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ABSTRACT

Development of the band structure in a tropical cyclone is investigated by solving an eigenvalue problem
for perturbations of spiral shape. The perturbations are superposed on a baroclinic circular vortex accom-
panied with a radial and vertical basic flow.

It is shown that the spiral bands in three different modes may be intensified in an inner area of a tropical

" cyclone. The baroclinicity of a basic field is not required for the development of bands in any mode.

A spiral band which propagates outward can grow in the presence of the horizontal shear of the basic
azimuthal flow. Without the basic circular vortex, this band is reduced to a neutral gravity-inertia wave
with a particular vertical structure. The unstable spiral in this mode takes a pattern which extends clock-
wise from the center of a storm in the Northern Hemisphere. An azimuthal wavenumber 2 and a radial
scale (twice the band width) of 200 km are preferred by this band. Another band with the characteristics
of an inward propagating gravity wave may be excited in an inner area of a storm by its strong response
to the effect of diabatic heating. The third kind of band has the features of a geostrophic mode and moves
inward. Its development in an inner area is associated with the horizontal shear of the basic circular flow.
The bands of the second and the third mode have'not been observed in real storms. Dynamical bebavior
as well as the energetics of a band are discussed for each mode.

There exists practically no instability in the outer region of the storm for any kind of spiral band. It is
speculated that a band which grows in an inner area and propagates outward, i.e., the band of the first
mode mentioned above, may become a neutral spiral while moving toward the outer region. Some of the

outer spiral bands observed in real tropical cyclones may be interpreted as this kind of internal gravity-
inertia waves,
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1. Introduction

The results of an investigation on the development,
structure and behavior of spiral bands in a tropical
cyclone are presented in this paper. Eigenvalue solu-
tions are obtained for perturbations of spiral shape
which are superposed on the basic axisymmetric field
representing a tropical cyclone.

The banded structure of hurricanes and typhoons
has been noted in several observational studies where
radar or aircraft data have been available and, in
some cases, by correlating these data with meso-
synoptic data (e.g., Wexler, 1947; Simpson, 1954;
Ligda, 1955; Senn and Hiser, 1959; Tatehira, 1961;
Atlas e al., 1963). The analysis by the Staff Members
of Tokyo University (1969, 1970) revealed the banded
distribution in the time variation of rainfall intensity.
Satellite observations have also been used in con-
sidering a model including bands (e.g., Fett, 1964;
Fujita et ol., 1967). It is suggested in some, but not
all, of these analyses that the spiral bands in a tropi-
cal cyclone behave like gravity waves. Tepper (1958)
and Abdullah (1966) hypothesized that the bands are
gravity waves similar to pressure jumps. Similarity
to shallow water waves has also been suggested to
explain the bands (Arakawa and Manabe, 1963). In

his study of the Ekman layer instability, Faller (1961)
proposed an experimental analogy with the hurricane
spiral bands. The question concerning a possible role
of the Ekman layer instability in the formation of
bands will remain unanswered in the present study,
because the boundary layer will not be adequately
resolved by the hurricane model of this paper.

In recent years, it has been shown that the banded
structure of a tropical cyclone may develop in three-
dimensional numerical models. Anthes (1972) made an
analysis of the asymmetries in his model and sug-
gested a possible relationship between the bands,
which he mentioned were internal gravity waves, and
the eddies in the upper outflow layer. Kuribara and
Tuleya (1974) examined the phase relationships among -
the various meteorological quantities in the outer area
of their simulated tropical cyclone. They found the
features of internal gravity waves in the band struc-
ture. In their study on the energetics of the above
model, Tuleya and Kurihara (1975) mentioned the
possibility of the coexistence of two distinct kinds of
eddies in the inner region which receive energy,
respectively, from the kinetic energy of the basic flow
and from the total potential energy.

In the simulation experiments cited above, the
initial field for the numerical integration was axi-
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symmetric. The simplified models did not include the
effect of the latitudinal variation of the Coriolis
parameter. Mathur (1975) included this effect in his
model and made the integration starting from the
observed asymmetric initial field. The stationary and
the clockwise propagating bands developed in his
model. The shape and the structure of these bands
were different from those formed in the models by
Anthes (1972) and Kurihara and Tuleya (1974).
He concluded that development of the propagating
bands in his model is related to the release of latent

heat in the upper troposphere. This seems to suggest -

that many different factors may contribute to the
formation of various kinds of bands, some of which
may not necessarily take spiral shape.

This paper will deal with a problem concerning the
intensification of spiral bands of a tropical cyclone
in the presence of the basic axisymmetric flow. The
problem is posed in the form of an eigenvalue problem.
In Section 2, the perturbation equations are intro-
duced and the basic states are specified. In Section 3,
the perturbation fields of spiral shape are classified
into three basic modes according to the physical
characteristics of the eigensolutions for the simplified
conditions. Then, separately for each mode, the role
of different physical factors in the growth of bands
is examined by changing the level of sophistication
of the system of equations, and the preferred spiral
pattern and scale are discussed. In Section 7, the
energetics of the spiral bands are presented. Although
the present approach to the problem is somewhat
crude, the analysis results would be hopefully heuristic
and informative in interpreting the spiral bands.

