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ABSTRACT

A statistical-dynamical, two-layer model of the atmosphere is constructed for the simulation of the climatic
state of the global circulation.

"The meteorological variables, velocity, temperature and pressure, are decomposed into their zonal mean
parts and eddy parts or deviations. The state of circulation is expressed by the zonal mean parts as well as
eddy statistics which are the zonal averages of the product of the deviations. Eddy statistics such as the
amount of eddy kinetic encrgy, and eddy transfer of heat and angular momentum are longitudinally inte-
grated measures of the intensity and structure of individual synoptic-scale disturbances.

The equations for the zonal means of wind, temperature and pressure and that of eddy kinetic energy are
obtained from the equations of motion, the thermodynamical equation, and the continuity equation, and
include the terms depending on the eddy statistics. The prediction equation for the horizontal eddy transfer
of heat, as well as an estimate of the vertical eddy transfer of heat and angular momentum, are derived under
the quasi-geostrophic assumption. The horizontal eddy transfer of momentum is estimated by a diagnostic
formula similar to the one used by Smagorinsky. The results of theoretical studies of long waves are utilized to
determine the pressure interaction term, the characteristic size of eddies, and the phase speed which are
involved in certain of the equations.

The model atmosphere expressed by the closed system of equations thus established is controlled by
insolation, parameters for radiative heat transfer, static stability, lower boundary conditions for the exchange
of momentum and heat, and parameters for horizontal stress and for the lateral diffusion of heat in the free
atmosphere due to small-scale eddies. The present model does not include the effect of lateral transfer of
latent energy.

A numerical experiment is performed for a fixed annual mean insolation and a given specification of other
control factors. The model consists of two layers, each having 48 zonal rings between the north and south
poles. Starting from rest and a constant temperature at the middle level, the integration is done for the first
50 days without eddies. A small amount of eddy kinetic energy is superimposed on the axially symmetric
flow at 50 days. Then, the primary features of the actual circulation, such as the jet stream, the Ferrel cellin
mean metidional circulation, and the poleward eddy transport of heat, evolve, and a quasi-equilibrium state

SEPTEMBER 1970

with a mode of fluctuation is attained.

1. Introduction

The response of the atmosphere to the input of en-
ergy, i.e., to solar radiation, has been a major subject
in the study of the general circulation of the atmosphere.
In this paper, we attempt to establish a new kind of
time-dependent atmospheric model which should yield
the primary features of the dynamic response of the
atmosphere.

The straightforward method of dealing with the
above problem is to construct a model of the atmo-
sphere based on physical laws and to numerically
integrate the system of governing equations through
finite difference or spectral methods under appropriate
boundary conditions. This kind of numerical experi-
ment has been done in the expectation that the essential
macroscopic features of the atmospheric circulation
will be obtained in long-term integration. Usually, such

1This work was presented at the conference on the Global
Circulation of the Atmosphere, London, England, August 1969.

a climatic state is represented by a mean field, i.e., an
average with respect to space or time or both. The
deviation from the mean field is termed the eddy field,
which may be standing or transient according to the
definition of the mean field. It is known from theory
and analysis of observations that: 1) the development
and behavior of the eddies depends on the mean field,
especially on the baroclinicity, and the eddies are quasi-
two-dimensional; 2) the eddies play an active role in
the formation, maintainance and variation of the mean
field through the process of momentum and heat
transfer which is very unlike the classical Austausch
process; and 3) the correlation between the mean field
and certain statistics of the eddies represents the
energetic exchange between mean and eddy fields.
In the usual numerical experiments, it is supposed that
the eddy conditions as well as the mean field are strongly
controlled by the external forcings, and hence the
computed eddies are not completely meaningless. Even
over periods far beyond the limit of deterministic pre-
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diction, they are climatologically significant. Other-
wise, a realistic mean field may not be obtained.

On the other hand, there have been studies aimed at
deriving a climatic state from a model in which indi-
vidual eddies are not traced, but where the collective
effect of the eddies on the mean field is somehow repre-
sented. Provided that the above-mentioned interrela-
tion between the mean field and the large-scale eddies
is reasonably well incorporated in the model, such an
approach will be promising. An apparently optimistic
view that this could be done by carefully systematizing
the results of the theoretical or empirical studies made
so far had motivated the present author to design a new
model. Before describing this model, we will briefly
discuss previous attempts along this line.

Charney (1959) used a finite-amplitude method or
second-order perturbation technique to determine the
structure and amplitude of the disturbances. He made
a study of the zonally averaged field which is in equili-
brium in the presence of eddies for fixed insolation and
given viscosity parameters. Fjgrtoft (1959) discussed
the problem of how the magnitudes of kinetic energy
of mean flow and eddies are controlled by heat sources
and ground friction for an energy balance. Smagorinsky
(1964), assuming a mode of momentum balance based
on observation and numerical experiment and consider-
ing kinematics of baroclinic disturbances, determined
the mean meridional circulation, the distribution of
surface stress, and the eddy fluxes of heat, momentum
and vorticity for the given heating function.

There have been attempts to reconstruct the Aus-
tausch approach by taking the behavior of large
eddies into consideration. Williams and Davies (1965)
related lateral momentum mixing to the baroclinicity
of the atmosphere in order to construct a mean motion
model. Dolzhanskiy (1969) used the Williams and
Davies hypothesis in further studies of mean circulation.
Saltzman (1968) derived, for estimating eddy flux of
heat, an Austausch coefficient which depended on the
character of amplifying baroclinic waves and an energy
balance condition. A similar development was given
by Green (1969a, b), in which the eddy transfer of
all conservative quantities was proportional to a transfer
coefficient. The present work does not rely upon an
Austausch approach.

In the studies referred to so far, the mean field is
assumed to be quasi-stationary. It has been only for
barotropic models that the system of prediction equa-
tions has been formulated to permit feedback be-
tween the mean field and the eddy statistics (Thomp-
son, 1957 ; Gambo and Arakawa, 1958 ; Arakawa, 1961).

In the model to be formulated in Sections 3 and 4,
the basic climatic feature of the global circulation of
the atmosphere are represented by zonal averages of
the zonal and meridional components of wind, vertical
velocity, temperature, pressure and certain statistical
quantities concerning large-scale eddies. The latter
quantities express characteristics of synoptic-scale dis-
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turbances such as intensity, structure, size and move-
ment, i.e., the evolution of individual eddies is not
explicitly treated in this model. Instead, a longitudinally
integrated measure of the role of eddies is evaluated
together with the zonal mean field as a function of
latitude, height and time. The equations for the zonal
mean fields are derived from a system of primitive
equations. Those for the eddy statistics are formulated
by utilizing the results of studies on the dynamics of
large-scale eddies. Numerical integrations have been
successfully carried out for a fixed annual mean insola-~
tion and also for insolation with a seasonal variation.
The results of the former case are presented in Section
7, while those of the latter will be reported in a separate

paper.

2. Outline of statistical-dynamical model

a. Notation

A longitude

6 latitude

g P/ Px

14 time

a radius of earth

a a cosf

g acceleration of gravity

f Coriolis parameter

B8 df/ (adf)

R gas constant of air

Cp specific heat of air at constant pressure

p density

7 eastward wind component

v northward wind component

T temperature

p atmospheric pressure

P atmospheric pressure at the lower
boundary

I do/dt

w dp/dt

¢ geopotential

Kg zonal average of eddy kinetic energy

kg a quantity defined in Eq. (4.1)

a a quantity defined in Eq. (4.1)

Kz kinetic energy of zonal mean flow

Py zonal available potential energy

Pz eddy available potential energy

uFy, uFe frictional forces in zonal and meridional
“directions due to horizontal diffusion of
momentum

vF\vFo frictional forces in zonal and meridional
directions due to vertical diffusion of
momentum

uFrp effect of horizontal diffusion of heat

154 horizontal eddy viscosity coefficient

uy vertical exchange coefficient

D a coefficient defined in Eq. (3.9)

o¢ density of air near the earth surface

) drag coefficient
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g geostrophic wind on the earth surface

K, g, Ke parameters used in Egs. (3.8) and (3.9)

T, static stability at level 2

T. effective static stability

q heating rate per unit mass

¢ vorticity

¥ stream function

£2 characteristic horizontal size of eddy

M characteristic phase speed of eddy given
in Eq. (4.11)

N a quantity defined in Eq. (4.11)

4, B quantities defined in Eq. (4.15)

@, Gy, - -, @5 quantities defined in Eq. (4.8)

b, be, hu, by coefficients used in Egs. (4.9) and (4.10)
X longitudinal average of a quantity X

X’ X-X

() 6-finite difference index
( o-finite difference index
x/y/k x’k y’k

b. Outline of the model

In order to make clear the framework of the model,
we describe schematically how the closed system of
equations will be established.

The equations for the zonal mean field are derived
from the primitive equations of motion, the first law
of thermodynamics, the continuity equation, and the
hydrostatic relation. Taking the zonal average of these
equations, we obtain the equations for zonal means of
wind, temperature and surface pressure, and the formu-
las for zonal mean vertical vclocity and pressure, as
shown in the second column of Table 2.1. Surface
pressure is assumed to be a function of latitude and
time, which renders the formulation very simple. The
equations for zonal mean quantities involve correlations
between eddy quantities such as shown in the fourth
column of the table, where “prime” denotes the devia-
tion of a quantity from its zonal average. These statisti-
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cal quantities must somehow be evaluated. We also
have to specify control factors, which determine basic
characteristics of the atmospheric heat engine, namely,
the frictional force and the heating function. For

simplicity, we assume that #'#’=v'9', which reduces
the number of statistical quantities required for the
prediction of the zonal mean field to six.

Table 2.2 shows the physical basis upon which
the equations for the required eddy statistics are
derived.

The equation for '’ is the equation for eddy kinetic
energy K g. This energy equation yields two new statisti-

cal quantities to be evaluated, i.e., ¢’’’ and @, the latter
being defined in the fourth column of the table.

