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ABSTRACT

A two-step iterative time integration scheme is formulated, by which the amplitude of a low-frequency
wave in a primitive equations model is preserved fairly well for a period of short-range weather prediction
while the high-frequency noises are damped. The desired computational characteristics are obtained by
separating the terms of the equations at the corrector step. Numerical examples are presented which show the
damping property of the proposed scheme. The new scheme does not require more data space in a computer

than the amount used in the Euler-backward method.

1. Introduction

Tterative time integration methods have been widely
used when the damping of high-frequency modes in the
solution of the primitive equations is required. Al-
though iterative methods have been found to damp
primarily the high-frequency mode, the use of these
methods for long periods may also cause the undesirable
damping of waves with relatively low frequency
(Kurihara, 1965; Matsuno, 1966).

It is attempted in this paper to formulate a new type
of iterative time integration scheme which preserves
the low-frequency mode for the time scale of a short-
range weather prediction while suppressing the high-
frequency mode. This is achieved by separating the
terms which contribute to the relatively slow temporal
variation from the other terms in the primitive equa-
tions and applying an almost neutral marching scheme
to the former terms and a damping one to the latter.
The strategy of term separation has been used by
others in the formulation of the partly implicit or semi-
implicit methods (e.g., Kurihara, 1965; Robert, 1969;
Kwizak and Robert, 1971) as well as the splitting
method (Marchuk, 1965), although the motivation for
its use in these methods is different from that of the
present work.

In the next section, a new two-step time integration
scheme is derived on the basis of some elementary
discussion of the damping properties of iterative
methods. Numerical examples which demonstrate the
behavior of the proposed scheme are presented in
Section 3.

2. Formulation of an iterative scheme with term
separation
a. Elementary considerations

The equation for a quantity % which propagates in
the form of a sinusoidal wave of length L with a phase
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speed ¢ is written as
oh
at
where ¢ is time, F = — dvch, v = 2r/L and i = ¥V —1.

The time integration of (2.1) may be performed with
the iterative scheme

B =hT-+AtF" }
B =hr At{ (1 —w)Fr4-wF*} )

where 7 and 7+ 1 denote the time levels, Af is the
time step, A* is a temporary value, and w the weight
parameter used at a corrector step. In (2.2), F7 and F*
mean that 47 and k¥ are used respectively to calculate
F. In the present paper, discussion will be concerned
specifically with the two-time-level, two-step iterative
scheme defined by (2.2). However, the principle derived
from the considerations which follow is applicable to -
other iterative schemes. If w = 1, the scheme (2.2)
gives the Euler-backward method or the Matsuno
scheme (Matsuno, 1966; Kurihara, 1965). If w=0.5, it
becomes equivalent to the modified Euler method.! For
w=0, it is reduced to an unstable explicit forward
marching scheme.

Defining b by vcAf, the relation between 27! and A"
is expressed by

2.2)

hHi=\b7, (2.3)
where
A=1—wb?—ib. (2.4)
Accordingly, the amplification rate R is given by
R=|A\|= {14+ (1 —2w)d+w?b*}*. (2.5)

1 Since 4™ obtained by a half-step forward differencing is equal
to (h"+h*)/2, the scheme (2.2) with w=0.5 can be rewritten

hr+d=hr4(at/2)F7\
prtl= h’+AtF"ﬂ
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The rate R becomes unity for =0 and for &

= (2w—1)*/w, and less than unity for & between these

two values. Minimum R or maximum damping is ob-
tained at

(Qw—1)3

b=r—.

— (2.6)

Specifying certain values for w, the dependency of R
on b is shown in Fig. 1. Note that the ordinate scale
is very much magnified, and a curve for the Euler-
backward scheme (w=1) is drawn for comparison. Ac-
cording to its definition, b is determined from the wave-
length L, the phase speed of wave ¢, and the time incre-
ment Al It is evident that, if & is small, say about 0.2,
a stable and almost neutral integration can be made
with a choice of 0.505 or slightly larger value for the
weight w. In other words, an amplitude of wave will be
preserved well if a sufficiently small time step and an
appropriate weight are chosen for a given wave fre-
quency. The scheme with %=0.5, i.e., the modified
Euler method, is unstable for any value of .

b. Separation of terms

In the primitive equations, the advection term
usually yields a low-frequency mode in the solution.
Separating the advection term from the other terms,
(2.1) may be rewritten in the symbolic form

ok
—‘=F1+F2) (27)
ot
where
Fy=—iwUh }
. 2.8
Fo=—iv(c—U)h 28)

The term F; denotes the tendency due to the advection
with the wind U and F, represents the effect of all
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Fi1c. 1. The amplification rate R vs b [ =»cAt]. Parameter wis a
weight factor used in (2.2).
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other terms. The term F; contributes to the appearance
of a high-frequency mode.