2. Perturbation equations and basic state
a. Perturbation equations

The linearized equations for small perturbations
superposed on a basic axisymmetric meteorological
field are given for a cylindrical-pressure coordinate
system. These equations are as follows:

EQUATION OF MOTION

ou ou aU ou ou AU
—= VW —y—
at o dr Rde dp op
27\ 8¢
H A bt irs @)
R or
dv dv 3V dv dv AV
—= gV Wy
at dr 9r Rao ap 9p
(f V) U o
- f+— Ju——v——-FuF,+vF,. (2.2
R/’ R Rae 7 22)

Here ¢ is time, 7 the radius, ¢ the azimuthal angle,

YOSHIO KURIHARA

941

p the pressure, and f the Coriolis parameter. The
basic flow consists of the radial (outward) and the
azimuthal (counterclockwise) component of horizontal
wind and the vertical p-velocity, i.e., U, V and W,
respectively. The corresponding perturbation flow is
denoted by #, v and w, respectively. The perturbation
geopotential for an isobaric surface is expressed by ¢.
The last two terms in (2.1) and (2.2) represent the
effects of horizontal and vertical diffusion of # and v,
respectively. As indicated by the third term on the
right-hand side of the equations, the angular velocity
at the reference radius R is used for the azimuthal
advection. The effect of differential azimuthal ad-
vection will be included, in the next section, in the
terms for the horizontal diffusion.

All the coefficients of the above equations are given
as functions of pressure only. Note that dU/dr and
dV/dr also appear as coefficients for certain terms,
although the coefficients U and, V are treated as being
invariable with respect to radius. This is done in
order to include the effect of the horizontal shear of
the basic flow which is of possible importance.

The basic flow field in an actual tropical cyclone
varies with radius. A band may behave differently at
various radii. In this study, this situation is dealt
with as follows. At first, a certain value is chosen
for a reference radius and a set of coefficients of the
perturbation equations is derived from the observed
meteorological fields at this radius of a tropical cyclone.
The equations are solved for this case. Next, specifying
another reference radius, the other set of coefficients
is determined similarly and the solution for the equa-
tions with these coefficients is obtained. Now, each of
the two obtained solutions is assumed to be valid
only in the vicinity of the corresponding reference
radius. If the difference in the two solutions is small,
a perturbation is supposed to-undergo a gradual
change from one radius to the other.

The validity of the above strategy depends on the
basic features of real tropical cyclones as well as the
radial scale of disturbances to be analyzed. As men-
tioned before, the coefficients of the perturbation
equations are treated as functions of pressure alone.
This assumption may be tolerable when a certain
condition of the basic field, which contributes pre-
dominantly to the determination of the dynamical
behavior of the perturbation, varies slowly for a radial
range comparable to the radial scale of the bands.
It will turn out later that the radial shear of basic
flow is an important factor. Then, if the radial shear
does not change very much for an appropriate radial
range near a reference radius, the coefficients of the
perturbation equations may be approximated by the
values at the reference radius. In the present study,
two solutions are obtained for two reference radii,
where the basic states are different from each other,
but not drastically. Comparison of two solutions may
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be one way to check the present scheme. If the solu-
tions at two radii are quite different, it may mean
inappropriateness of the analysis method. This did
not happen in this study. Thus, in spite of the limita-
tion to its utilization, it is hoped that the present
method yields meaningful results.

TENDENCY EQUATION

The change in geopotential height of the lowest

pressure surface, which is 1000 mb in the present

model, is related to w at that level by the relation

3., 0%, 3¢, R,T
—U -V TG .

ot or Sr Ray

3.

(2.3)

Here &, represents geopotential of the basic 1000 mb
surface, R, the gas constant and T the temperature.
The relation (2.3) is equivalent to the condition that
the vertical motion vanishes at the surface, as will
- be explained in Section 3b. :

CONTINUITY EQUATION

ou u 0v dw
-

T I ‘IL =0. (2.4)
or R Rde ap
HYDROSTATIC RELATION
The hydrostatic relation is assumed to hold:
. 2 )
2. e
dlInp Poo

Here 0 is the perturbation potential temperature,
P00=1000 mb, and «=R,/c, where ¢, is the specific
heat of air at constant pressure.

THERMODYNAMIC EQUATION

a0 a0 90 a9
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Here © is the potential temperature of the basic
field. The last two terms are the effects of horizontal
diffusion and of diabatic heating, respectively. The
formulas for those terms as well as those for the
effects of diffusion in- (2.1) and (2.2) will be given
in the next section. '

b. Perturbations of spiral shape

In the present study, a functional form for ex-
pressing the perturbation field is given a priori.
Specifically, noting the leading term in the asymp-
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totic series used to represent the Bessel function for
large arguments (e.g., Lamb, 1932), the following
form is chosen for describing a perturbation field of
spiral shape:

r . —% 27
x=A(k—) exp[i(m«pi;r—at)], @.7n

where x stands for a perturbation quantity. In the
above form, the radial argument is expressed by
2nr/D where D is the radial wavelength. The case
with r=150 km and D=200 km will be discussed
often later. The argument for this case is 4.7. The
Bessel function for this argument can be approxi-
mated fairly well by the leading term of asymptotic
expansion. It is anticipated that, when the argument
is not small, a solution to be obtained in the above
form would be a good approximation to the rigorous
solution for the perturbation equations and suitable
boundary conditions. _

In (2.7), A is the complex amplitude at the radius R
and is a function of the vertical coordinate. It is to
be determined as an eigensolution in the following
analysis. The physical requirement that the kinetic
and the available potential energy along a radius
circle must be preserved for a radially propagating
neutral perturbation is satisfied by the amplitude
variation factor (r/R)~% For small r, x may become
very large because of a relaxed condition implied
by (2.7). However, a small central area is excluded -
from the region of interest. As mentioned before, an
obtained solution will be regarded as valid only in
the neighborhood of the reference radius R. The scale
of a spiral band is determined by the azimuthal
wavenumber m and the radial wavelength D. For a
given combination of m and D, there exist two spirals
with different orientation depending on the sign = in
(2.7); the plus sign requires a spiral to extend clock-
wise from the center, which will be called an N-type
spiral, and the negative sign yields an S-type spiral
which extends counterclockwise. The schematic pat-
terns of spirals, both N-type and S-type, for the dif-
ferent wavenumbers are shown in Fig, 1. The areas of
negative value are shaded. The actual observations
suggest that the spirals of N-type are typical in the
Northern Hemisphere, and the S-type in the Southern
Hemisphere. The angle with which a constant-phase
line intersects a circle of radius 7 is easily obtained:

mD
B= arctan(——) .