With the use of the linearized vorticity and thermal
equations for a quasi-geostrophic, two-level model, we
obtain the equations for 77, v’ and the formula for «'.
In this derivation, we need to know the characteristic
size of the eddy. This introduces a new parameter.
Multiplying the equations for 77, v with ¢ and T7,
respectively, adding the two equations and taking
the zonal average, we can derive the prediction equation
for the eddy transfer of heat. Muitiplying ' with #/,
v/, T7 and ¢’, and taking the zonal average, we obtain
formulas for the vertical eddy transfer of these quanti-
ties. It is assumed that the formulation mentioned above
is at least valid for middle latitudes where the role of
large-scale eddies in the energetics is important. For
low latitudes, the formulation may not be quite valid.
But the role of eddies is presumably relatively small
there. However, we apply the derived formulas to all
latitudes to avoid an abrupt latitudinal change of a
quantity.

As for eddy transfer of momentum, an empirical con-
dition concerning a balance between divergence of eddy
flux of relative angular momentum and the computed
surface torque for each zonal ring is used. This condition
has been successfully used by Smagorinsky (1964). It

TasrLe 2.1, The eddy statistics and control factors required for the prediction of the zonal mean field.

Corresponding

. Zonal equation Required eddy Control
Type of equation mean in text statistics factor
dpwit
. . 5 (3.1) S
Equation of motion w'u', v, W', v, Ve Frictional force
P
5l 3.2)
Thermodynamical equation ‘1‘15*'—' T AT Heating
a0 (3.15) T, T'w function
L ag/ot (3.18)
Continuity equation I (3.19)
& (3.20)
Hydrostatic relation b (3.24)

(Assumption)
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_TaBLE 2.2. The physical basis upon which equations for eddy statistics are derived. Note that two prediction equations and eight
diagnostic formulas are derived in the second column. The last column shows the required parameters other than those which appeared

in Table 2.1.
. . . . Corresponding
Basis for deriving equations in Equation or equation in New statistical
the second column formula the text quantities
Equation for eddy kinetic energy 9P+Kz 4.1) A
at a=kgv'+o¢'v
. . . . Ty
Linearized vorticy and thermal equations (4.14)
under quasi-geostrophic assumption 9
[N
:;%” gig £2 (characteristic size of eddy)
avy’ 9Ty , . T (4.19)
3 o and w;’ are obtalned) o (4.20)
Momentum balance relationship for zonal wv (4.21)
ring (#'v’ is related to surface stress)
First-order approximation of momentum a (4.24) M (phase speed)
equation
Theoretical study of long waves in baro- £ (4.28)
clinic zonal current. (The size of the M (4.29)

neutral eddy, £.2, is estimated; then,
the ratio of £2/£,2 is appropriately
chosen.)

also agrees well with results of numerical experiments
with a more sophisticated model.

The quantity @ which appears in the equation for
eddy kinetic energy is the sum of eddy transfer of eddy
kinetic energy and the pressure interaction term. This
can be estimated from a first-order approximation in
a Rossby number expansion of the primitive equations.
It requires a knowledge of the characteristic phase
speed of the eddies.

In order to evaluate the characteristic size and speed
of eddies, we utilize the results of studies on the dy-
namics of long waves by Charney (1947) and others.
These provide an estimate of the size of incipient un-
stable eddy, £,2. Next, we determine the size ratio of
unstable eddy to the above eddy, £/, by the empirical
requirement that the steering level for disturbances is
approximately the 600-mb level at middle latitudes.
This also fixes the characteristic phase speed of
eddies.

In the fourth column of Table 2.2, four new quantities
are introduced to make total of ten required eddy sta-
tistics and parameters. The second column of this table
indicates the two prediction equations and eight
diagnostic formulas for these quantities. Accordingly,
combining Tables 2.1 and 2.2, we have a closed system
of equations to establish a statistical-dynamical model.
The third column of the tables shows the corresponding
complete set of the equation numbers in this paper.

We note here that eddy statistics, i.e., the character-
istic intensity and structure which is expressed by the

eddy transfer of heat and momentum, as well as the
size and phase speed of eddies, are all latitude- and
time-dependent variables. The eddy transfer of a
quantity is evaluated without using the classical concept
of Austausch.

We use a two-layer model with spherical geometry.

- The vertical coordinate is taken to be o=p/p,. For

convenience, the coordinate surfaces corresponding to
=0, 0.25, 0.5, 0.75 and 1.0 will be called levels 0, 1, 2,
3 and 4, respectively. A quantity at level k2 will have
the subscript %, if necessary. The variables assigned to
level 1 and 3 are 4, 3, ¢, @, K, #'v' and @. Those assigned
to level 2 are T, ¢, TV, ', v'e, T'w' and ¢'«’. The
quantities Py, €2 and M are independent of level. We
will also derive the formulas to give T at levels 1 and 3
and v’ at level 2.

3. Equations for zonal means of linear quantities
a. Horizontal wind

The prediction equations for zonal mean horizontal
wind are obtained by taking zonal averages of the equa-
tions of motion with the simplification Py=px(6,):

_ tané

a

8P % cosd P, dic

p.4
a

adl do

(65*;;7? cos? opu'c’
- ;

)"i‘HFrl- vF\, (3.1)
o cosfaf

do
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aps  Opgvcosd Opdc tand
= - *Pﬂ(f +— u)
at «adl da a

05V cos® 9pve tand B
- ( ; +——p.u u')
w0l do a

9y
—pi—+aF s +vFe. (3.2)
adf

The pressure gradient term in (3.2) is evaluated from
the gradient of an isobaric surface, p=0p,. Such a form
is taken based on experience encountered in past nu-
merical cxperiments (e.g., Kurihara, 1968). All the
other terins are written in referring to A, 8, ¢ coordinate
system. We apply (3.1) and (3.2) to levels 1 and 3.
The terms of the type dX/do will be evaluated at levels
1 and 3 by using the finite difference of X, i.e., (Xo—Xy)

and (X,—X.), respectively. Vertical velocity, ¢ and
¢, is zero at levels 0 and 4. Tt will be shown by (4.3)
that pu'c’ and py'¢’ at level 2 are approximated by
w'w’ and v'w’, respectively. Diffusion of momentum by
small-scale eddies, i.e., the effect of Reynolds stress,
is expressed for levels 1 and 3 by (3.3) and (3.4):

. Oupltrg cos¥ AR es cost

b’ =—————, glls= ,  (3.3)
« costad «df
where
_ o/ d _ a7
Ry\e =ﬁ* COSH“_<‘_>, Raa =ﬁ*—,
adf\cosd adf
and
. 07\ z n 7oz
vih\=—g—) vlly=—g (3.4)
do do .

For the vertical diffusion, the following formulas are
used:

Taz=79z=0, at level 0; (3.5)
di o 0u
TNZTPRY = TRy
azZ RT 8¢

, atlevel 2; (3.6)
ar o a7
TeZ=puv—=—fg—py—
3z RT  dc

Faz=Dili, Foz=Diy,, at level 4, 3.7

We will discuss the coefficient ugz in (3.3) and the coeffi-
clent uy in (3.6) in Section 5. In (3.7), which represents
momentum exchange at the surface due to frictional
stress, the mean wind is related to the zonal mean
geostrophic wind by using the empirically determined
parameters x and ag, i.€.,
iy = flgk COSag, Us=tllgksinag,

(3.8)
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where

The positive sign in (3.8) is to be used for Northern
Hemisphere. The coefficient D in (3.7) is written as

D= pacpliad-+o2+2x 2K s}, (3.9)

where «.? is a prescribed ratio of the eddy kinetic energy
at level 4 to that at level 3 [see (A2.7)7].

b. Temperature

An attempt to predict the temperature at two levels
was rejected since it created difficulties in evaluating
the convective transfer of heat and also in partitioning
a heating function for two layers. Instead, we predict
the temperature at level 2.

Since the temperature at level 2 should be a measure
of the total potential energy for the entire column in
the crude two-layer model, we will make the equation
for T, equivalent to that for total potential energy.

We define the total potential energy for an air column
with unit cross section by

_ P
Cp% (T1+ T3)-j
E4

(3.10)

For a given static stability, the temperature at levels
1 and 3 is related to T'; by the finite difference form

T R _\ Lty 2
Pz:(——-*T) z—<7"3_111_q7-'2>' (3'11)
ap cxp /2 500 7

F¥urthermore, if a linear relationship on an emagram
is assumed for the change of T with pressure, we have

_ In2y _ 1n2_
T2=<1——>T1-I———T3. (3.12)
In3 In3
From (3.11) and (3.12), we obtain
_ 5738 _
T= T2—500%0.631T»
, (3.13)
_ 7.738 _
Ts3= T'»+5003<0.369T,
S 1_
where '
14
Ci=—,
13.476

It is seen from (3.10) and (3.14) that, if the product
P«Le changes little with time, then the time variation
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of total "potential energy is proportional to that of
p*Tg.

The equation for total potential energy includes the
terms expressing the energy conversion between total
potential and kinetic energy, ie., (R/ 20)[ (Tw/o)
4 (Tw/c);], and the generation of total potential
energy, Px/dg. A vertical flux of heat in the free atmo-
sphere does not affect the total potential energy for the

air column. Therefore, we write the equation for zonal
mean temperature at level 2:

0P T2 0pyToscost 3pT vy cosd

at adld

adf

R T& To T T
26p o /1 g /3 g /1 g /3

Pee
+Cr—GtuFr. (3.15)
Cp

We will see in Section 4a that [(T'w' /o)1t (Eo_;/o')g:l
is to be replaced by 2 T'w’s. The effect of horizontal
diffusion of heat by small eddies is evaluated by

ap.HSg cosf
gFp=————,

(3.16)
adf

where

So=p4[8T/(ad8)].