It is intended in the time integration of (2.7) to damp
a high-frequency mode while preserving the amplitude
of a low-frequency mode. It should be noted that the
maximum time step of an iterative method is usually
dependent on the frequency of the highest frequency
mode. Accordingly, it is sufficiently small to accurately
treat the low-frequency mode. Guided by the analysis
result obtained in the preceding subsection, the follow-
ing iterative scheme is proposed:

B*= h+ At (Fy™+ FyT)
hr#t=hr+ A{ (1—w1) Py w, Fy*) } 29
+ At{ (1 —ws) Fy™wo Fy*}

A superscript for F; and F, indicates the time level of
k which is used to estimate Fi and F,. In (2.9), the
different weights w; and w. appear at the corrector
step. If wy=w,=1, then (2.9) gives the Euler-backward
scheme,

From (2.8) and (2.9), the following relation expres-
sing the computational characteristics of the proposed
scheme is derived:

h™l=\h7, (2.10)
where
A=1—wb?>—ib _
b=vcAt (2.11)
U c=U
w=-c—wl—|-—6—'wg

Note that (2.11) is formally the same as (2.4). The
amplification rate is given by (2.5) with the parameter
w replaced by the one defined above. Therefore, the
scheme is computationally stable if the condition
b€ (2w—1)¥/w is satisfied. This condition, together
with the damping characteristics for (2.11), which
should be the same as those obtained previously with
respect to (2.4), has to be considered in determining
the weights w; and w, and the time step Af. ~

Suppose that the solutions of the primitive equations
for wavenumber » contain a meaningful wave being
advected by the wind U as well as the high-frequency
waves represented by the maximum phase speed cmax.
It will be assumed that ¢ma>>U. Let w, be fixed to
unity in the present instance. Then w for the high-fre-
quency mode becomes approximately unity unless w;
is very large. It follows from (2.6) that the most effi-
cient damping of the high-frequency mode is achieved
with

1

Al= .
VZ2VCmax
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The above At satisfies the stability condition for the
case of w=1, i.e., vCmaxAI< 1. Using this time step and
setting ¢= U, the parameter b for a slowly moving
meteorological wave becomes U/ (VZ¢max). The ampli-
tude of this wave would be preserved if the parameter
w is specified so that a corresponding curve in Fig. 1
intersects the line for R=1 at the value of b given
above. The value w thus obtained is an optimum value
for w, since w=w, for this wave.

The above-mentioned steps of procedure for deter-
mining w,, we, and Af are applicable to the cases when
U is very large and also when the phase speed of the
low-frequency mode is different from U. When a wave
system with many wavenumbers is treated, the weights
and time step have to be chosen so that the computa-
tional stability condition is satisfied for all wave
components.

3. Numerical examples

A system of equations used by Kurihara (1965) in
investigating the feature of a time integration scheme
is adopted as a test of the proposed scheme. The equa-
tions written in rectangular coordinates are

du u

—=—U—F fo——

ot dx dx

dv dv

—==U——fu , (3.1)
ot ox

el a9 du
~—=—U—+fUy—~gH—

at dx %)

where # and v are x and y components of the perturba-
tion wind, U is a constant zonal wind in the x direction,
f is the Coriolis parameter, ¢ is the perturbation of the
geopotential, g is the acceleration of gravity, and H is
the mean height of the atmosphere. For a given wave-
number v=2w/L, where L is the wavelength, the solu-
tions of (3.1) describe waves with the {ollowing phase
speeds:

€ 4
a=U-+2(—10)t cos(g-i——w)z U
3

€
cz=U—I—2(—§a)’=‘cos\;zU—i—(gH)"'L , (3.2)
€ 2
03=U—2(—%a)%cos(——}-—r)zU—(gH)"t‘
3 3 /
where e=tan [ (—4a*/276%)—1]}, a= —(f¥»?)—gH,

b= — f2U/»?. The speeds ¢, and c; represent those of
the inertia-gravitational waves. Specifically, the solu-
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tions of (3.1) are expressed by
8 B (U—cr)
U=y U, m=¢,—————————
= fre (U=
3 ivf
v=3_ 1, U=¢—— I, (3.3)
= = (U=
3
=2 ¢, di=Siexpliv(zx—ci)]
=1 J

where Si(i=1, 2, 3) are amplitudes of three waves.