27y

(2.8)

A complex number ¢ in (2.7), which is to be ob-
tained as an eigenvalue from the condition that the
amplitudes of perturbations are non-zero, represents
the frequency ¢, as well as the growth rate ¢, ie,

‘e=¢,+1ic;. In other words, 2m/o, gives the period
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F16. 1. Schematic figures showing the spiral patterns for dif-
ferent azimuthal wavenumber . Negative areas of perturbations
are shaded. Both the N-type and S-type spiral patterns are
shown.

during which a phase of perturbation propagates by
one complete cycle; and 1/o; is the so-called e-folding
time. When ¢,>0, a constant-phase line propagates
counterclockwise and outward for an N-type spiral,
and counterclockwise and inward for an S-type spiral.
However, if ¢,<0, it moves clockwise so that a spiral
appears to converge for the N-type pattern and to
diverge for the S-type. In the Northern Hemisphere,
the actually observed outer spiral bands move as
N-type spirals with ¢,>0.

In the present analysis, the perturbation equations
(2.1)-(2.6) are applied to discrete pressure levels. In

case of a perturbation of the form (2.7), its time and °

horizontal derivative are expressed as d/9i= —io,
9/9¢=1im and 8/dr==+1(2r/D)— (2r)~". If the vertical
derivative of a perturbation quantity is replaced by
vertical finite differencing, then a system of homo-
geneous equations for the perturbation amplitudes is
derived. The solutions are, of course, nontrivial only
when ¢ takes proper values for a given basic field
and for the specified values of m and D.

In Table 1, the pressure levels where the perturba-
tion variables are defined are listed. There are 28
variables in total. Egs. (2.1), (2.2) and (2.6) are
applied to the levels for which %, v and 4 are assigned,
respectively. The variation of ¢ at 1000 mb is governed
by (2.3). The hydrostatic relation (2.5) is applied to
a layer between 1000 and 900 mb and also to four
layers, each 200 mb thick, between 900 and 100 mb.
The continuity equation (2.4) is used for each of four
200 mb intervals between 1000 and 200 mb, and also
for a layer between 200 and 100 mb. At 100 mb,

YOSHIO KURIHARA

943

w is set to be half of that at 200 mb. The equation
system can be closed with the above 18 prognostic
equations and 10 diagnostic formulas. The number
of eigenvalues is therefore 18 for a given set of pa-
rameters which determine the scale and type of a
spiral. In the present study, a specially prepared com-
puter program was used to obtain the eigenvalues and
the corresponding eigensolutions.

A careful formulation of the vertical finite dif-
ferencing is required in the present problem since the
vertical resolution is coarse. Also, the calculated solu-
tions with many nodes in the vertical are not stressed
since their numerical reliability is considered poor.
Some remarks on the numerical schemes used in the
present analysis are given in Appendix A.

¢. Basic field

Basic meteorological fields are specified for the two
reference radii, R=150 km and R=400 km. The field
at 150 km radius represents a strong baroclinic circular
vortex near the periphery of core region of a tropical
cyclone. It has strong inflow in the boundary layer
and outflow at the upper levels. Its stability is almost
moist neutral. This stability may be too large as
compared to the actual stability at this radius. How-
ever, the analysis results are not sensitive to a small
reduction of stability. The field at 400 km radius
approximately describes the outer region of a storm.

Table 2 shows the values used for the temperature T,
the azimuthal flow V, and the other parameters de-
rived from them at the two radii. This table indicates
the pressure levels where each quantity is defined.
The principal quantities are specified by taking into
consideration the results of observational analyses and
of numerical simulation experiments (e.g., Jordan,
1958; Kurihara, 1975). Some of the procedures used
in determining the radial-vertical flow, U and W, are
explained in Appendix B.

The vertical variations of ®, V and U are obtained
by the finite-differencing technique. The radial change
of © is derived as follows. First, the radial gradient
of pressure, i.e., d®/9r, above 900 mb is estimated
for the given V by applying the gradient wind balance
relation. The Coriolis parameter f takes the value
5X1075 571, The pressure gradient at 1000 mb is set
equal to that at 900 mb. Then, the gradient 00/dr

TasLE 1. Pressure levels where the perturbation
variables are defined.