¢. Surface pressure and vertical velocity

The zonal average of the continuity equation in a
A, 6, ¢ coordinate system with the condition ps=p(6,!)
is

OPyicost  pyo
, atlevels 1,3, (3.17)

8_

ot adf do

Since ¢=0 at levels 0 and 4, then (3.17) yields

0P« 170D 4D1cosl 0Pz cost
- - ) e
at 2 adl adf
- 1 D41 c0os8 9P ,Ds cosl
0"z=—_’( + ) (3.19)
45, @db adf

The product of the pressure gradient term in (3.2)
and 7 represents the source of kinetic energy of the
zonal mean wind and is related to the so-called pressure
work and energy conversion (e.g., Kurihara, 1968);
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_ 3¢y 0Py boD cOSO  OP ot
5(“?*‘_‘)= -
adf adf do
9¢,0 0P, T
— ——R—. (3.20)
do  di T

The diagnostic formula for @ and the hydrostatic rela-
tion which gives ¢, must be derived such that (3.20)
is satisfied in its finite difference form. Then, @ at levels
1 and 3 is given by

b~ P Px [06p 0bs
p*'—ko[ {+@pt< )]. (3.21)
2 al RT\ao? adf

S=—"03 —

In (3.21), ¢, is the geopotential of the isobaric sur-
face, p=ops It is equal to ¢, i.e., the geopotential of
a constant ¢ surface, just at the point where & is to be
evaluated. The formula for (¢,—¢,) will be given in
(3.25).

d. Hydroslatic equation

The hydrostatic equation, i.e., d¢/do=—RT/o or
¢— RT=9(¢o)/dc, takes the following finite difference
form, which when combined with (3.21) is consistent
with the finite difference version of (3.20):

RT;
}outor)
- = (éa)kﬂ— (4;0)1:—1
or—RTy=—";

Ok41—0k—1

&4_‘52_

0402

(3.22)

k=1,3. (3.23)

If we adopt the condition ¢,=0, we have
$=R(T1 +3%Ty)
¢2=R3 T .
¢3=R% Ts

(3.24)

Temperatures T; and T; are evaluated by (3.13) for
given values of 7> and T

Consider the constant ¢ surface and the isobaric
surface which intersects it at latitude grid 7; (¢s— ép)
is of course zero at 7. The geopotential height difference
of the two surfaces at the adjacent latitude, j+1,
is obtained by applying hydrostatic equation, d¢/de
=—RT/q, ie.,

oo R(Tw)in r 01;(13*)]']
T %(0k+1+¢7k—1)[- ’ Bt
k=1,3. (3.25)

Eq. (3.25) is to be used in evaluating & by (3.21), and
also in obtaining &, which occurs in (3.2).
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4. Equations for eddy statistics

a. Eddy kinetic energy

With the assumption #'# =77/, the zonal average
of the equation for eddy kinetic cnergy is identical to

that of /v, Its complete form in a A, 8, ¢ coordinate
system is as follows:

Ky 3P Kubcosd 0pxKgo

I adlf da

0Pl cos0  IPsknd’ OPxe’s’

adf do do

U

615*;/ ¥ cos 615*;’;7
(e )
a cosfol do

Oﬁ*vTv' cosd 6;/3*;7 tané _
(Tt 9Tt
adl do a

T
—R—+ @' N+, (4.1)
o
where

Erp=3'u'+v")=Fz
kg =y +00' 3 ('’ +0'v) ¢
a=kp'+¢'v

Eq. (4.1) applies for levels 1 and 3. The first and the
second terms on the right-hand side represent the
transport of Kz by the mean meridional circulation.
The next three terms express the eddy transfer of the
eddy part of the kinetic energy and the so-called pres-
sure work. The sixth and the seventh terms represent
the barotropic exchange of kinetic cnergy between the
zonal and eddy components. The next to last term is
the conversion from total potential energy, i.e., the
counterpart of the terms in (3.13). The last term is the
frictional dissipation.

Terms of the type 0X/8s at levels 1 and 3 are eval-
uated from the values of X at levels 0, 2 and 4, as was
mentioned before in connection with (3.1) and (3.2).
The terms ¢ and ¢’ are zero at levels 0 and 4. Since the
surface pressure py is not a function of longitude in
the present model, i.e., p,'=0, then

i’ = = (42)

w6’ =’ —av'—. .
adl

The order of magnitude of ', v and 38p4/(adf) for

large-scale motion are 10~° mb sec™, 10 m sec™ and
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10=® mb m™!, respectively. Accordingly, the second
term on the right-hand side of (4.2) is smaller than the
first term by one order of magnitude. We can approxi-
mate the left side of (4.2) by «’, and use the following
approximations for the vertical eddy flux of a quantity
across level 2 in (3.1), (3.2) and (4.1):

pr i =W, o =u,v, ¢ 4.3)
It is to be noted that ¢ in (4.1) is a deviation from the
zonal mean geopotential of a constant ¢ surface, and, in
the present model, is equal to that of an isobaric sur-
face p=opy, since p,'=0.

Next, we express —R(T"w'/d)1,3 in (4.1) in terms of
(T'w' /o) at level 2, since 7w’ is evaluated only at level
2. In deriving the eddy kineticfenergy equation from
the quasi-geostrophic vorticity equation, the term
fdw’/dp in the vorticity equation results in the terms
representing energy conversion and the effect of pres-
sure work in the vertical direction. In case of a two-
level model, fdw’/dp at levels 1 and 3 can be approxi-
mated by ==fw’s/(p+/2) when we take w'=0 at levels 0
and 4. In this paragraph, when double signs precede a
term, the upper sign applies to level 1 and the lower to
level 3. In deriving the energy equation corresponding
to (4.1) from the vorticity equation, we must multiply

—px91/f (at k=1,3) with £=fw’s/ (p4/2) and take zonal
average, yielding

— (1 — s w2 F (¢1' +5 w2

By using a relation, 2¢’s=¢'1-+¢’;, and a hydrostatic
relation, RT';=¢';—¢';, this becomes

RT'wf F2¢ws. (4.4)
The first term of (4.4) is equal to RT'/(20) at level 2
and should be used for Rﬁ/o at levels 1 and 3. The
second term is equivalent to —d¢’w’/ds at levels 1 and
3. From this we see that [(T'w'/o)1+ (T"w'/o)s] in
(3.15) can be replaced by (T'w'/0)s=2T"w'"s.

The determination of & in (4.1) will be described
later. We neglect the triple correlations of eddy quanti-

ties only in the term p,kgd’. This term is, therefore, ap-

proximated by (#i/w’+5v'w’). The form of the frictional
term is given in Appendix 2, while the diagnostic rela-
tion for vv" at level 2 is derived in Appendix 1.

b. Eddy transfer of heat

The horizontal transfer of heat is one of the important
functions of eddies, especially at middle latitudes. We
assume that a prediction equation for the behavior of
the eddies can be derived, in a first-order approxima-
tion, from the vorticity and thermal equations.
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Thelinearized forms of the quasi-geostrophic vorticity
equation for two level model are

ay Y a1 ws'
= —ti———v'——v'f+f—,

3 adN  adb Ap

acy a¢d s oy’
—_—= —123——‘113’——1)3 ﬂ—f——
3 adN  adf Ap

We shall consider the effect of diffusion when it becomes
necessary. With the substitution of V&' for {’, the above
equations are rewritten as

3V2|,01' . 0%,
= —V2(121‘Z)1') —1)1’(,3—2 )
ot a*o6*

d % 61)1’ cosf wzl
pa L (Y o
adf\cost/ adl Ap
AvEY 023

_-=— Vz(ﬁs'lls,) —73,({3—2 )

ot a?06*
d / 1z \0vs' cosf  wo
=
adf\cosf/ adf Ap

Let the scale of eddies be characterized by ¢ which has
dimensions of length. The determination of £, which may
be a function of latitude, will be discussed later. The
Laplacian is therefore approximated by

1 1
VY =—/, V¥m')=——u.
r 5

Since y'=¢'/f, we can derive the equation for ¢'; and
¢’s, from the vorticity equations above, in the form

6¢1’ 9%,
—_—= —fﬁlvl’—l—fﬁvl’(ﬁ——Z )
ot a%09?
d / 1 \Ovy cosb U2
—2f€2——( ) ——wy, (4.5)
adb\cost/ adl Ap
d¢s’ P ,( 262123)
— = — fiw s’ B—
ot . : a%d6?
3 7 i3 \Ovs' cosh fU?
-2 ﬂz——( ) +—wy. (4.6)
adf\cosf#/ adf Ap

The thermal equation for the middle level in linearized

form is
aTy aTy a7
= —1y —v)'———T s’ + V- (uaVTY).
ot ad\ adb

@.7)

In (4.7), T, is effective static stability, which includes
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the effect of condensation implicitly. It is estimated in
Section 5 from the climatological mean, partial equi-
valent potential temperature at levels 1, 2 and 3. The
heat diffusion coefficient pp is assumed to have the
same value as that for momentum diffusion.
We define the following symbols expressing properties
of the zonal mean field:
9? 7
(@t —1ts)

a;=2% (i1 —1s) £
a206?

oT,
ar= - 2fa5—|—R—
adf

%
wimmge{-225)

a%90?
"y (4.8)
d /1 i3
a;= -2f£2—< ———)
adf\cosf@ cosf
d / s
oimaol (2
adf\cosd
2(2
ao=2£——RI‘e
Ap J

where 122=%(’1741+’d3).

We shall need to relate the vertical and meridional
gradients of eddy velocity to ©'; and 9vy’/ad), terms
which have a phase difference of 90°. Writing

Jv 2,
v1'—7)3' =%b1v2'+ bz'—, (4-9)
«
dvy’ cosh Ay’
—— =3 —hy—, (4.10)
adl wdX

multiplying each by v'=% (v/2;"), and taking the
zonal average, we get
]

h=——""j,

v'vz’

1 GE); tanf
h= cosB(_ - ——)
v’ adl a

If ¢, is multiplied into (4.9) and (4.10), and we apply
(A1.1), then

R TI'UzI
bo=——)
f o'y
u'v)’
he=cosf—.
11’1)2’
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The quantity »,'—vy is related to the tilt of the vertical
axis of an eddy. Accordingly, it may be reasonable
to expect that the coefficient b, would involve T'v)’.
Likewise, the left-hand side of (4.10) is related to the
tilt of the horizontal axis and this is reflected in #'v,’
which appears in /,.

