-(4IDIms%+W cos2 e,+H 11 (4.17) 

where cy2 is defined in (4.12). In  (4.16) and (4.17), nj is 
a factor  related  to  an  area  element centered at  the point 
A in  figure 4, nj+ and nj+% are  related to  the correnpond- 
ing areas  centered at   the  points K and P in figure 8, 
respectively;  these  are  written 

where ko is R constant  having  a  value  between 0.1 and 1.0. We also made  test  runs  with linear viscosity. In  this 
I n  the  formulation of (4.15)) the wave  number of the case, FX and Fe are  estimated  by (4.18) 
largest  unresolvable  eddy is assumed to  be { (2 a cos + (2aA8)-2}1/2/k~=  (~2ak0Ae.,h)-' where n=2/ { 1 +(Ae/cose FX=A a bu 
AX)' I .  DT and DS are tension and shearing rates of { a  cos eax (4 u cos eax) 
strain, respectively, i.e., b 

+a cos* eae 
DT= bu case 

a cos edX a 
" 

DS= av COS e a 
acos ebx +"((") a de cos e 

a cos & >  @X 
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where A is the  kinematic eddy-viscosity coefficient. FX Scheme B (modified Euler-backward  iteration) : 
is derived by dividing the eddy diffusion of relative  angular 
momentum by acose. FS represents the diffusion of 
v-momentum. The finite difference forms of (4.18) are 
given by 

Scheme C (leapfrog-trapezoidal iteration) : 

U * = U " ' + 2 A t R  

4 * = @ " + 2 A t W  
(leapfrog method) 

Here, (&/a case etc.,  are  obtained  from At 
4 and  the values of (bu/ucosO bX), (&/&de), etc.,  in 2 
System 3. The  latter  quantities  are  estimated  by  the (trapezoidal  correction) 
following schemes. (Refer to fig. 3.) @+'=@+T At  (Hr+H*) 

uT+'=Uz+- ( G i + R ) + A t G  

As we mentioned before, the  initial  data used in  our 
test  are  the  same as given by Phillips [7]. Namely, the 
initial field of wind velocity is obtained  from the  stream 
function of a  Haurwitz-type  wave  with wa.ve number 4, 
i.e., equation (36) with R=4 in  Phillips'  paper. The 
initial field of geopotential is given by equation (38) in 
his paper. The fields of geopotential  and  stream  function 
satisfy the so-called balance  condition. In  the case of 
the  initial fields that, we used, the predictions  in  one 
quarter of the  Northern  Hemisphere  repeat in the  other 
three  quarters  and those in  the  Southern  Hemisphere  are 
symmetrical to  the  Northern Hemisphere. The compu- 
tations were made  only for A quarter of the  Northern 
Hemisphere by assuming  a cyclic field in  the longitudinal 
direction,  a  symmetric field with  respect to  the  equator, 
and a calm condition at  the  north pole. 

The equations were integrated  by  three schemes. 
HereAfter, UT, v ,  e, u I ( = u r ~ ) ,  V ( = v r @ )  represent the 
values at  the time level 7, and G:, G:, F:,  F:, and HI are 
the values of G, etc.,  estimated  from ur, vr and @. u*, G:, 
E':, etc., are used with  a  similar  meaning to  denote  the 
values at  the first step  iteration.  Double  asterisks 
indicate the second step  iteration.  Then,  the  integration 
schemes of U and 4 are  written  as follows. (A scheme  for 
V is  omitted  as it is similar to  that for U.) 

Scheme A (leapfrog method) : 

We used a time  step A t = 1 0  min. here. The Courant- 
Friedlich-Levy condit.ion is satisfied with  this value and 
the specified resolution N = 2 0 ,  the meridional  increment 
for which is 500 km. The characteristics of the above 
schemes  have been discussed by  the  author [4]. Scheme 
B is free  from  a  computational mode. A select,ire  damp- 
ing of gravitational waves is  a  feature of scheme B. A 
computational mode is suppressed to a  high degree by 
Scheme C. In order t,o apply Scheme A or C to  obtain 
the values a t  t = A t ,  we need a special process. In test 
runs, we used forward  time differences to get the values 
a t  t = A t / 2  first. Then Scheme A or C was used with 
the  time  step replaced by Atl2 .  