Variable Levels (mb)
P) 200, 400, 600, 800, 1000
u 100, 300, 500, 700, 900, 1000
v 100, 300, 500, 700, 900, 1000
¢ 100, 300, 500, 700, 900, 1000
w 200, 400, 600, 800, 1000
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TABLE 2. Basic fields at the 150 km and the 400 km radii.
EL:) 30 3% av (14 U v
R » T G} or k) ar 1% ar 3P U or 3 w
(km) (mb) (K) (K) (Km=) (KPa™) (ms™2) (ms™) (s1) (msPa?) (ms™) (s71)  (ms'Pat) (Pas™)
X105 X10-4 X10-3 X10-+ X103 X104 X103 X101
150 100’ 0.31 4.0 —0.19 1.37 —0.06
200  225.7  357.47 —1.53 —-17.56 ) 0.75 —0.03 -1.50
300 i ) 3.36 19.0  —0.89 0.68  —0.03
400 2635  342.36 ~3.09 —8.22 . 0.48 —0.03 ~1.78
500 ’ : 6.84 28.5 —1.33 0.0 0.0
600  280.5  324.58 —1.62 —8.00 0.15 —0.03 ~1.78
700 . 8.19 315 —1.47 —0.68 0.03 .
800 2912  310.37 -0.35 —6.34 0.03 —0.03 ~1.50
900 8.43 32.0 —1.49 —1.37 0.06
1000  299.2  299.20 0.0 ~5.59. 8.43 202 —0.78 -1.18 —16.64 0.77 —1.53 0.0
400 100 —0.07 -1.4 —0.00 0.43 —0.01
200 218.0  345.27 ~0.06 —6.66 : ©0.13 —-0.01 ~0.20
300 0.06 1.1 -0.02 0.21 —0.00
400 2555  331.96 —0.40 —6.88 0.32 —0.01 ~0.24
500 0.51 7.4 —0.13 0.0 0.0
600  274.6  317.75 —0.30 —6.30 0.14 —0.01 ~0.24
700 0.76 10.1 -0.18 —0.21 0.00
800  287.8  306.75 —0.55 —4,64 0.17 —0.01 ~0.20
900 : 1.13 13.5 —0.24 —0.43 0.01
1000 299.2  299.20 0.0 —3.77 1.13 9.9 —-0.14 ~0.36 —5.2 0.08 —0.48 0.0

is obtained through the hydrostatic relation. At
1000 mb, 9®/3dr=0 is assumed. In order to -specify
the radial change of V, the empirical relation (e.g.,
Riehl and Malkus, 1961)

RA\»
— (2.9)
r

V(r)=V(R)‘( )
is used, which results in 8V /9r=-~AV/R at r=R.
As for the value of A, Riehl and Malkus (1961) sum-
marized that the range 0.5-0.6 appears excellent for
the observed surface wind. In the present study, the
surface wind is related to the wind at 900 mb and A
for the surface wind is obtained to be 0.58 if X for
the 900 mb level is set to 0.7 (Appendix B). The
value 0.7 is adopted for A at all levels above the
900 mb surface, except for the 100 mb level at the
400 km radius where A= —0.1. Note that the relative
vorticity, which is given by (aV/ar)+ (V/R)
=V (1—\)/R, is positive when V>0 and A<1. As for
the determination of aV/dr at 1000 mb and aU/or
at all levels, and the subsequent computation of W,
see the explanation in Appendix B.

3. Method of analysis and classification of spiral
bands

a. Analysis level

The behavior of a spiral band is subject to various
physical factors such as the stratification, the state
of basic flow, the effect of heating, and so on. In the
present study, the contribution of each factor to the
intensification of a spiral band is investigated by
taking the different effects, one by one, into the sys-
tem of equations. The eigenvalues and the correspond-

ing eigensolutions are obtained at each analysis level,
beginning with the simplest condition and ending with
the case where all terms of the prognostic equations
(2.1), (2.2), (2.3) and (2.6) are involved.

In Table 3, the analysis levels are defined in ascend-
ing order by indicating the physical factor which is

TABLE 3. Definition of analysis levels. Physical factors and the
corresponding terms in the prognostic equations to be added at
each level are listed. The continuity equation and hydrostatic
relation are used at all levels. '

Additional Terms added in the prognostic equations

Analysis factor at a_u = ﬂ = 8_0 = gi' =
level each level at a3 at at
ALO _9¢ . _9¢ 1

ar Rae . +Pn we
AL1 static stability 90
—aTw
ap
AL2 rotation +fv —fu
AL3 azimuthal flow. u 3y , a6 dpe
vs]riithvertiéal —VR‘),P _VRag; —VRap —VR3¢
e 2v, 2v 28, _o%
& R ar ar
14
ap
AL4 lorizontal shear _av +K u
‘ ar 'R
AL35 radial-vertical ou av a0 __y,9%
circulation -Us _Ua_, _Ua-, ar
174 U a0
ot & Wor
au 3y
L —wZ
ap” ap
ou
_W5 »
AL6 surfacefriction +vFu +vFy
AL7 lateraldiffusion +uFu +uF5 +uFy
AL8 heating +g¢
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to be added at each analysis level and the terms
representing its effect in the prognostic equations. The
continuity equation and the hydrostatic relation are
applied at all analysis levels. Brief remarks on each
analysis level follow:

ALO (analysis level 0): A spiral band is in the
simplest environment, i.e., a calm, neutral atmosphere
without including the effects of viscosity, heating, or
that of the earth’s rotation. Only pure external gravity
waves exist at this analysis level.

AL1: The stratification is introduced. It is almost
moist neutral when R=150 km and near the mean
condition for the tropics in the hurricane season if
R=1400 km. In addition to the external gravity waves,
pure internal gravity waves appear.

AL2: The effect of the earth’s rotation is taken .

into consideration. The waves at ALl are modified
to become neutral external and internal gravity-
inertia waves. Besides these waves, the fields of almost
geostrophic mode are possible. All analysis results in
the following sections are for the case f=5X10-5 s~
Analysis is also made with f=—5X10-5 s~! which
represents the tropics of the Southern Hemisphere.
The results for the latter case is briefly mentioned in
Section 8.