We shall now take the vertical average of (4.5)
and (4.6). Using the geostrophic wind relation, fo’
=8¢’/ (ad\), representing §2/(c20A?) by —1/(4£%cos%)
[cf. Section 4f], and neglecting 9(vy'—7s") cosf/ (adf)
which is proportional to 82T/ (adfad)), we obtain

Oy’ 3¢s

at ad)

N
+-2*¢2': (4.11)

where

as Qs ay
M=ds+—+—b+—/
o4 2f

1 1 1
N= (-(ls,bz——adlz)
2 f 26 cos™d

The cocfficient M is the speed of zonal propagation of
the ¢, ficld. Tts first two terms give the speed of a
Rossby wave with a characteristic size of £2 and the
third and fourth terms are modification factors due to
the vertical and horizontal variation of both the zonal
mean field and the intensity of the eddies. The coeffi-
cient , on the other hand, represents development of
the ¢, field. The factor asb, is mainly determined by
the product of the vertical shear of the zonal mean
wind and the horizontal eddy transfer of heat, and hence
expresses the supply of energy by the baroclinic process.
The supply due to the barotropic process is indicated
by a factor a+h; which is proportional to the product
of the horizontal shear of the zonal mean wind and the
eddy transfer of momentum.

Next, we derive the equation for v’ by dividing
(4.11) by £, taking the zonal derivative, and adding a
diffusion term, to obtain

a U .
M_—"I"—"Uz +V- (ugVue') ——Dv4
d! ad\ Px

31)2’

(4.12)

The third term on the right-hand side of (4.12) is the
horizontal diffusion of eddy momentum. The form of the
vertical diffusion, the fourth term, is consistent with the
form (A2.3) which is used in the equation for eddy
kinetic energy. o

One can obtain the prediction equation for "z, by
multiplying (4.7) and (4.12) by vy’ and T/, respectively,
adding the two equations and taking a zonal average.
The term /8T%'/(ad)) which arises can be evaluated
from a thermal wind relation and (4.9), i.e.,

Ty f

- 1—
o' =__7)2/(7}11 _val) ="yl .
2R

(4.13)

o

YOSHIO KURIHARA

855

If we put v/’=«; for simplicity, and approximate
Vuy'- VT’ by T"vy// £, then we finally have

6T"I)2' fbl___ aTz_._
=(M —)—v' vy’ —— vy — T 2wy’
ot 2R adl
N___ 93 T’y
+—T"’ +—(y. i COs@ )
2 adf adl

2
( #H-I—EDK,J)T v, (4.14)
¢ px

It is of interest to see that the important effects
which are associated with baroclinic instability in a
two-layer model are included in the right-hand side
of (4.14). The initial growth of small perturbations
superimposed on a baroclinic zonal current can be dis-
cussed in terms of the coefficient for eddy kinetic
energy in the equation of the second time-derivative of
eddy kinetic energy. When (4.1) is differentiated with

respect to time, the time derivative of —R7T'w'/o,
which represents the baroclinic energy conversion
process, appears on the right-hand side of the resulting

equation. We will see in (4.19) that 7"’ is approxi-
mately correlated with 77v’, negatively in middle lati-
tudes in the Northern Hemlsphere Accordingly, the

coefficients for v's’ in the tendency equation of T, ’
[ie., (4.14)] govern baroclinic instability. The coeffi-
cient of the first term in (4.14) has a factor (M —u,),
which is approximately equal to —g¢2 Therefore, for
b1>0, the first term expresses stabilization by the 8
effect. It is larger for the eddies of larger size. The
second term represents the destabilizing effect due to
baroclinicity. The larger the temperature gradient,
the more unstable the eddy. It will be seen later in
(4.18) that v’ ve’ in the third term is proportional to

v'v’. The proportionality coefficient is negative and large
for small £2 Since the effective static stability I, is
negative, the third term yields a short-wave limit to
instability. The fourth term contributes to instability
since the product N7'v" usually takes a positive value
at middle latitudes. However, an analysis of the results
of the numerical integration will show that its role for
instability is not primary. The last two terms represent
the influence of frictional stress and heat diffusion.

c. Vertical eddy transfer of u, v, T, ¢

In order to evaluate the vertical eddy transfer of these
quantities, we estimate w,’. Eliminating the time deriva-
tives from (4.5), (4.6) and (4.7) with the use of
¢1'—¢s’'=RT,', and neglecting d(v,'—v3") cosé/ (adb),
as we did in deriving (4.11), we obtain the formula
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for wy':
6‘1)2,
= Avy'+B—, (4.15)
ad\
where

1
A =—(al——a2b1+2a3h1)
Qo

B= _(— dzbz —_ (13]12)
Qo

The coefficients A and B determine the amplitude ratio
and phase relationship between the w,’ and »,’ fields. If
we either neglect the meridional change or »;’ cosf or put
a;=0, (4.15) becomes, by virtue of (4.9), ws
={[ @192’ —as(v)'—23")]/ap. The main factors in a¢; and
a, are the meridional gradient of zonal mean
temperature and — fB¢% respectively. Furthermore, a,
is positive. Consequently, the first term in the above
expression of w,’, namely @17,/ @y, yields upward motion
for southerly flow at middle latitudes in the Northern
Hemisphere, while the second term gives downward
motion for »;'—v;’>0, the magnitude being propor-
tional to 2. This may be interpreted as a stabilizing
influence of 8.

The vertical transfer of quantities by large-scale
eddies can be now easily estimated. We multiply eddy
quantities into (4.15) and take the zonal average; and
we make use of (4.13) and the following relationship,
which is derived for a condition of non-divergence at
level 2:

6‘1)2, 6%2, 6‘1}2’ cosf h1 -
uzl— = —1Us =2)2,‘———— = 7)’7)2/. (4 16)
ad\ adA adl 2 cosf
The resulting formulas follow :
hy ———
u wg Au,ﬂzl-i-B 'l),‘l)z,, (417)
2 cosf
Ry (4.18)
- b
T’w2l =A Tlvgl —B—v'vg', (419)
2R
¢'wi’ =—Bf'v,. (4.20)

In the Northern Hemisphere, 4 is usually negative and
B positive. Accordingly, v'o’ is usually proportional to
—9'2y’ to make the third term on the right-hand side
of (4.14) negative, as discussed before. On the right-
hand side of (4.19), the first term is predominant and
northward heat transfer is usually associated with
upward heat transfer. It is seen from (4.20) that ¢’w.’
is generally negative. This then implies that the steering
level of eddies is below level 2 by the following argu-
ment. We consider the thermal equation-in linearized
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quasi-geostrophic form,

T’ T’ T
—=———9,/— T,
at ad\  adl

where v, denotes the geostrophic wind. Replacing
8/t in the above equation by —Md/(adN), multiplying
by ¢', and taking zonal averages, we obtain

where M is the speed of the steering current. The factor
fT'v,'/Tis usually negative at middle latitudes in both
hemispheres. Consequently, ¢'w’ vanishes at the steer-
ing level where, by definition, @= M, and becomes neg-
ative above it where % increases with height. The for-
mula for M given in (4.11) is consistent with the above
discussion, since it yields @,— M >0, in general.

d. Eddy transfer of momentum

The important parameters for determining the eddy
transfer of momentum are the amplitude of the dis-
turbance and the degree of horizontal tilt of the eddy
axes. The time change of horizontal tilt is related to the
meridional distribution of phase speed of eddies.

It has been shown in a study of the variation of
zonal flow with time in barotropic flow (e.g., Arakawa,
1961) that the scales characterizing the zonal mean
flow and the eddies are among the factors involved in the
expression for the phase speed of eddies. Hence, the
relation between the two scales is important for de-
termining the intensification or decay of the jet stream.
Following such a view, at one time we attempted to
establish a prediction equation for the eddy transfer
of momentum. In those trials, the scale of the zonal
mean flow was specified somewhat arbitrarily and was
included in a formula for the phase speed of eddies.
However, there was difficulty in making a proper
explicit choice for such a scale.

An alternative approach suggested itself. We first
noted that (4.11) was derived by applying a very
crude approximation regarding the characteristic eddy
scale to the linearized vorticity equation. The scale
characteristic of the zonal mean flow is implicitly
assumed to be very large. We therefore decided to seek
a diagnostic condition for estimating the eddy transfer
of momentum.

The formula we will use is similar to the one used in
the two-level model by Smagorinsky (1964). His
scheme, expressed by Eq. (19) and Fig. 2 in his paper,
states that the divergence of the eddy flux of momentum
at the upper level of a certain zonal channel is propor-
tional to the stress at the bottomn boundary of the
channel. Judging from the numerical results of a general
circulation experiment using a more sophisticated atmo-
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spheric model, this approximation seems to be valid
[e.g., Smagorinsky et al., (1965); compare the curves
labeled as eddy and surface torque in their Fig. 6A2,
and also scc their Fig. 6B4]. In the present model, the
meridional eddy flux divergence of momentum is re-
lated to the stress resulting only from eddies at the
surface. In doing so, we preclude a spurious flux diver-

gence of v in the case of axially symmetric flow.