5. RESULTS AND ANALYSES OF THE TEST RUNS 
Table 3 is a list of the  test  runs we made. Run 1 has 

no prevention  against a computational  mode,  gravitational 
waves,  and  destructive short waves. The  other  runs 
were attempted  to suppress,  more or less, t,he t'rouble 

TABLE 3.-A list of the test rum. All runs were  made with X= 20 
and A t =  10 min.  Time integration schemes are explained near the 
end of section 4 .  ko is  a constant i n  the non-linear viscosity term 

vzscoszty term (4.18) 
(4.15): A i s  a kinematic  eddy viscosity eoemient  in the linear 

Integration scheme kc or A 
Computa- 
tion time 

(min.) 
" 

1 
2 
3 

11 
12 
13 
14 
21 
22 
23 

- 

Scheme A -  ........................ 

no riscosity term ............ Scheme C was used for 3  steps 
no vtwsity ten!.. ......... Scheme B- ........................ 
no viscosity term ............ 

every 12 hr.  Scheme A was used 
for the other steps. 

Scheme A ......................... 
Scheme A .......................... 

4=0.1 ....................... 

ka=0.5 ...................... SchemeA ......................... 
ko=O.3 ....................... Scheme A"--.-.- ................. 
b=O2 ....................... 

.i=loS.. .................... Scheme A... ...................... 
A=5XlO, ................... Scheme A ___.________ ............ 
A=lWrn.zSX.-1-~.-.. ...... SchemeA ......................... 

36 
X I  
X 

52 
52 
52 
52 
43 
43 
43 
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resultling from the  above  factors. In  the  last column, 
the  total  computation  time for  a  16-day  prediction on  the 
IBM 7030 (STRETCH) is shown  for  each  run. As the 
prediction and  the analysis were made  in a single program, 
the  time used for analysis was also included  in  this figure. 

As discussed by Phillips [7], gravitational oscillations 
are caused from the beginning of the integration  not by 
the numerical  technique but  by our choice of initial 
fields. But  the behavior of the flow pattern for a few 
days will resemble the barotropic nondivergent forecast 
starting with the  same field of stream  function as we chose. 
I n  the  latter case, the  pattern moves to  the  east while 
preserving the initial  shape. I n  all test runs, the average 
speed of eastward  movement of the  pattern for  four  days 
was about 1l0 of longitude per  day.  This is a little 
slower than  the speed for the non-divergent case. We 
could see no sign of distortion or tearing of the flow 
pattern, which has been a deficiency of spherical grid 
methods used by  Kuo  and  Nordo [3] and  by  Gates  and 
Riegel [l, 21. As the  latitudinal  change of zonal  increment 
in the newly designed g i d  system is gradual,  there  is not 
a latitudinal  jump  in  the  retardation of waves  resulting 
from the space  truncation  error. At  about  the fifth day, 
a small-scale wave appeared  in Runs 1, 3, 11, and 21, 
and it continued to grow with  time. I n  these  runs  the 
fields in  time became less smooth  as  the  number of 
marching  steps increased. It was,  however,  easy in  every 
run to  trace  the  movement of the major  trough in the 
flow pattern  until  the end of the integration period. 
The integration was terminated at   the  end of the  16th 
day, i.e., a t  2304 steps,  even in the  run in which there 
was no numerical difficulty to  prevent  extending  the 
integration. 

We have, from (3.3), (4.13), and (4.14), 

Hf,jAsj=O (5.1) 

where the summation is taken for the  entire grid, and p 
is the density of the air.  Equation (5.1) means that  the 
total mass of the  air is conserved. I n  a similar  way, 
from (3.3), (4.10), (4.13), and (4.16) (or (4.19)), we have 

j i 9  

Y J 

Here, e represents  a  leak of relative  angular  momentum at 
the  northern  boundary of the zonal ring of j=2   t o  or 
from the small  polar cap (j=1). This c has  no  counter- 
part, as we assumed u=O at  j =  1. Equation (5.2) shows 
that, if we define the  total  absolute  angular  momentum  by 

I 1st day 11th day I 
n 

0 

i-' 
\ 
E -2 

-3 
6th day 16th '"day 

FIGURE 6.-The variation of meridional component of wind  with 
time at Point (2,3). The plot is made for the let ,  the 6th, the 
l l th,  and the  16th  days. 

i t  will be  almost  conserved. In  the  test computations,  the 
magnitude of the fluctuation of absolute  angular momen- 
tum as defined by (5.3) was indeed  very  small.  Namely, 
it was within  percent of the initial  value of the  total 
absolute  angular  momentum in Runs 21, 22, and 23, ttnd 
within lo" percent  in the  other  runs. 