AL3: Basic azimuthal flow V with vertical shear
only is introduced. Note that the parameter 2V/R,
which appears at this level in Table 3, represents the
relative vorticity for this flow. The radial variation
of the basic temperature and pressure fields, which
satisfies the gradient wind and hydrostatic relations,
is also included. ’

AL4: Radial shear, —79(V/r)/dr, is included in the
basic flow field.

ALS: The radial-vertical circulation, i.e., U and W,
is added to the basic field.

AL6: At this analysis level, the surface friction is
allowed to influence the perturbation flow # and w.
In the presént study, the effect of vertical diffusion
of # and v is assumed to be negligible except at the
1000 mb level where it is expressed by |

vl u= —cott,

vF,= —cqv. 3.1)

The value 10~® s~ is used for c,.

AL7: The terms representing the effect of horizontal
diffusion of #, v and @ are incorporated into the sys-
tem of equations. As mentioned in Section 2a, the
effect of differential azimuthal advection, which will
be explained below, is considered in addition to the
conventional diffusion. A constant-phase line of the
spiral band makes the orientation angle B, given by
(2.8), relative to the basic azimuthal flow. If the an-
gular velocity varies with radial distance, the phase
line tends to be twisted, unless B=0, so that the
specified spiral patterns is effectively destroyed. We
assume that such an effect of differential advection
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may be expressed in the form

) ( V)
or\r

where x stands for one of #, v and 8, and d=10 km.
Then defining K, as the product of d, |a(V/r)/dr|

and |sinB|, the terms for the horizontal diffusion
may be written'

e

—d

ox

d¢

|sinB|

; 3.2)

w2 0dv ou
HF“=K1<V2u'—————— —) —Ky|—
R? R20¢ do
v 2 Ou 9o
HF,,=K1(V27)—'—'+— ——) —Kz -_— y (3.3)
R R? 9 de
a6
pFo=K,V—K,|—
dp

where V2= —[ (2r/D)*+ (m*—0.25)/R¥] owing to (2.7) .
and K= 10° m? s~ is used.

AL8: By adding the effect of heating associated
with the perturbation flow, the system of equations
becomes complete. Heating of the so-called CISK type
(e.g., Yamasaki, 1969) is used in this study; namely

90
S
ap

where wr is the average of w at the 800 and 1000 mb
levels. For the parameter %(p), two different sets of
values are assigned according to the frequency of wr.
It is assumed that, if the frequency is high, the release
of latent heat is limited to the lower levels since the
energy supply to convective cells does not last long.
On the other hand, if wr varies slowly with time,
deep convection may develop. Depending on |o.| at
the analysis level AL7, the following values are used:

(34)

k at 200, 400, 600 and 800 mb

0.1, 0.6, 1.9 and 1.8, for |o,| > 10~ s~

1.1, 1.3, 1.2 and 1.1, for |o,| <10~ s~ '

b. Three basic modes of spiral bands

In the previous section it was noted that, for the
present vertical resolution (Table 1), the numerical
solution of the perturbation equations for given m, D,
and a specified type is obtained for each of 18 eigen-
values. At the low order analysis level, however, the
number of meaningful solution is reduced due to the
simplicity of the system. The number is 2 and 12,
respectively, at ALO and AL1. It becomes 18 at AL2.
After that, each of the 18 solutions is modified as the
analysis level is raised. It is not difficult to follow
each solution from one analysis level to the next and,
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hence, to find out how it is changed by the physical
factor added at the higher level.

For the sake of convenience in the following analy-
sis, the 18 solutions ate classified into the three basic
modes, each having unique characteristics at the low-
order analysis level and responding to a certain
physical factor quite differently at the high-order
analysis level. :

All solutions obtained at AL1, i.e., the spiral bands
in the stratified atmosphere, are gravity wave modes.
Two of them are external mode- solutions and can be
traced back to ALO, and the rest are pure internal
mode solutions. These gravity wave modes are neces-
sarily neutral for the present stably stratified atmo-
sphere. (Although the computed growth rate o; is
not exactly zero, it is very small; i.e., the computed
e-folding time is 30 to 300 years, suggesting a high
degree of accuracy in the numerical results.) The 12
solutions at AL1 are classified into two groups based
on the direction of the radial phase velocity. The six
~ bands which propagate radially outward are called
the G-mode spiral bands. These bands are represented
by a positive frequency (s,>0) for the N-type spirals
and ¢,<0 for the S-type spirals. On the other hand,
the inward propagating bands, for which the sign of
the frequency is opposite to that mentioned above,
are defined as the H-mode spiral bands.

The above-mentioned neutral gravity waves, propa-

gating in a cylindrical coordinate domain, bring about

the radial transport of energy through the so-called .

pressure work. Accordingly, a small central ‘area is a
region of energy source or sink for these waves.

Fig. 2 is presented to illustrate the structure of
each of the six N-type G-mode bands at AL1, which
are denoted by the symbols G1, G2, etc. This figure
represents the case for m=2 and D=200 km. Later,
it will turn out that this case yields the most unstable
band of the G-modes. In Fig. 2, the schematic flow
pattern and the temperature perturbation on the radial
vertical cross section are shown as well as the dis-
tributions of # and w on the verticals along which
they vary the most. All flow patterns for G1-G6 do
not exhibit vertical tilt. The values of # and w in the
figure are normalized with respect to the maximum u.
These variables have the units m s~ and 102 mb s™1,

respectively.