Smagorinsky assumed #'v;<<u'v;’, based mainly on
observational evidence. We assume the same condition,
too, i.e.,

dpxt'vy cos%f
f————— = — g7,
o cosfal

where 7.= (fiz)a—pacp (@2+TH4, and #'v'=0. Al-
though the above formula requires that the global
area integral of 7, cosf should vanish, 7., as defined,
does not nccessarily guarantee it. We therefore take
the derivative of the above formula with respect to
latitude to obtain

0 dpsu'v cos®® 9
e (—agr),

(4.21)
adf

« cosfad

and impose an appropriate boundary condition on
#'v’ at the end points of latitudinal grid.

e. Estimation of k;ﬁ—l—@

The third term in the right-hand side of (4. 1) re-

yuires a relation for kgt +¢'v. The equation for the
zonal momentum in the first-order Rossby number
expansion of the equation for long waves on a 8 plane is

o,

du, du,

ua—__‘—vﬂ_ ’—fﬂvua
a dx  dy

—6 0Y¥g ;‘0,

where % is the eastward and v the northward distance
from the reference latitude where fy and B¢ are defined.
We assume that the zero-order field of ¢ is the observed
field itself. 1f the wind V=V +V,,, then the ratio
|V.,/V,| is the order of the Rossby number. Hence,
u, and v, are given by the zero-order set of equations,
fon,+0¢/3y—0 and — fw,+0¢/0x=0. The above
equation is therefore rewritten as

—+7)0§‘n+

du, a <u,,2+v,,2
ox

> — fovag—Buyr,=0. (4.22)

We multiply (4.22) by ¢’ and take the zonal average.
As before we put ou,/0t=—M du,/dx. We also use the

approximation §'U'=:¢’_/ ( Zo_ﬂz) to obtain ¢'v,{,=0
Since ¢'v,=¢'v,’ =0, ¢'v,,=¢'v', and we obtain

[l 5 () u, +v)v, ) o) +6'v =Mu,v,. (4.23)
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Assuming that the first term on the left-hand side can

be replaced by kgv', and %uy'v,” by u'v/,

GIT respectively,
econies

kgt +¢'v = Mu'v. (4.24)
Thus, the eddy transfer of momentum is proportional
to a sum of a quantity involving a triple correlation of
eddy velocities and the pressure work in the meridional
direction.

f. Characteristic size and phase velocity of eddy

It has been assumed so far that the characteristic
size and phase speed of eddies can be determined. We
will now proceed to establish closing relations for these
parameters.

A formula for the phase speed of eddies is given in
(4.11). It may be rearranged to take the form

M=X-Y4 (4.25)
where
b1
X =tly+-—(l1—1s)
8
0%, by 0% —a d /4
Y=<ﬂ‘“2 )__ ( 3) i [ % )
a2002) 4 a0 496\ coso

Theoretical studies concerning the behavior of long
waves in a baroclinic zonal current show that the speed
of propagation of an incipient unstable wave is nearly
equal to the surface zonal speed, which is the minimum
speed of the zonal current (Charney, 1947 ; Kuo, 1952;
Hirota, 1968). Utilizing this result, if we let £,2 be the
scale size of such eddies, then the minimum zonal
speed is

Bmin= Min (&, 7, %4).

In particular, we write

Umin=X—V 1,2 (4.26)
It 1s also known, for a given vertical shear of zonal
flow, that the scale of a baroclinically unstable eddy
is smaller than the critical scale £,2. If the scale of those
eddies can be related to £,2 by an empirical scale ratio
R;(R;<1) such that

£2=RyL.2, 4.27)
then it follows from (4.26) that
Ry(X ~1min)
— (4.28)

From (4.25) and (4.28), we obtain the phase speed
of those eddies

M= Ryiimint (1—R)X. (4.29)
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In the present model, we put R;=0.4. This value is
chosen such that the steering level for eddies at middle
latitudes is at the 600-mb level.

The appearance of £2 in many of the equations and
formulas resulted from replacing the Laplacian operator
by —1/42 in deriving the basic equations (4.5) and
(4.6). Suppose that the field of eddy quantities such as
¥/, ¢’ and o' is characterized by a surface spherical
harmonic of order » and degree #. The Laplacian for
such a field is equivalent to multiplication by
—n(n+1)/a? Accordingly, £ can be related to # by

a a
B w/n(n+1)~n.

Roughly speaking, characteristic lengths of an eddy
in the zonal and meridional directions are approximately
the same when m=u/2=a/(2£). In this case, the char-
acteristic length in the zonal direction becomes

(4.30)

2mwa cosf 1
———— —=2{ cosf.

4.31)
m 27

For such a zonal scale, we obtain the approximation

%' x

a2\ 4f2 cos?

(4.32)

5. Control factors
a. Frictional force

In order to estimate frictional effect and lateral heat
diffusion in the free atmosphere by (3.3), (3.6), (A2.1),
(A2.3) and (3.16), we need to specify the internal
viscosity coefficients ug and pp.

Recently, a theory has been developed for two-
dimensional turbulence. It is characterized by a con-
stant rate of cascade of enstrophy to the higher wave-
numbers, a non-cascade of energy, and the maintenance
of a —3 power energy spectrum. Leith (1968) deduced
the eddy viscosity coefficient from such a theory. We
shall adopt his form, namely

pr=7| Vs | &, ¢.1)

where v is a dimensionless constant, V,¢ is the finite
gradient of vorticity ¢, and d is the mesh interval.
In the present model, we have only the latitude grid
interval, aAf. We modify (5.1) by replacing d with
alAg. Furthermore, we approximate Vi at grid 7 by

1 _
lv*g‘liz_—lfj—%_fﬁ%l+IV*§J|-
alg

For an estimate of the magnitude of Vy{’, we use the
approximations:

|V | = (¢ /ane, ==y, Y=l
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Then, (5.1) becomes

A |2/}
=] sl () Joo. 62)
i
The approximations we make in evaluating (5.2) are

i~ — |#a—;] /(a06) and  |o'| /b= (/0 /1)1,

In our experiment with A9=1r/48, we choose y=0.04.
The coefficient ug is a function of §, ¥'v’ and €2 In the
experiment to be described in Section 6, the resulting
value of ug was 1.6X 105 m? sec™? at 45° latitude and
4X10* m? sec! at 10°.

The vertical exchange coefficient uy assumes the form

av

YA

ur=pl;*

(5.3)

We put [0V/0Z | =~ (|@1— 3|+ |0/ —v5'|)/AZ at level 2.
With p,=7X10"* gm cm™3 and AZ=="7.9 km, we obtain

py=~42 (| —as |+ v/ — vy’ |)

X107% [gm cm™sec™t], (5.4)

where 4, 9’ is in meters per second and £, in meters.
If (4.9) is simplified to yield v v’ — vy’ =~ byv,//2, we can
evaluate |2,/—v;'| by |b1|(v'52)}/2. In the numerical
experiment, the value 30 m was chosen for {, which
corresponds to mixing length. If |V,—V;| =30 m sec?,
then uy=27 gm cm™! sec™.

As for the surface friction, the forms are given by
(3.7) and (A2.3). To determine the surface wind by
(3.8) and (A2.7), the parameters x=|V4|/|V¢|,

=|V/|/|Vy| and the angle a¢ have to be fixed.
The values we use are k=0.6, k,=0.7, and ag=22.5°.
The surface wind thus determined is related to the sur-
face stress by the coefficient D, which is expressed by
(3.9) and involves the density of the air pg and drag
coefficient ¢p. We put pe=1.25X10"% gm cm™3 and
¢cp=0.0025. D is therefore a function of the variables
V4 a.nd K E3-

b. Heating function

In the present model, the mean rate of heating for
an entire air column is evaluated from the given insola-
tion and the temperature at level 2. We assume a heat
balance at the surface and the hydrologic cycle is not
considered. The static stability is a function of latitude
but does not change with time.

Smagorinsky (1963) formulated a parameterization
for the diabatic heating of the vertically integrated
atmosphere. His scheme is used in the following. The
notation we use is as follows:

So solar radiation at top of atmosphere
A, planetary albedo
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¢o ratio of solar radiation absorbed at the earth’s
surface to that absorbed by both atmosphere
and earth

vt normalization parameter for upward long-wave
atmospheric radiation Ly

ry normalization parameter for downward long-
wave atmospheric radiation Ly

B¢ long-wave absorptivity of the atmosphere

e ratio of emission of long-wave radiation from

the surface to the long-wave back radiation

Stephan-Boltzmann constant

static stability

effective static stability

Ry
Ty
r,

The amount of short-wave radiation absorbed directly
by the air column is, by definition, So(1—A4¢) (I—co).
The air column loses heat by long-wave atmospheric
radiation by the amount Li+L;, where Ly=wv4sTs*
and Ly=wsT:% On the other hand, it is warmed by the
absorption of long-wave radiation emitted from the
surface in the amount BT84, where T, is the surface
temperature. The parameter e defined above is sT44/L,.
This is done in order to avoid the explicit determination
of T4 The short-wave radiation absorbed at the sur-
face and the net input of long-wave radiation at the
surface are So(1—Ao)coand Ly—sT = (1—e) Ly, respec-
tively. Since the heat capacity of the earth is assumed
to be zero, the sum of these two quantities must be
transferred to the atmosphere through some heat ex-
change process which we need not specify.

Integrating all the effects above-mentioned, we
obtain a formula for the mean rate of heating per unit
mass, ie.,

G=ESo+FT 44+ (GSo+ 1T, (5.5)
where

E=t—d)—c), F= {(Bre—1i—sls

Ed *)

g 4
G=_—(1—A0)€0, H=?(1—e)ms

* *

The three terms in the right side of (5.5) represent
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direct heating due to insolation, that due to long-wave
radiation, and that passing through the bottom of air
column, respectively.

Table 5.1 gives the values of the parameters used
in the experiment. The data source for the parameters
Ay through e is the paper by Smagorinsky (1963).
Reference is made to the table and row number in his
paper. It is seen that the variation of ¢, v1, vy, and
especially By and e, with latitude, is rather small. In-
solation So is the annual mean value and is derived
from the 1951 edition of the Smithsonian Meteorological
Tables (p. 418).

Static stability is also listed in Table 5.1; its defini-
tion was given in (3.11). The required data are taken
partly from Fig. B4 in the paper by Smagorinsky (1963)
and partly from Geophysical Memoirs No. 101 (Meteor-
ological Office, England, 1958).

However, the effective static stability I'. enters in
(4.7), and is estimated in a similar way to T'y, by using
the partial equivalent temperature derived from Fig.
B4 of Smagorinsky’s paper. Comparing T', thus esti-
mated with Iy, we find that T', can be closely related to
T; by the empirical formula

Pe"—‘- Ty sind. (5.6)

6. Design of the numerical experiment for annual
mean insolation

The present model atmosphere covers the entire
surface of the earth and consists of two layers separated
by ¢=0.5. Each layer is divided into zonal rings with
the same latitudinal width Af. The number of rings
between the north and south poles is 48; hence, Af is
a/48. The meridional grid index J increases southward.
The northernmost latitude grid, J=1, is at the north
latitude, m/2—A8/2.