We  made an analysis of the high-frequency oscillation, 
computational mode, and  short waves by comparisons of 
the  results of Runs 1, 2, 3, and 11. As described before, 
Run 1 was affected by all of these  three  undesirable ele- 
ments. I n  some cases, high-frequency  mcillstion in the 
solution of primitive  equations  is  a  numerically caused 
noise. It may  be necessary to control it when it is excited. 
In   Run 2, we intended  to  suppress i t  through  the use of 
the  iterative  time  integration scheme which could cause 
a highly  selective damping of it. We tried to eliminate 
only the  computational mode in Run 3. Run 11 was 
supposed to cause a weak  damping of short waves. Let 
us  examine, first, a variation of a quantity with  time a t  
specified grid points.  Figure  6 is a  plot of the meridional 
component of wind for the lst, 6th,   l l th,   and 16th day  at  
Point (2, 3), which is very  near the pole. A plot  for 
Run 3 is made only for  the l l t h  day and  that for Run 11 
for the 1st day is omitted. In  Run 2, the prediction of 
v at  this  point was  very  stable  and  the  amplitude of its 
variation  was  small.  Even on the 16th  day, it only 
varied  between 23 cm. sec." and -57 cm. sec." Rut 
in  Run 1, a  high-frequency oscillation with  a period o f  
about 3 hr. developed  with  time. Its amplitude on the 
6th,  the  llth,  and  the 16th day was 1 m. sec.",  10 m. 
sec.-l, and 50 m. sec.", respectively. The  amplitude for 
Run 3 on  the  11th day was about 90 percent of that for 
Run 1. We  made comparisons between the results of 
these  two  runs  from  many aspects. We can conclude 
that, so far  as  the  test Computation was concerned, the 

L 
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RUN . . . . . . ...... 1 
2 

0 0 0  11 
""""""""" 

0 0 0 0 0 0 0 0 0  

1 ' 2  ' 3  ' 4  ' 5  ' 6  ' 7  ' 8  ' 9  '1 0 ' 1 1 ' 1 2 ' 1 3 ' 1 4 ' 1 5 ' 1 6 '  DAYS 

FIGURE 7.-The variation of geopotential at the pole with time. Plot is made for every 10 steps for Run 1 (the whole period) and for Run 
11 (after the 1300th step). Curve for Run 2 is drawn after the 700th step. 

amplitude of the  computational  mode was very  small. 
The  plot  for  Run 11 in figure 6  suggests that  the high- 
frequency oscillation could be controlled to some  degree 
by suppressing short waves. This will be r e a h e d  later. 

The  variation of geopotential at   the pole, i.e., a t  a 
singular point, is shown in figure 7. The  geopotential a t  
the pole did  not oscillate in  Run 2. But in  Run 1, an 
oscillation became  noticeable at  about  the  1000th  step  and 
its  amplitude increased with  time.  These  features coin- 
cide quite well with  the  above-mentioned  analyses of the 
v-field near  the pole. 

In  order  to show how a  high-frequency oscillation 
appears  in  the middle latitudes  and on. the  equator, figures 
8 and 9 are  presented. In  figure 8, a  plot of geopotential 
at  Point (6, 11) is  made. The location of this  point is 
almost the  same  as  that of Point I1 in  Phillips' [7] analysis. 
Figure 9 illustrates  the  variation of geopotential a t  Point 
(11,21), Le., on the  equator.  We  again  observe a damping 
of the  gravitational  wave  in  Run 2, its growth  in Run 1, 
and  a  relatively  small oscillation in Run 11. As seen in 
figure 8, the  gravitational  wave was almost  completely 
suppressed within  the first day.  Comparing figures 6 
through 9, we can  say  that in Run 1 a  high-frequency 
oscillation is  superposed on the  curve  corresponding  to 
Run 2. This  means that (1) the  gravitational wave 
could be  eliminated by  the  time  integration  scheme used 
in  Run  2  with  little effect on the prediction of the  trend of 
the meteorological wave, and (2) the  interaction  between 
the  gravitational wave and  the meteorological wave  was 
small in the  test  computation. 