The proposed scheme (2.9) was applied to the time
integration of (3.1). The right hand side of (3.1) was
estimated for a grid network by using a centered finite
differencing method. As mentioned before, Fy in (2.9)
denotes the term for horizontal advection and F; all
the other terms. It is noted here that there may be
cases where it is appropriate to include the Coriolis
term in F;. The constants used in the test are U=30
m s~}, f taken at 45° latitude and gH=8X10* m? s~2.
The grid distance Az was set to ‘60 km, and the two
cases, L=10 Ax and L= 70 Ax, were treated. In deciding
the parameters w; and w, in the time integration scheme
and a time step Af, the computational phase speeds of
the waves were considered rather than the analytical
values given by (3.2). Computational modification of
phase speed or frequency depends on a choice of the
spatial differencing method and also on the wavelength.
For example, in the case of centered finite differencing,
the wave, either gravitational or meteorological, with
wavelength 4Ax yields maximum frequency (see Ap-
pendix 1 in Kurihara, 1965). In the present test the
weights w; and w, were fixed to 0.506 and 1, respec-
tively, and At= 60 s was used. These values were chosen
so that damping of the present meteorological waves
does not exceed 109, after 24 h.

The time integrations were performed at first for the
case with gravity waves only. The initial fields of #, v,
and ¢ were given by (3.3) with S;=0, Se=3S;=>50 m?
s~2. Since the fields after one marching step included
the computationally excited noise, the first time level
was redefined as the initial time. During the integration
for 48 h, the energy defined by

w412 1 ¢?
E=l: +— _—:I;
2 gH 2

where the brackets indicate the numerical sum over one
wavelength, was monitored. In Fig. 2, the energy
normalized by its initial value is plotted with dotted
lines against time. It is evident that medium-scale
gravity waves (L= 600 km) are almost completely sup-
pressed within two hours after {=0. The damping of
long gravity waves (L=4200 km) is relatively slow
because the frequency is low for long waves. The inte-
gration for the case of gravity waves alone was also
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—— PROPOSED SCHEME (w = .506, W,= 10}
————— EULER-BACKWARD SCHEME (W, =10,w,= 10}
------------ PROPOSED SCHEME, GRAVITY WAVE ONLY
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Fi16. 2. Variation of energy E normalized by its initial value with
time. The upper figure is for the wave with 600 km wavelength
and the lower one for 4200 km wavelength. The results from the
integration with the proposed scheme (solid line) and with Euler-
backward scheme (dashed line) are shown for the case when the
initial field contains both meteorological and gravity waves. The
result from the integration with the proposed scheme (dotted
line) for the case of gravity waves only is also shown.

carried out with the Euler-backward scheme. The re-
sulting lines showing the temporal variation of normal-
ized energy (not plotted in Fig. 2) were indistinguish-
able from those of the proposed scheme.

In the next test experiment, a meteorological wave
with. large amplitude was included in the initial per-
turbation field;i.e., S;= 1000 m?s72%, So=S5=50 m?s~2,
Accordingly, the energy E is mostly that of the meteo-
rological wave. The energy component due to the
gravity waves should decrease as examined in the
previous experiment, especially when L is 600 km.
Therefore, the ratio E({)/E(t=0) essentially reflects
the damping of the meteorological wave. As shown by
the solid lines in Fig. 2, the energy of this wave was
preserved well in the integration with the proposed
scheme. For the wave with L=4200 km, the decrease
. of the energy in 48 h is negligible. For the medium-
‘scale wave (L=600 km), E at 48 h is lower than the
initial value, but only by about 5:5%, of the initial. On
the other hand, when the Euler-backward scheme was
used in the time integration, the medium-scale meteo-
rological wave was damped significantly, leaving only
89, of the initial value after 48 h. The dashed lines in
Fig. 2 show the energy variation in these integrations.

MONTHLY WEATHER REVIEW

VoLUME 104

4. Remarks

By separating the terms of the primitive equations
at the corrector step of the iterative time integration
method, preservation of the amplitude of low-frequency
waves can be significantly improved. A scheme such
as proposed in the present paper would be useful in
treating medium-scale waves when the continuous
damping of high-frequency noise in the model is
desired.

If the diffusion effect is explicitly included in the
equation, it also yields damping of waves. Usually,
explicit diffusion terms can discriminate the different
space scales among the waves with the same frequency
while the damping scheme through time differencing
cannot. On the other hand, the latter scheme can dis-
tinguish the modes with different frequencies when
their wavelengths are the same, while the former
method cannot. In a complex system, dependency of
diffusion effect on frequency and wavelength is not
simple because of the interrelation between the wave-
length and frequency. If both of the above-mentioned
schemes are suitably formulated and used, then small-
scale high-frequency waves may be suppressed most
efficiently.

It is noted here that the proposed scheme does not
require more data space in a computer than the amount
used in the Euler-backward scheme. This is true be-
cause the data at the current level, i.e., £7, may be
replaced by #,= A"+ At{ (1—w)F1"+ (1—w2)F,7} at the
end of the predictor step. To obtain 471! at the corrector
step, &, and #* are then used. In the case of the Euler-
backward method, %7 and 4* are needed at the corrector
step. This is considered a special case of the proposed
scheme since %, becomes identical with 47 in the Euler-
backward method.
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