For the finite difference scheme, the box method is
applied to each zonal ring. In particular, version I of
the schemes formulated by Kurihara and Holloway
(1967) is used. The numerical integration is performed
with a time increment of 10 min; this is set by gravity
waves. In general, centered differencing is used for the

TaBLE 5.1, Values of the parameters used in the experiment. Table and row number in the last column indicates those pertaining to
Smagorinsky (1963), from which the quantities are derived.

Latitude
(deg)
Parameter 0 10 20 30 40 50 60 70 80 90 Data source
Ao 0.326 0.310 0.283 0.28¢ 0.335 0.389 0.443 0.527 0.602 0.669 Table A3, row 4
Table A3, row 1
o 0.665 0.683 0.711 0.733 0725 0.716 0.709 0.698 0.646 0.564 Table A3: row 7
vt 0.751 0.773 0.808 0.810 0.812 0.836 0.849 0.852 0.856 0.861 Table A2, row 12
vy 1.303 1338 1.349 1325 1304 1.295 1.257 1.205 1.145 1.050 Table A2, row 13
Bo 0.961 0.959 0948 0945 0.946 0.951 0.953 0.955 0.953 0.947 Table A2, row 10
Table Al, row 6
e 1170 1176 1.205 1.210 1196 1.180 1.171 1.167 1.198 1.237 \Table A1, row 7
So(ly day™) 854 840 804 746 668 576 478 396 356 341 See text
425 425 429 443 487 548 610 672 708 725 See text

—T3(107* K mb-1)
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_F1c. 1. Latitudinal distribution of the zonal mean temperature
(T'2), the mean meridional flow at level 1 (#1), and the mean

vertical velocity at level 2 (32). Solid lines show the state at 50
days; dashed lines show average for 121-150 day period.

terms of the prediction equations, except for the terms
of diffusion or dissipation tppe for which forward or
backward differencing is applied. We occasionally use
Euler-backward differencing (Kurihara, 1965) to damp
high-frequency external gravity waves. In case of
centered differencing, the development of a computa-
tional mode is suppressed by applying the modified
Euler method every 72 time steps. (See Appendix 3 for
some additional remarks on the numerical scheme.)

The numerical integration is performed for a fixed
annual mean insolation, starting from rest and with a
constant temperature of 250K at level 2. The param-
eters which specify the frictional force and the heating
function were given in Section 5. The integration for
the first 50 days is done without eddies, i.e., Kg=0. At
50 days, a small amount of eddy kinetic energy, 0.01
m? sec™?, which is less than 0.019;, of the final mean
value of Kz, is introduced for all latitude grids at level
1 and 3. The computation is then continued to 150 days,
at which time a quasi-equilibrium is attained.

0.5

075

%0 60 ammupe ¥ 0

F1c. 2. Latitude-height distribution of the zonal mean of the
zonal wind at 50 days.
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The computation time required for a one-day fore-
cast, l.e., 144 steps in the present experiment with
centered differencing, is 42 sec on the UNIVAC 1108
computer. This includes the time to make fairly com-
prehensive diagnostic integral calculations during the
course of integration.

7. Results and analyses
a. Build-up of axially symmetric flow

The latitudinal variation of the annual mean insola-
tion imposed upon the atmosphere which was at rest
at day O causes upward motion at low latitudes and
downward at high latitudes. Simultaneously, westerly
flow in most of the atmosphere and weak easterly flow
near the earth’s surface are formed by Coriolis force
and surface friction. Such a field of flow, later being
modified by advection due to the meridional circulation
and diffusion, develops during the initial period of
integration without eddies.

We also observe a poleward shift of mass which was
uniformly distributed at the beginning. This move-
ment of mass is almost completed by about 30 days.
After that, the rate of change of p, is very slow. Starting
from the uniform value of 1013.25 mb, p, at the grid
nearest the pole rises to 1049.45 mb by 30 days and is
1051.43 mb at 50 days. Meanwhile, p4 at the grid
nearest to the equator lowers to 1000.88 mb by 30 days
and is 1001.43 mb at 50 days.

The development of a single Hadley cell is rather
rapid in the early period. Later, its intensity changes
only slightly. Fig. 1 shows the northward flow at level

1 and vertical velocity ¢ at 50 days. The center of the
Hadley cell is at 30° latitude. Since all fields are either
symmetric or antisymmetric with respect to the equa-
tor, only the distribution for the Northern Hemisphere
is presented. The stabilizing effect of the Hadley cir-
culation is of inadequate intensity to counterbalance
the heating gradient. The cooling rate near the pole
at about 50 days is 0.44C day™! and the warming rate
near the equator is 0.19C day~. Thus, the meridional
gradient of T, keeps increasing. In Fig. 1, the T, field
at 50 days is shown. The gradient is enough for the
baroclinic waves to grow.

The wind at the surface is easterly everywhere, as
seen in Fig. 2. This implies that the total absolute
angular momentum of the atmosphere continues to
increase. Although the surface torque supplies westerly
momentum to the lower layer, the actual change of
momentum is largely governed by the meridional
circulation. The Hadley cell yields convergence of the
momentum due to the earth’s rotation at the upper level
and divergence at the lower level. As a result, the in-
creasing rate of westerly momentum at the upper level
is about three times that at the lower level at 50 days.
The change of vertical wind shear reflects that of
meridional gradient of temperature. The zonal mean



SEPTEMBER 1970

flow at 50 days, shown in Fig. 2, is in almost perfect
geostrophic balance at all latitudes including the tropics.

b. Evolution of a climatic state

After adding a small amount of eddy kinetic energy,
0.01 J cm™2, which corresponds to wind speed of 14 cm
sec™, at 50 days at each point, we continue the integra-
tion until 130 days.

Fig. 3 shows how the zonal mean surface pressure
changes with time. It is seen that mass is redistributed
in a rather short period. At about 60-70 days, the
kinetic energy of cddies increases at middle latitudes,
a large poleward transport of heat by eddies takes
place, and the Ferrel cell circuylation is formed. At the
same time, as shown in Fig. 3, the high pressure belt in
the subtropics and low pressure at higher latitudes
appear and the surface wind at the middle latitudes
becomes westerly. The pressure near the equator rises
from about 1001 mb at 50 days to 1012 mb at 80 days,
remaining so thereafter. It appears that the intensity
of the subtropical high belt and the low pressure belt

20

50 100 " 150
DAYS —

Fic. 3. Time variation of the latitudinal distribution of zonal
mean surface pressure during the 50-150 day period.

at ~70° are correlated with each other as they pulsate
with a period of about 10 days. Zonal mean tempera-
ture and zonal mean wind attain a state of quasi-
equilibrium by 100 days. In fact, beyond this time most
characteristics exhibit a very small time variation. We
choose the 30-day period between 121 and 150 days for
the analysis of the climatic state obtained by the
present model.

¢. Analyses of the climatic state

The latitudinal distribution of zonal mean tempera-
ture T’ is given in Fig. 1 by the dashed line. Comparing
the line with the curve for 50 days, we see that heat has
been removed from the subtropical latitudes and trans-
fered to high latitudes.

The field of 7, is maintained through a balance
between the non-adiabatic heating and the dynamics.
Fig. 4 shows the rate of temperature change due to the
heating function, the mean meridional circulation, the
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Fic. 4. Latitudinal distribution of change of $+T> due to non-

adiabatic heating (HEATING), the meridional circulation
(M.C.), the large-scale eddies (EDDY), and the horizontal
diffiusion (H. D.).

large-scale eddy flux and the small-scale diffusion of
heat. This distribution is obtained by taking a 30-day
average of daily instantaneous states. It is seen that the
non-adiabatic heating in the tropics is counterbalanced
by the mean meridional circulation. In the subtropics,
the warming is accentuated by the meridional circula-
tion and the eddies make the balance. Similar results are
obtained in the numerical experiment by Smagorinsky
et al. (1965, Fig. 5B3). Generally speaking, the cooling
by the heating function north of 40° is balanced by the
eddy motion. A detailed analysis shows that the tem-
perature change due to the meridional circulation is
mainly due to adiabatic expansion associated with mean
vertical motion, yielding a conversion of total potential
energy to kinetic energy of mean zonal flow. In the case
of the eddies, the cooling due to vertical motion is over-
balanced by the relatively large horizontal heat transfer
north of 40°, giving a net warming.

Fig. 5 gives the distribution of the components of
the heating function. The present model includes
neither the hydrologic cycle nor the effect of energy
transfer by oceans. Accordingly, the curve of net heating
rate is monotonic. If those effects were taken into con-
sideration, the net heating would have shown a second-
ary maximum at middle latitudes (e.g., Smagorinsky,
1963, Fig. AS5; Manabe et al., 1965, Fig. 12B6).

Next, we examine the mean meridional circulation
which influences the heat budget of the atmosphere as

HEAT FLUX FROM SURFACE

°c day”

-10

90 60 30 0
LATITUDE

F1c. 5. Latitudinal distribution of mean heating rate for the
total air column due to short-wave radiation, long-wave radiation,
upward heat flux at the earth’s surface, and the net effect.
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seen in Fig. 4. The 30-day average of mean meridional
circulation is given by the distribution of 7; and ¢ in
Fig. 1. Tt is characterized by two direct cells, at low and
high latitudes, respectively, and a weak indirect cell
between them. It is seen that g, is highly correlated with
the rate of change of temperature due to the meridional
circulation shown in Fig. 4. The pattern of meridional
circulation, however, is not quasi-stationary. Fig. 6
shows the variation of the latitudinal distribution of 7,
with time for the period from 100 to 150 days. Ferrel
cells are formed one after another with a period of
about 10 days at 70°. Each cell propagates equator-
ward down to ~30°. Although the life of each cell is
~2 weeks, 2 new evolution begins at high latitudes
every 10 days. In consequence, we sometimes obtain
a 5-cell circulation, for example, at 130 days. Matsu-
moto (1962) pointed out that 5 cells in the meridional
circulation are sometimes observed in the actual atmo-
sphere. The intensity of the tropical Hadley cell in-
creases when the 3-cell circulation is formed, for ex-
ample, at 135 days. This may be one of the indications
of interaction between the flows in middle and low
latitudes.