The  growth of short waves  can  be  revealed by a  spectrum 
analysis. Table 4 shows amplitudes of the  Fourier series 
of geopotential along the  13th  latitude circle (36O lat.) 
for various runs.  The  average  spectra  for  the  6th  and  the 
16th  day  are  listed. It is seen that  the growth of the  tail 
end of the  spectrum  in  Run 11 was smaller than  in RUII 1 
and  Run 2. This is probably  the effect of viscosity, 
although it seems too weak to  suppress  the  growth of short 

I 
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TABLE 4.-Amplitudes of the Fourier  series of the geopotential a l o n g  
the lSth latitude (.Sf? lat.). Fourier analysis  was made for a  range 

shown (in 1 6  m.zlsec.2) 
of 90" long.  The average spectra for the 6th  and the 16th day are 

Period 16th day 6th day 

Wavenumber.. 1 2 3 4 5 6 1 2 3 4 6 6 

Ron 1 _._.._... 5.16 1.84  1.71 216 6.32 3.49 6.91 0.14 0.12 0.28 0.76  0.49 
2 .-...-..- 

1.51 0.08 0.07 0.04 0.16 0.06 2.57 0.03 0.07 0.07 n.10 0.06 14 _ _ _ _ _ _ _ _ _  5.85 0 . ~ 2  0.71  1.13 2.95 1.70 6 . ~ 3  0.12 0.10 0.20 0.413 0.45 IL.. _ _ _ _ _ _  6.72  1.81  1.40  1.47  3.39  2.12 6.m 0.m 0.13 0.32 0.69 0.49 

waves completely. It should be noted that  short waves, 
which had  nothing to do  with high-frequency oscillations, 
developed in Run 2. 

As shown above,  there  are  two  kinds of short waves. 
We denote  these by HS (high frequency  short waves) and 
LS (low frequency short waves). For  the  long waves, too, 
we have HL (high frequency  long waves) and LL (low 
frequency long waves). The LL wave is the so-called 
meteorological wave. We assume that a  geopotential 
field a t  any  instant consists of the  above  four components. 
Then,  the contribution of each component to  the tendency 
of geopotential a t  one point is proportional to the ampli- 
tude of this  component  multiplied by its phase  velocity 
times the inverse of its wavelength. Accordingly, an HS 
wave, if there is one, has  a  large  weight  in the tendency of 
geopotential. 

As a  measure of the  magnitude of the tendency, we 
computed  a global average of l @ - + l - + T l .  Figure 10 is a 
plot of this quantity for Runs 1 and 2. Since the geo- 
potential field was smooth  initially, we may  say  that  the 
HS and LS waves were negligible in the beginning. As we 
mentioned before, the HL wave  was  caused  from the 

beginning in  our case. Hence, the level B in figure 10 
shows the  sum of the contributions of the HL and  the LL 
waves. Since the HL wave  was  damped  early  in  Run 2, 
the level A in figure 10 shows the contribution of the LL 
wave. The difference of the levels A and B can be 
attributed  to  the HL wave. We  further assume that  the 
contributions  from the LL and  the HL waves did not 
change  throughout  the whole period. Then,  the difference 
between the  plot  for  Run 2 and  the level A was caused by 
the LS wave. The difference between the plots for Runs 
1 and 2 shows the  sum of the effects of the HL and  the 
HS waves. We  can, therefore,  estimate the  contributions 
from the LL, HL, LS, and HS waves  in Run 1. In  the 
units m.*  sec.-2 (10 min.)-I, they  are 14:28:0:0 in the 
beginning,  14:28:5: 180 for the  11th  day,  and 14:28: 17: 
820 for the  16th  day, respectively. The troublesome 
behavior of the HS wave is clearly  shown. 

Although the  integration Scheme B, which we used in 
Run 2, could  eliminate the HS wave  very well, it was not 
effective for  suppressing  the LS wave. The growth of the 
LS wave may  be a  source of trouble  in a long  run, e.g., 
a  cause of aliasing. We  attempted  to control  this wave 
by viscosity,  which might cause the dissipation of the 
HS wave too. Furthermore,  an  introduction of viscosity 
will result  in  more or less a damping of long  waves,  and, 
hence,  a  weakening of the production of short waves 
through non-linear  interactions.  We  performed  three 
more  integrations (Runs 12, 13, and 14) using the same 
computation schemes both  in  space  and  time  as in Run 11 , 
but changing the  constant  in  the viscosity terms (4.15). 
Use of a large  constant was  indeed effective for  suppressing 
both  the HS and  the LS waves. For example, table 4 