"~ The vertical velocity w is related to w by

ad

i)
w=—p+V'V‘1§+w—£.
at 0z

Using the hydrostatic balance relation, w is given by
9o w\1
om(Bves2).

ot r/g

where p is the density of air and g the gravitational

'
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acceleration. Note that the tendency equation (2.3)
is the linearized version of this equation under the
condition w= 0. Usually, w is approximated by —w/ (og)
except near the surface where the contribution from
(0¢/0t+V-Ve)/g is not negligible. The above rule
applies to the internal gravity wave modes G2-G6.
For the external gravity wave mode Gl, the two
terms 9d¢/0¢ and —w/p more or less cancel and w
becomes very small at all levels. If w of this mode
is computed at ALO by using the density correspond-
ing to the isothermal air, it vanishes everywhere and
the Lamb wave is obtained. '

In Fig. 2, the radial variation of the surface pres-
sure p, is shown by the dotted lines. This variation
is derived from the geopotential height of the 1000 mb
surface. For the same maximum amplitude of #%, the
amplitude of p, increases as the number of nodal
points in the vertical profile of # or w decreases.
The phase speed of outward propagation is estimated
by ¢.D/(2r) and is also shown in the figure. Except
for G6, the frequency o, is very large compared to f,
suggesting the insensitivity of frequency for G1-GS
to the effect of the earth’s rotation. The field of v
(not shown in Fig. 2) has an interesting feature. For
the G1-GS modes, the correlation between v and
is positive for the N-type spiral while it is negative
for the S-type. In other words, the angular momentum
is transported outward by the N-type spiral and
inward by the S-type. This suggests that, when the
horizontal shear of basic flow is incorporated at AL4,
either the N-type or the S-type spiral will respond
positively to the shear and the spiral of the other
type may be damped.

The H-mode spiral bands at AL1, i.e., H1, H2, etc.,
are quite similar to the corresponding G1, G2, etc,
except for the 180° phase difference of the thermo-
dynamical field and the reverse in the direction of
radial propagation. The correlation between # and v
is the same with that for the G-mode. It will be shown
later that the H-mode bands are sensitive to heating
and their behavior becomes different from that of the
G-modes.

At AL2, when the Coriolis term is included in the
momentum equations, six more solutions appear be-
sides the G-mode and H-mode bands. They will be
called the F-mode spiral bands. At this analysis level,
however, the growth rate of the F-mode bands are
nearly zero and the obtained perturbation flows are
almost geostrophic. At AL3, when the basic axisym-
metric wind with the vertical shear is introduced, the
bands are advected and a weak dynamical coupling
between the neighboring levels occurs through a very
weak vertical motion. Fig. 3 shows the vertical varia-
tions of the amplitude and phase of %, v for F1 through
F6 (N-type). It is seen that the amplitude of an
F-mode band is predominant at a certain pressure
level and the phase difference between # and v is
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Outward propagating (G-mode) bands at ALl (m=2, D=200 km)
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F1c, 2. Structure of N-type G-mode bands at AL1. The parameters are speci-
fied as m=2 and D=200 km. Vertical profiles of » and w, schematic low patterns
and perturbation temperature fields for the radial-vertical cross section, radial
variation of surface pressure (dotted line), and the radial speed of phase propa-
gation are shown for modes G1 through G6.

about 180°. In the case of S-type F-modes, v is almost
in phase with #%. This may imply that either of the
N-type or the S-type F-mode band is selectively
amplified in the presence of the horizontal shear of
the basic flow.

It should be mentioned here that there are 36 solu-
tions for a set of scale parameters m and D, ie.,
18 solutions each for N-type and S-type. In this
subsection, the solutions were classified into three
basic modes according to their dynamical features.
Now, the bands of N-type G-mode, N-type H-mode,
and N-type F-mode can be paired with those of
S-type H-mode, S-type G-mode, and S-type F-mode,
respectively.” These matches can be made from in-
spection of the obtained solutions particularly at the

low-order analysis levels. For example, the N-type
G3-mode and the S-type H3-mode constitute a pair
of complex conjugate solutions at AL3. They have
the same frequency (o,), and the amplifying rate (o)
of the former band and the damping rate (—a;) of
the latter band are the same. A similar comparison of
the growth rates of paired bands may be made by
using the figures to be presented later (Figs. 5, 8
and 10). For instance, the growth rates of N-type
G-mode bands at AL3 or AL4 can be compared with
those of thé S-type H-modes; also-the growth rates
for the N-type F-modes can be compared with those
of the S-type F-modes. Usually, a damping component
is not of interest in the investigation of instability.
However, in the present study, all bands are traced
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F-mode bands at AL3 (N-type, m=2, D=200 km)
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Fi16. 3. Structure of N-type F-mode bands at AL3. The parameters m=2 and
D=200 km are used. The amplitude and phase of # and v as a function of pressure

level are shown for modes F1 through F6.

to the higher order analysis levels in order to see the
effect of various physical factors on the behavior of
the bands. In the following sections, this discussion
is presented separately for each mode.