The role of large-scale eddies in the heat balance of
the atmosphere is determined by the horizontal and
vertical transport of heat. Latitudinal distribution of
these quantities is tabulated in columns 3 and 4 of
table 7.1. Large values of 7'v are seen at 45-55°,
A countergradient meridional heat flux occurs equator-
ward of about 15°. Since the horizontal heat flux is
governed by (4.14), it may be of interest to see the
balance of the terms on the right-hand side of the
equation. The magnitude of the first three terms is
much larger than the others so that balance is almost
completely determined by these three terms. Fig. 7
shows the latitudinal distribution of these terms. As
mentioned in Section 4, these quantities represent the
role of baroclinicity, of the 8 effect, and of the effective
static stability upon the development of baroclinic
waves. Baroclinicity is of course favorable for the

140 150

i T T LIS | Y
100 1o 120 . 130

Fi16. 6. Time variation of the latitudinal distribution of mean
meridional flow at level 1 for the 100-150 day period. Northerly
flow is indicated by shading.
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Fic. 7. Latitudinal distribution of the change of 772" due to
the first term in the right-hand side of Eq. (4.14) (8 effect: 8),
the second term (baroclinicity: BC), and the third term (sta-
bility : ST),

growth of eddies and most effective at 30-35°. On the
other hand, the g3 effect and particularly the static
stability act to suppress development.

We look again at the distribution of T'; in Fig. 1. The
gradient is relatively large at the 20-30° and 75-85°
latitude belts. The field of mean zonal flow, given in
Fig. 8, shows the double jet streams located at the same
latitudes. We shall now examine the degree of geo-
strophic balance of the mean zonal wind at level 1.
Smagorinsky (1963) made such an analysis and pointed
out that the geostrophic departures are highly cor-
related with the gradient of the variance of the merid-
ional wind component. In our case, the problem is to
investigate the balance among the terms in (3.2).
Table 7.1, column 5, shows the percentage geostrophic

departure defined by
ad;p ad;P
+— / — |X100.
adb/ add

{5

The geostrophic departure of the mean zonal flow is at
most 119,. The geostrophic balance of the mean zonal
wind at equatorial latitudes is very good and compara-
ble to that at the middle latitudes. Column 5 and also
column 6, which gives the deviation

(7.1)

_ tané _ ¢y
P»JZ(f +——ﬁ> +hi— (7.2)
a adl

show that mean zonal flow is super-geostrophic north
of 35° and sub-geostrophic to the south. The third
largest term in (3.2) is

30,1’V cosf
_p*—’ (7.3)
adld

which is tabulated in column 7 of the table. A high
correlation between (7.2) and (7.3) can be seen. All the
above results agree well with those obtained by Sma-
gorinsky (1963). The magnitude of (7.3) is generally
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averaged for the 121-150 day period.
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Fi6. 10. Time variation of eddy kinetic energy (K ), conversion of eddy available potential
energy to eddy kinetic energy (4 g — Kg), and dissipation of eddy kinetic energy (Kg — DIS)

for the 100-150 day period.

the wind system which resulted primarily from the
other causes.

Next, we will discuss some statistics concerning
eddies. Fig. 9 gives the distribution of eddy kinetic
energy. A maximum is at level 1 and at ~36°. The
characteristic size, estimates of the zonal wavenumber
which corresponds to the zonal scale given by (4.31),
and the velocity of propagation of the eddies are listed
in columns 10-12 of Table 7.1, respectively. Except
for tropical and very high latitudes, the estimated
characteristic zonal wavenumber is between 5.2 and
6.5. The diffusion coefficient in the present model
depends on the intensity and scale of the eddies which
have evolved [see (5.2) and (5.4)]. The latitudinal
distribution of the resulting horizontal and vertical
diffusion coefficients at level 2 are given in columns
13 and 14, The coefficient for horizontal diffusion takes
on a relatively small value at equatorial latitudes, as
does the vertical diffusion coefficient.

The budget of eddy kinetic energy is investigated
by taking global averages of the contributing factors
for the upper and lower layers separately. The result is
shown in Table 7.2. The pressure interaction at the
middle level is most effective in exchanging energy
between the two layers. Dissipation of eddy kinetic
encrgy at the upper layer is mainly by horizontal
diffusion of momentum. On the other hand, at the lower
layer, it is due to the work done against the frictional
stress at the surface. Time series of total integral of
eddy kinctic energy, conversion from eddy available
potential energy, ie., the integral of —R(T"w'/0)/g
with respect to o, and total dissipation of eddy kinetic
energy for the period from 100 to 150 days are presented
in I'ig. 10. Fluctuation of total eddy kinetic energy
with an approximate period of 10 days and with ampli-
tude of 29, of the total amount is seen, Variation of
total dissipation follows that of conversion with a time
lag of about one day.

Finally, four conventional forms of energy and their
transformations are given in Table 7.3. Eddy available
potential energy is evaluated by the area average of

v (T'TY) 2)p./g, where the factor s is the area average

of —R/(psI';). The quantity 7'Ty’ is obtained by
(A1.10) and listed in column 15 of Table 7.1. An esti-
mate of the decrease of Pg by horizontal heat diffusion

is made with the area average of va(uu/4)T'Ty'py/g.
Estimates of other transformations are made by apply-
ing the formulas usually used for budget analysis of
energy (e.g., Smagorinsky et al., 1965, Section 7).
Results of similar analyses made by Smagorinsky ef al.
(1965), Smagorinsky (1963) and Phillips (1956) for
their numerical experiments are also shown in Table
7.3, together with estimates for the actual atmosphere
for the Northern Hemisphere (Oort, 1964). As compared
with other models, the amount of Pz and Kz of the
present model is smaller and closer to observation.
Note, in particular, that K g of our model is comparable
to Kz. The smallness of Pg is common to all models.
The energy transformation and the conversion due to
the baroclinic process, le., {Pz Pz} and {Pg, K&},
are within the range of observation. Dissipation of Kg
is somewhat larger than in other models. However, its
ratio to Kg is smaller than in the models by Smago-
rinsky ef al. and by Smagorinsky by more than a factor
of two. The conversion {Kg, Kz} in the present model
is weak. This is due to the smallness of eddy transfer of
momentum. One should also note that dissipation of
K 7 in the present model is very small.

8. Summary and remarks

A statistical-dynamical, two-layer model has been
constructed; the equations consist of those for zonal
averages of the meteorological variables and those for
the eddy condition. This approach is certainly one way
to study the complicated system of circulation. The
concept may be utilized for other problems.

A numerical experiment has been performed with a
given specification of diffusion parameters for an annual
mean insolation. Starting from rest, axially symmetric
flow is formed in a 50-day integration from which
eddies are excluded. At that point a small amount of
eddy kinetic energy was added. After a period of transi-
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TasiE 7.3. Energy (J cm™) and its transformation (10-3 J cm~2 day—! mb~?). The transformation notation
is the same as that defined by Phillips (1956).

Present Smagorinsky efal. Smagorinsky Phillips Estimates by
model (1965) (1963) (1965) Oort (1964)

Available potential energy

Py 582.3 736.6 940.4 1266 4004-100

Pg 379 349 17.6 26.2 15050
Kinetic energ;

Kz 109.6 144.0 273 290 80430

K& 120.1 32.0 35.2 724 70430
{heating, Pz} 38.3 449 29.8 224 26.8+8.6
{P3z, horizontal diffusion} 2.6 7.5 10.7 2.8
{Pz, Py} 31.2 321 24.8 324 25.94-8.6
{heating, Py} —1.9 —0.7 : —6.948.6
{Pg, horizontal diffusion} 3.2 6.2 1.7 1.0
{Pg, K&} 21.8 25.9 211 321 19.0+48.6
{KE, horizontal diffusion} 14.3 13.4 8.6 4.5
{ Kz, vertical diffusion} 0.6 {5 5} 0.6 0.0 15.6+8.6
{ K&, surface friction} 7.1 ’ 38 3.7
{Kg, Kz} —0.1 6.3 10.4 13.7 3.5+1.7
{K z, horizontal diffusion} 0.4 2.4 4.0 2.8 .
{ K z, vertical diffusion} 0.7 {3 1} 3.8 0.0 43+1.7
{K z, surface friction} 0.2 : 3.0 6.0
{Kz, Pz} —1.7 1.3 0.9 3.6 —0.9+1.7

tion, when eddies grow, most zonal mean quantities
attain a state of quasi-equilibrium.

The mean zonal flow which evolved possesses a double
jet-stream structure. The horizontal eddy flux of sensi-
ble heat is large and poleward at 45-55° latitude. It is
very small and countergradient at low latitudes. The
eddy transfer of relative angular momentum is rather
small, though it agrees qualitatively with estimates for
the actual atmosphere. The eddies have maximum
intensity at about 36° in the upper layer. The scale of
eddies at most latitudes corresponds to zonal wave-
numbers between 5.2 'and 6.5. An analysis of the time
variation, such as presented in Fig. 3, 6 and 10, indicates
that the quasi-equilibrium is not stationary but has
a mode of fluctuation. Its period is ~10 days in the
present case. Furthermore, inter-latitudinal coupling is
suggested by Figs. 3 and 6.

Following are some remarks regarding the formula-
tion and control factors of the present model:

1) This model is characterized by dealing with zonal
averages. It is impossible to include explicitly the effects
of the geographical distribution of land, sea and moun-
tains. Separation of eddies into quasi-standing and tran-
slent components is also not possible. The details of
deviations from the zonal average can be discussed
only by using an orthodox three-dimensional model.

2) Another feature of the present model is its two-
layer formulation. It is due to this constraint that a
heating function is defined only for the total air column
and «’ can be determined only at one middle level.
On the other hand, actual observation suggests the
necessity for finer resolution in the vertical to simulate

a realistic state of certain variables. For example, the
mean meridional circulation in the actual atmosphere
has maximum intensity near the surface and compen-
sating return flow at the tropopause level (Oort and
Rasmusson, 1970). If one increases the number of
layers, however, new problems are introduced, such as
how to partition the heating function into layers. It
is the author’s opinion that a multi-layer formulation
of a model of this kind cannot be strongly recommended.
Therefore, the inherent limitations of a two-layer formu-
lation imposes a limit of capability to the statistical-
dynamical approach.