5 

. . . . . . . . 
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FIGURE 10.-The variation of a  global average of ~ . p + * - - t p ~  with time. Plot is made for every 10 steps.  The level A shows the contribution 
of the LL wave to the tendency. The level B represents the sum of the contributions from the LL wave and the HL wave. 
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Here, we mention briefly an analysis of the energy 
budget. From (4.7), (4.8), and (4.9) with the viscosity 
terms  added, we have 

- m/sec 

FIGURE 11.-The latit,udinal distributions of zonal mean of u at the 
end of the 10th day. Those for Runs 1, 11, 13, and  14 are shown. 
The initial distribut,ion is also shown. 

shows that  the tail  end of the  spectrum of geopotential 
did not grow in Run 14. But, in  this  run, a strong diffusion 
of momentum  made the flow pattern different  from the 
case of weak viscosity. 

In  figure 11, the  latitudinal  distributions of zonal  mean 
of u at  the end of the  10th  day  are  illustrated for Runs 
1, 11, 12, and 14. The distribution for Run 14 differs from 
the others. It is hard  to  say which run is best.  However, 
if  we intend to eliminate short waves by  the viscosity 
which has  the smallest effect on the  long waves, the vis- 
cosity used in Run 14 may  not  be  appropriate for this 
purpose. If viscosity works in the way we intend,  the 
LL and  the HL waves in  Run 1 remain  almost  unchanged 
while the  short waves are  filtered.  Consequently, the 
value 14‘+1-4rl will maintain  the level B of figure 10. 

To reduce  this level to  the level A in the  same figure we 
must  adopt  the  integration scheme B. At  that time, the 
HL wave is damped  out  and we have the LL wave only. 
Figure 12 shows the  variation of the above  measure  with 
time for Runs 11 through 14. About 0.2 seems to  be  an 
optimum  value of k, for  the  type of flow pattern we used. 
In  the case of a more complicated model, especially in a 
baroclinic model, the  shape of the energy spectrum will 
differ from t’he one we have  dealt  with.  There  may  be a 
supply of energy to the waves of specific scale. Ac- 
cordingly, the  optimum value of k, may be  different. 

where K=p/g f f 4(u2+V2)&iS is total kinetic energy, 
P=p/g f f +@dS is total  potential energy. Here, C and 
E are the conversion of potential  to  kinetic energy and  the 
dissipation of kinetic  energy  respectively, 

If we define as follows 

U*=- 
UN+US 

2 

(4.10) Xu* f(4.11) xv* leads to a  vanishing of the work 
due to  the Coriolis force. Using u*, v*, and I$*, we 
evaluated K,  P, C, and E by  the following numerical 
integration, 

E = p I g C ~ I U * ( F ~ ) i , I f 2 ) + ( F e ) i , j } A S I  
j ?  

We can check the above  integration schemes by examin- 
ing  whether  relations  like (5.4) hold numerically or not. 
Figure 13 shows time histories of K,  P, C, and [El for Run 
12 for  two  days. (E  is alwa-ys negative.) It is seen that 
an increase of K occurs only when c>lEl, and  the vari- 
ation of P corresponds well to  that of C. These  are in 
good qualitative agreement  with (5.4). It was also found 
that, although  there was a  slight  quantitative discrepancy 
between the numerical  estimations of the left-  and the 
right-hand sides of (5.4), it could be  smoothed out in a 
budget  analysis for a long period. The time  integration 
Schemes B and C hare damping  characteristics by them- 
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selves. But  the  rate of damping  was not large in the  test 
runs.  The  initial values of K and P for the  Northern 
Hemisphere were 3.6 X lo2', 1.2 X loz3 (in m.-kg.-sec. units), 
respectively. Table 5 shows the  ratio of (KSP) at  the 
end of the  16th day  to its initial  value, the final  level of 
K, the initial  and the final levels of (El, and  the dissipa- 
tion  rate of kinetic  energy  near the  end of the  integration 
period. In  Runs 12 through  14,  the decrease of the level 
of K is seen. The dissipation of kinetic  energy by  the 
non-linear viscosity for a given grid size is  proportional 
to ki times the cube of the  magnitude of pure deforma- 
tion.  Therefore, a t   ths  beginning of integration,  the 
dissipation was very  large in runs  with  large k,. Later, 
it became small  compared  with the case of small ko, be- 
cause of a considerable decrease in deformation.  Column 
(5) of table 5 shows that  the  rate of dissipation of kinetic 
energy at  the  16th  day was about 1 percent  per  day in 
Runs 11 through 14. This, however, does not  mean  the 
dissipation rate approaches  a  small  value  in the integra- 
tion for an  atmospheric model in general. In   the case of 
a baroclinic model, the development of unstable  waves 
may offset the decrease of the  deformation field by vis- 
cosity.  Consequently, the dissipation rate of kinetic 
energy will be  maintained at  a much  higher level than 
the present  estimation. 