4. Development of G-mode bands

Instability of the G-mode bands in the inner region
of a tropical cyclone (R=150 km) is investigated
first. The growth rates of each G-mode were obtained
at all analysis levels for different wavenumbers (m=0
through m=6 and both N-type and S-type spirals)
and different radial scale (D=10 through 400 km).
According to the present calculations, the most un-
stable band at AL8 is the N-type G3-mode spiral
with m=2 and D=200 km. The growth rate of this
band is 4.16X 1075 571, or its e-folding time is 6.7 h.
Fig. 4 shows the growth rate of the G3-mode band
at AL8 as a function of m and D. It is seen that the
N-type pattern has large growth rates, with wave-
numbers m=1 to m=23 being preferred for develop-
ment while the S-type pattern has a large damping
rate for all wavenumbers greater than m=1. The
preferred radial scale is 200 km, corresponding to a
band width of 100 km. In Fig. 4, the neutral stability
" curve for ALY, i.e., the adiabatic case, is shown by
a heavy dashed line. It is seen that the area of in-
stability is larger for AL8 than for AL7, but not by
very much. It may be suggested that the preferred
shape and scale of the spiral pattern of the G3-mode
band are changed little by the effect of heating.

In order to see the effects of different physical
factors on the stability of the G-mode bands, the
variation of the growth rate with the analysis levels
is examined for each mode. The parameters m and D
are fixed at 2 and 200 km, respectively. The analysis
results are presented in Fig. 5 in a form of a column
diagram. In case of the N-type spiral, all modes are
neutral at AL1 and AL2. The baroclinicity which is
introduced at AL3 does not have a significant effect
on any mode. The external gravity wave mode Gl
is excited at AL4 but is suppressed at AL5 when the
basic circulation on the radial-vertical plane is in-
troduced. The growth rates of the internal gravity
wave modes (G2, G3, G4) increase significantly at
AL4 and ALS. This result indicates the positive con-
tribution of horizontal shear of the basic azimuthal
flow and also of the heating effect to the development
of the spiral band. Note that the modes G2, G3
and G4 can develop even in the adiabatic case. Ac-
cordingly, the heating effect appears not to be the
factor of the primary importance. The energetics of
the G3-mode band at AL8 is given in Section 7.
In the present case, the mode G5 develops at AL4
but it is stabilized by the effect of heating. The G6-
mode does not develop at any analysis level. The
unstable bands at AL8, i.e., G2, G3 and -G4, propa-
gate outward and counterclockwise. Their radial phase
speeds are 69, 33 and 25 m s7, respectively.

As for the S-type spirals, all G-mode bands except
G6 cannot develop as seen in Fig. 5. The S-type G6 is
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excited at ALS when the radial and the vertical com-
ponent of basic flow are incorporated. Every G-mode
band, ‘both N-type and S-type, propagates radially
outward at AL2. Most of them still move outward
at ALS, although the speed is affected by the physical
factors added at the higher analysis levels. However,
in case of the S-type G6-mode band, even the moving
direction is changed and it propagates inward at a
speed of 31 m s~

The stability of the spiral bands in the outer region
of the storm was also analyzed by applying the basic
field specified for the 400 km radial distance (Table 2).
The computed values of the growth' rate indicate
that, when the diffusion effects are included, no G-mode
bands of any spiral shape develop significantly in the
outer region. Some bands have a large damping rate
and others are almost neutral. For example, the
growth rate of the G3-band with m=2 and D= 200 km
at AL7 is —0.03X10~® s™* for the N-type spiral and
—0.35X107® 57! for the S-type. Adding the effects of
heating at ALS8, the growth rates for those bands
become slightly positive, i.e., the corresponding e-fold-
ing times are 81 and 230 h, respectively, for the N-type
and S-type bands. However, these growth rates are
insignificant for the fast moving bands.

Based on the analysis results obtained so far, it
may be speculated that the N-type G3-mode spiral

m=6 -

rowth rate {10-3s-1)
G

N-type
w
I

S-type
w
|

200

(D, km}
Fi1G. 4. Growth rate of the G3-mode band in the inner region

(R=150 km) at the analysis level AL8 as a function of the

wavenumber # and the radial scale D. The negative region is
" shaded. Heavy dotted line is the neutral stability curve at AL7.
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N-type S-type
G-mode G-mode m=2
112[3]4]5]6| [1]2]3]4]5]6]| D=200+km
ALl (neutral) {neutral)
AlL2 (o]

AL3

Al4

ALS

AL6

growth rate of G-mode bands (10-3.5-1)

AL7

AlL8

Fic. S. Instability of the G-mode bands (m=2, D=200 km)
at the different analysis levels. The growth rate for each of the
modes G1 through G6, both N-type and S-type, is represented
by the height of the column. A stable damping mode is indi-
cated by a shaded column extending below the horizontal
neutral line.

band with m=2 and D=200 km develops in the
inner area of a tropical cyclone, propagates outward,
and becomes neutral in the outer region. In order to
see the smooth transition of the band structure be-
tween the inner and the outer area, Fig. 6 is presented.
In this figure, the radial-vertical cross sections of #,
w, 9, ¢ and 6 at R=150 km at AL8 and those at
R=400 km at AL7 are compared. At R=400 km,
AL7 is chosen in assuming that the air is not quite
moist. At any rate, the behaviors of the band at AL7
and AL8 are about the same in the outer region. The
similarity between the corresponding fields in the left
and the right parts of the figure is very good. The
radial (outward) phase speeds at the two radii are
nearly the same—33 m s™! at 150 km and 26 m s
at 400 km. Accordingly, the gradual transformation
of the band during its outward propagation seems to
be probable. The cross sections of # and ¢ at both
R=150 km and R=400 km clearly shows the positive
correlation between the two variables. Therefore, the
energy of the band is transported outward through
the pressure work.