3) Little is known about mechanism of energy dissi-
pation in the actual atmosphere. Although analysis
of energy dissipation in the present model yields the
results as shown in Table 7.2, it must not be taken too
literally. It may be possible that a seemingly realistic
climatic state can be obtained with a specification of a
diffusive parameterization which is quite different from
that used here.

4) As for the heating function, a change of some
parameters may be useful in understanding climatic
response. An experiment with insolation having a sea-
sonal variation has been carried out. The hydrologic
cycle may be taken into consideration by parameterizing
the moisture content of the atmosphere. The effect of
heat transfer in the oceans can be included empirically
in specifying the heating function.
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APPENDIX 1

Calculation of v'v’ and T'T’ at Level 2 and the
Interpolation of Certain Eddy Statistics

In the derivation of the formulas which give o'y
and T'T" at lcvel 2, we use the relations

o1 +os’ =20, ¢

¢’ ax’ \ P
fz)/ = — <—»—> =
ad\ \adN/ 46 cos

— s’ =RTY
(AL1)

The sccond and the third relations are the hydrostatic
and geostrophic wind relations, respectively. The last
relation results from (4.32). From (Al.1), we obtain

20" =15,
Accordingly,

42)’7)0' =’y '+zl’z—13'+2v1’v;;’. (Al1.2)
In order to cstimate #,'vy” in (A1.2), we put
6’03,
vy = avy’+b—, (AL.3)
ad\

where ¢ and b are to be determined below. Taking the
square of (A1.3), we then have, using (A1.1),

v'vy’ = a5 b2 vy, (A1.4)

412 cos?0
On the other hand, multiplying (A1.3) by ¢/, taking

the zonal average, and using (Al.1), we obtain after
some manipulation

07¢y = —RT'vy = —bfu'vy.

Therefore, (Al.4) becomes

(AL.5)

a*(v'vy Y =v"vy vy —-
442 cos?f

(R) Ty, (ALS)
[7A '

It is easily seen, by multiplying (A1.3) with 2’ and
taking the zonal average, that the left-hand side of
{A1.6) is equal to the square of z1'v5’, Tf the condition

- N
(T've' )2 K 482 cosW(E) v'oy v’y (ALT)
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is satisfied, then (v '1)3,)2<‘Z)1 7' ’03 ‘vy’, 1.e., the Schwarz

1nequa.hty holds. We assume furthermore that 05’
is positive. Then, by (Al1.7), we obtain from (Al 2)
and (A1.6)

4o'vy =o'y +o'vs

R 1 R\
—I—Z[:v'vl'-v'vg'—- (-) (T’m’){l . (A18)
4€2 cos®\ f

Next, we derive the formula for I'Ty
first formula of (A1.1), we have

. Using the

(1 —¢s')?=2(¢'p1"+'ps") —2¢'¢’. (A1)

We can rewrite (A1.9) by making use of (Al.1) to
obtain

. N
T'Ty =812 COSEH(—i) (v'va' +v'vs’ —20'0y"), (A1.10)

which is always posmve or zero for 1'v,’ given by (Al 8).
We estimate #'s:’ by takmg the average of v’ at

level 1 and 3. The quantity ¢'7’ at the mid-point be-
tween two latitude grids is obtained as the square of

the average of the square root of 7'’ at the two grids.

The mid-point value of %7’ and T"% is the average of
their respective values at two latitude grids.

APPENDIX 2

Estimate of Frictional Effects in the Equation
for Eddy Kinetic Energy

In Eq. (4.1) the effect of the frictional force is given
by the terms «'F,’4v'Fy'.

We assume that horizontal component of frictional
force is written as

AurRyn’  OunRyr’ cos?d
ubf\'= 4
adA o cosfof
, (A2.1)
dugRey OugRe cosf tané
uF¢ = + 1 R
ad\ adf a
where
91’ tanf
R)\)\ —P*(“—'———“ZJ )
ad\ a
_ 3 o
Fd' =P, cosfp— ——
ad8 cosf
_ o
Ro\'=py—
od\
_ o
Rop' =py—
adl J
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We then have

=7 [ - 9Kg  tanf_;
' gF\N+v' gFe = urpy cosl S
adf adl a

—;—H[(Rn')z-l-(Rxo')2—l-(Rox')2+ (Roo’)z].

Neglecting the factor %’ tan 6/a in the first term on the
right-hand side of the above formula, and using the
approximation

R)* - (Rae') 2+ (R )+ (Roo')*
w'u'+vv'  _ 2Kgp
=0

£ e’

=§*

where {2 is a characteristic size of eddy and defined in
the text, we can obtain

—— 7O = 9Kz
' gF) v gFo =——| uupx cosb
«df adl

_ E
—KHPX P . (A2-2)

On the right-hand side of (A2.2), the first term is the
work done by the frictional stress and the second the
dissipation of eddy kinetic energy.

For vertical diffusion we use forms similar to (3.4)-
(3.7) in the text, namely,
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I, 7o,
v\ = —§ ’ vF¢ = —& s (A23)
do do
where
vz =79z =0, atlevel 0 )
o o ,
™ =—guv—="—u vt —us’)
RT 98¢ RT,
, atlevel 2.
o 0
70z’ = —g—pv——="—py(v’ —25)
RT 0o 2
T)\ZI=D744', Toz=D1)4l, at level 4 J

After some manipulation we obtain

(o yFN +v' vFo )1=—

g2

—uv[ (' —us')*+ (01 —vs')%],
T,

2

g
uv(Km—Kgs)

2

(A2.4)

VoLuMmE 27

2

g
uv(Kp1—Kgs)
17 Vv E1l E3

=
2

(ul VF)\,+'ZWﬁ)3 =
R

g2
' _;T—z” v[ (w1 —u5) 4 (01 —v5) 7]

—2gD(uz'us' +vi'vd). (A2.5)

The first terms on the right-hand sides of (A2.4) and
(A2.5) represent the effect of work done by stress at
level 2, and the second terms the dissipation of eddy
kinetic energy. The third term in (A2.5) shows the work
done by atmosphere at the lower boundary, i.e., fric-
tional dissipation at the earth’s surface. In evaluating
the second term, we apply the thermal wind relation,
the approximation characterizing the temperature field
in terms of the characteric eddy size, and (A1.10),
yielding

(w1 —us") 2+ (v1 —v5")?

IE IO

=8 cos?0(v'vy/ +1'v5 —20'vy').  (A2.6)

We have to estimate u3'us/+v3'vs/ in (A2.5). We
assume that the surface eddy wind is related to the
eddy wind at level 3 by the speed ratio x, and the
phase difference a¢ corresponding to an Ekman spiral,
ie.,

ud =x.(us’ cosa vy sinag)

}, (A2.7)

vy’ =k(Fus’ sinag+vs’ cosag)

where upper sign is used for the Northern Hemisphere
and lower sign for the Southern. We then get

w5 ud +vs'vs =2, cosaK z3. (A2.8)
Adding (A2.4) or (A2.5) to (A2.2), we have an estimate
for whole effect of the frictional force on the change of
K E1 Or K E3.

APPENDIX 3
Remarks on the Numerical Scheme

As mentioned in Section 6, the finite difference
scheme used in general is Version I of the box method
described by Kurihara and Holloway (1967). An excep-
tion is the computation of the first and second terms
in the right-hand side of (4.1). In this case, the merid-
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ional flux of a quantity X at the mid-point, J=j+3,
where the advective velocity is v.3=2%(v;4+v;51), is
given by

3L Lo DXt (g — o DX,

instead of ;3 (X;+X;j31). A similar formula is used for
the vertical flux. Such a scheme preserves conservation
of the volume integral of X,

In many of the terms in prediclion equations and
diagnostic formulas, latitudinally smoothed values,
weighted 1/6,4/6,1/6, are used rather than a grid value
for a non-differentiated quantity, provided that a
desirable condition, such as energy consistency, is not
violated by doing so. The weighted value can be taken
as a representative one for a small latitude span. The
weighting formula is equivalent to the numerical
integral by Simpson’s first rule which has third-order
accuracy. This accuracy is comparable to that of the
three-point formula for the finite difference approxi-
mation fora first differential, i.e., second-order accuracy.
On the other hand, the accuracy is first order when the
grid value is used for a non-differcntial,

'The coefficients by, by, 7, and %, in (4.9) and (4.10)
have the denominator v'»y’. In actual computation we
replace it by the average of 7'v’ at levels 1, 2, 3 with
weights 1/4, 2/4, 1/4 to obtain a smoother numerical
result,

We use the method similar to the one described by
Richtmyer (1957, pp. 101-104) for solving (4.21) to
obtain py #'v cos?, In this case we impose the condition

- (E‘ u'Y c080) jm1i®yjmr = —28(7e) j—1 COS05.1,

w'v ;=2 s,

where wg is a weight factor appearing in the box method.
The above relation expresses a momentum balance at

the northern polar cap and gives #'2’ at j~2. A similar
relation for the southern polar cap fixes #'v" at j=47,
i.e., another end-point value necded for solving the

equation. We assume that #'v" at j=1 and 48 is one-
third of that at =2 and 47, respectively.

The dissipation of eddy kinetic energy due to vertical
mixing of momentum is expressed by the second term
on the right-hand side of (A2.4) and (A2.5). This
effect is first estimated for the total air column. It is
then partitioned to two layers in proportion to the eddy
kinetic energy present at levels 1 and 3.

In computing £ by (4.28), wc put £2={2, where
£2=6X10°m?, if the numerator happens to be negative.
When the denominator is less than B, it is replaced by
B, and, if the resulting €2 is smaller than {2, we take
£ for £2.

When the numerical integration is donc with eddies
included, a check of Kz is made at each time step at
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each grid. If it is observed to be smaller than the
criterion, 0.01 m? sec™® in the present case, it is set to

this value. A check is also made of 7' so that (A1.7)

is satisfied. We also examine %'y’ and may adjust it so
that |u'v';| <#/v), is satisfied. During the integration
it was found that such adjustments are rarely if ever
needed.
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