We made  other  test  computations,  Runs 21, 22, and 
23. In these runs,  the  linear viscosity term (4:18) was 
applied instead of (4.15). Other  computation schemes 
are  the  same as we used in the  runs  with non-linear 
viscosity. The average  space  increment  for the resolution 
N=20 is about 600 km. Introducing Z=6X107 cm. into 

TABLE 5.-Column (1): the ratio (K+P) at the end of the 1Bth daH 
to its  initial  value  (in  percent).  Column (2): the $nul level of K 
( in  IO2' m.-kg.-sec. units). Column ( 3 ) :  the initial level of [E 
( in 1 0 1 7  m.-kg.-see.  units  per 10 min.).  Column ( 4 ) :  the final leve 

patzon rate of kinetic  energy  near the end of 16th day (in percent 
of IEI ( in 10'7 m.-kg.-sec.  units per  10 min.).  Column ( 6 ) :  diwz-  

1 

Run 1 _ _ _ _ _ _ _  101.3 
2 "."" 100.4 
11 """_ 99.8 
12 """_ 99.2 
13 _ _ _ _ _ _ _  99.0 

21 "."" 99.9 
14 _ _ _ _ _ _ _  988 

22 ""_" w.3 
23 _ _ _ _ _ _ _  99.0 

4.6 
4.2 
3.7 
2.9 
2.5 

3.6 
2.2 

3.0 
2.5 

2 5  
10 
22 
62 
1.3 
6.4 
13 

(4) ( 6 )  

IEl 16th day IE( 16th 
K 16th 
- 

3.0 
20 
1.3 
0. I 

2 6  
2. 1 

I. a 
1.0 
0.R 
0. 3 
(1. R 
1. 2 
1.2 

zn 

Richardson's  empirical law A=0.2Zy3, we have A=5X106 
m.2 sec.". This  value was  adopted as  the  kinematic 
eddy-viscosity coefficient in  Run 22. The smaller value, 
i.e., A=105 m.* sec.", was used in  Run 21, and  the larger 
value, A=lOe m.2 sec." was  applied to  Run 23. 

As we have  mentioned before, the variation of the 
magnitude of the  tendency of geopotential  with  time  is H 
good measure to show  how the  short waves developed or 
were  suppressed.  We made a plot for each run in the 
same  way  as we did  in figures 10 and 12. The trend of 
the  plot  for  Run 21 was  between  those  for Runs 1 and 11. 
Namely, the growth of the  short waves could not be 
suppressed  in  Run 21. In   the case of Run 22, the  plot 
before the  10th  day  was seen around  the line corresponding 
to level B in figure 12. The  plot  after  the  11th  day was 

41 
1 ' 2  ' 3  ' 4  ' 5  ' 6  ' 7  ' 8   ' 9  '10'11'12'13'14'15'16' DAYS 

FIQIJRE l2.-The variation of a global average of l@+*-&Tl with time. Plot is made for every 10 steps.  The level B is the same as in 
figure 10. 
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TABLE 6.-Diferences between  the mazimum and the minimum  values 
of u, v and 4 on the specified  latitudes at  the  end of the 10th day 

u (m. =.-x) u (m. see.-') 4 (IO 8 m.2 

Qroup RUU 
set-2) 

j=4 12  21 j=4 12 20 j=4 12  21 

v) I 

- 

10" 
DAYS 

FIGURE 13.-Time histories of K (total  kinetic  energy), P (total 
potential energy), C (conversion of potential  energy to kinetic 
energy), and \El (dissipation of kinetic  energy). The  variation 
in  Run 12 is shown for a 48-hr.  period. 

slightly above  the level B.  The  plot for Run 23  showed 
a  trend  corresponding to  Run 13. Consequently, it was 
shown that  the use of the  linear viscosity also could 
suppress the  growth of the  short waves. The  optimum 
value of the eddy-viscosity coefficient for  numerically 
stabilizing this test  computation is a  little  larger  than 
5X105 m.' sec. 

Finally, we consider the effects of viscosities of different 
types  and different amounts. 

The first problem  is the comparison  between the  test 
runs  with  non-linear viscosity and  those  with  linear vis- 
cosity. We have  stated  above  that  Runs 21,  22, and 23 
showed a  trend similar to  Runs 11, 12, and 13, respectively, 
in the analysis of the t,endency of geopotential. The  same 
correspondences are also seen in  the  energy  analysis 
which is  shown in table 5 .  At  the beginning of the  inte- 
gration period, the dissipation of kinetic  energy  in  Runs 21, 
22, and 23 is proportional  to  the  magnitude of the  eddy- 
viscosity coefficient used. But,  as a  result of the  change 
of the wind field, the dissipation rate of the  kinetic energy 
at the end of the  16th  day (column  (5)) in  all  three  runs 
is almost the  same, i.e., it is about  one  percent  per  day. 
This  situation is the  same as in  Runs 11, 12, and 13. The 
final level of the  kientic energy in  Runs 21, 22, and 23 
(column(2)) is also about  the  same  as  in  Runs 11, 12, 
and 13, respectively. 

We further made  comparisons of the  eddy  parts of the 
field quantities  in each of the  three  groups:  Runs 11 and 
21, Runs 12 and 22, and  Runs 13 and 23. In  table 6, 
the differences of the maximum and  the  minimum  values 
of u, v and 4 on the specified latitudes at  the end of the 
10th  day  are  shown.  Roughly,  these  represent twice the 
amplitudes of the  eddy  parts.  We  again  observe  a good 
agreement  between the two runs  in  each  group.  This 
means that  the level of the  eddy  kinetic  energy is  almost 
the  same  in  the two  runs. As for  the zonal mean  quantity, 

A ______.._____ {R 
R W l l _ _ _ _ _ _ _ _ _ _  15.2 X 4  61.6 I t 2  100.8 18.7 0.4 13.6 2 .1  

Run12 __......._ 9.4 33.8 45.8 7.1  8L3 15.3 0.6 10.5 1.3 
un21 _____...._ 15.9  59.1 67.4 12.2 104.3 19.6 1.0 1 4 1  2.4 

B ............_ {R un22 ____.____. 9.9 39.0 46.3 7.5 841 15.8 0.6 11.0 1.4 
Run13 ..._.... ~~ 5.3 22.1 38.0 4.7 59.3  12.3 0.2  6.9  1.1 c """"""_ 

D _ _ _ _ _ _ _ _ _ _ _ _ _  Run14 ________.. 2.6 1 2 5  23.1 1.8 29.8 7.2  1.6  3.5  1.1 
un23 _ _ _ _ _ _ _ _ _ _  6.2 25.3 36.7 4.9 65.2 125  0 .2  8.1 0.9 { R  

we compared  the  latitudinal  distribution of the zonal 
mean of u at  the end of the  10th  day in Runs 21, 22, and 
23 with figure 11. The  distributions were seen near  the 
lines for  Runs 11 or 12 in figure 11, except for a  portion of 
j = 2  and 3. At  the  very high latitudes,  the zonal mean 
of u in  the  runs  with  linear viscosity was about twice that 
in  the  runs  with non-linear viscosity. This is perhaps 
due  to  the different effects of viscosities of different types. 
We  have  already  mentioned  that  the  fluctuation of the 
total  absolute  angular  momentum defined by (5.3) is 
caused by the  leak of the  momentum  to or from the small 
polar  cap  and it is relatively  large in Runs 21-23 compared 
with  Runs 11-14, though it is  still negligible.  On the 
whole, so far as our  test  computations  are concerned, the 
behavior of the  runs  with non-linear viscosity with  the 
coefficient k,=O.l, 0.2, and 0.3 resembles quite well that 
of the  runs  with  linear viscosity with  A=105,  5X105,  and 
10" m.2 sec.", respectively. 

The  next problem is the comparison  among the  runs 
with different amounts of viscosity. Based  on the dis- 
cussions above, we  classified the  test  runs  into four groups 
as shown in table 6 according to  the  behavior of the  inte- 
gration.  We  can  assume that  the different results among 
the  groups were  caused by  the different amounts of viscos- 
ity.  Then, it can  be  deduced  from the analyses made so far, 
that  as  the viscosity increases from the  amount for Group 
A  to  that  for  Group C, the  lerel of the  eddy  kinetic energy 
decreases considerably while the  latitudinal  distribution 
of the zonal mean  relative  angular  momentum varies 
little. Accordingly, the  amount of the viscosity has 
much effect on the  ratio between the  eddy  kinetic energy 
and  the zonal kinetic energy. If the  amount of the vis- 
cosity increases to  that for Group D (Run  14),  the eddy 
kinetic energy takes  a lower level and  the  distribution 
of the zonal mean relative  angular  momentum also 
changes. It seems that  the determination of the proper 
amount of viscosity should  be  made  in  the  future on the 
basis of the theoretical and observational  understanding 
of diffusion in  the  atmosphere,  and  the  results of the 
numerical  integration  should  be compared  with the 
evolution of a  wave and  the  budgets of angular  momentum 
and  kinetic energy in  the  actual  atmosphere. 

In  our  test  computation,  the  optimum  amount of vis- 
cosity  for  stabilizing  the  numerical  integration was a  little 
larger  than  the viscosity for Group A. All the t.est runs 
with viscosity were integrat,ed  with  the leapfrog met,hod. 
If we use an  iterative  integration  method,  the  optimum 
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value of viscosity may  be different, as  the high-frequency 
part of the  short wave  is  damped through  the  integration. 
At  any  rate, it is to be  noted that  the  optimum  amount of 
viscosity must  not be  larger than  the proper  amount which 
represents the  actual diffusion process in the atmosphere. 
If this condition is satisfied, we will be justified in utilizing 
the viscosity term in the equations  for  suppressing  growth 
of the  short waves. If it  is not satisfied, we should  use 
another  method to control the  short waves, e.g., a  filtering 
of the components of high wave  number  in  the  data  at 
times  during the integration, or we should  consider other 
computation procedures since the behavior of short waves 
greatly  depends on the finite difference schemes. 

We have  attempted  to  investigate  the effects of vis- 
cosities of different types  and different  amounts. We 
cannot guess to  what degree the obtained  results  can  be 
applied to  the general case. We  cannot  say  the influences 
of viscosity in the baroclinic model are  as  large  as  in  the 
case of our  test  computation.  However, our analysis 
suggests a t  least that  the specification of viscosity might 
be  important  in  the numerical  integration. 

6. SUMMARIES 

1. A new spherical  grid  system was proposed, the grid 
density of which is almost homogeneous. The meridional 
increment  is constant for a given resolution. The zonal 
increment increases gradually  from  the  equator  to  the 
pole by  the factor of r / 2 .  The number of grid points  on 
the entire globe is 4W+2 for the N-resolution. 

2. Rules of finitedifferencing  on the proposed grid 
system were established so that  the integral  condition 
was satisfied locally a t  each area element. 

3. The integration of the  primitive  equations  was 
performed as a test of the new grid system  and  the 
finite difference schemes. The barotropic  atmosphere 
with free surface was assumed. Starting  from  the  same 
initial  conditions as used by Phillips [7], the marching 
process was taken  until  the end of the  16th  day  with 
At=10 min. for the resolution N=20. In  Runs 1, 2, and 
3, different time  integration schemes were adopted. 
The effect of non-linear viscosity was investigated  in 
Runs 11, 12, 13, and 14. Test  computations  with  linear 
viscosity were also made in Runs 21,  22, and 23. No 
noticeable distortion of the flow pattern occurred  in any 
test  run. 

4. We could eliminate the (external) inertia  gravita- 
tional waves of both long and  short wavelengths by using 
the iterative  integration  method (Scheme B in  section 
4)) with  little effect on the prediction of the  trend of the 
meteorological wave. The use of the  iterative  integration 
method, or a t  least  a mixed use  with  other  methods, 
seems very important for stabilizing  integration. This 
method, however, could not suppress the  development of 
the low-frequency short waves. 

5. We could suppress the growth of short waves  of 
both low and high frequency modes with  either  the 
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non-linear or the  linear viscosity. I n  this case, the  amount 
of viscosity  should be  larger than  the optimum value. 
By use of the  optimum value, the effect of viscosity on long 
waves  could be minimized. It is important  that  the 
optimum  amount  must  not exceed the  amount of viscosity 
which  represents the  actual diffusion process in the 
atmosphere. 

6. So far  as this  numerical  test was concerned, the 
behavior of a test  run using the non-linear viscosity 
with  a  certain coefficient showed good agreement  with 
that of a run using the linear viscosity with a certain 
eddy-viscosity coefficient. The analysis concerning the 
different effects of the different amounts of viscosity 
suggests  a  probable  importance of the specification of 
viscosity in  the numerical  integration. 
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