Kurihara and Tuleya (1974) made a detailed anal-

" ysis of the bands which appeared in the outer area

of a three-dimensional numerical simulation model of
a tropical cyclone. Tuleya and Kurihara (1975) exam-
ined the role of asymmetric structure in the energetics
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FIG. 6. Structure of the G3-mode band (m=2, D=200 km) at R=150 km at
AL8 and at R=400 km at AL7. Radial-vertical cross sections of #, w, 7, ¢ and 8
are presented. Shaded areas in the lower cross sections show warm regions in the -

@ perturbation.

of the above model.. From the comparison of their
results with the present analysis, it may be concluded
that the band which developed in their model cor-
responds to the N-type G3-mode band. Kurihara
(1975) noticed that an outward propagating band also
appeared in his axisymmetric model. This may be
a manifestation of the weak instability of the band
with m=0 as shown in Fig. 4. :

The structure and behavior of the so-called outer
spiral bands in a real tropical cyclone can be described
fairly well by those obtained in the above-mentioned
three-dimensional models (Kurihara and Tuleya, 1974).
Thus, the actual outer spiral bands, at least some of
them, may be interpreted as the counterclockwise,
outward-propagating, internal gravity-inertia waves
which are intensified in an inner area by the radial
shear of the azimuthal flow and possibly also by the
effect of heating.

5. Development of H-mode bands

The H-mode spiral bands are defined as the inward
propagating gravity waves at AL1. The analysis of
these bands in the inner area (R=150 km) revealed
that the H3-mode band responds strongly to heating.
Fig. 7 shows the distribution of the growth rate of -
H3-mode at AL8 in the wavenumber and radial scale
domain. The neutral stability curve for the same
mode in the. adiabatic case (AL7) is also shown.
In the absence of heating, the instability is limited
to the N-type spirals only and for the parameter
range m=1 to m=4 and D2100 km. The unstable
region outside the heavy dashed curve in Fig. 7 is
established by the heating effect at AL8. The growth
rate of the S-type spiral with radial scale in the order
of 10 km is especially large. It exceeds 2X 10~ s7%, or
the e-folding time is in the order of 1 h.
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m=6 — h rate (10°3s7)

200
(D, km)
F16. 7. As in Fig. 4 except for the H3-mode band.

The dynamical response of each of the H-mode
bands is presented in Fig. 8 for the case m=2 and
D=200 km which represents a case favorable for
the instability without heating. This figure, which is
similar to Fig. 5, shows the growth rates of each
mode at the different analysis levels. In the case of
the N-type spirals, the HI-H5 modes are destabilized
by horizontal shear of the basic azimuthal wind.
However, only the H2 and H3 modes remain unstable
at AL8. Their radial phase velocities at AL8 are
directed inward and have the values 54 and 14 mi s,
respectively. It is seen that the radial and vertical
flow introduced at ALS acts to suppress the external
gravity wave mode H1 as well as the H4 and HS5
modes. As seen in Fig. 8, the latter modes are further
stabilized by the effect of heating. All S-type modes
with m=2 and D=200 km are dynamically stable at
the analysis level AL7. The S-type H3-mode with
this scale is excited by the heating at AL8 and propa-
gates inward with a phase speed of 31 m s™%.

As suggested by Fig. 7, the spiral bands, both
N-type and S-type, with a radial scale <75 km may
grow in the inner area if the heating effect as pa-
rameterized in the present study is added. In that
case, the H3-mode, especially that with S-type pat-
tern, is sensitive to the heating effect. All of the
thermally excited bands propagate inward. The speeds
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of S-type H3-mode spirals (m=2) with D=25 km and
D=350 km are 19 and 21 m s}, respectively.

The instability analysis was carried out also for the
H-mode bands in the outer region of a storm. There
exists no H-mode band which is dynamically unstable
at AL7. The addition of the heating effect does not
destabilize it. For example, the growth rate of the
H3-mode with m=2 and D=200 km at AL8 is —0.23
X10-5 571 for the N-type and —0.43XX 1075 57! for the
S-type, respectively. The corresponding values for
D=100 km are —0.58X10~% s7! and —0.67X107% s7,
respectively, indicating a larger damping rate for a
band with a smaller radial scale.

As H-mode spirals propagate inward and they may
grow only in the inner region, these spirals, if ob-
servable, would appear in the inner area only. How-
ever, spirals of this kind have not been definitely
observed in a real storm. This should be either due
to modeling problems which might have yielded ficti-
tious solutions or due to some factors which may
deform the idealized solutions. In the present study,
the effect of heating is incorporated at AL8 through
Eq. (3.4). Contribution of this -effect in comparison
to the adiabatic warming or cooling effect due to
local vertical motion depends on the phase relation
between the local w and wr as well as on the parame-
ter h. Accordingly, some modes having a favorable
distribution of w at a certain radius may respond- to

N-type Stype
H-mode H-mode m=2
1[2]3]4]5]6 112[3]4]5]6| D=200km
ALl (neutral) ] {neutral) 0
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AL3 T
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Al4 B
153
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T
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=
3
°
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FiG. 8. As in Fig. 5 except for the H-mode bands
(m=2, D=200 km).
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heating more strongly than others. The scheme (3.4)
is applied regardless of the sign of wr, i.e., the heating
effect is considered as unconditional. It is difficult to
assess the degree of validity of the above scheme
and hence the accuracy of the H-mode solutions with
small radial scale. Even if the accuracy is tolerable,
the solutions may be too idealistic. For the narrow
H-mode bands to develop, sufficient moisture in the
boundary layer is required. If the moisture content
is not uniform, the bands may appear sporadically.
Addition of nonlinear effects may also deform the
solutions of a linearized system.

6. Development of F-mode bands

It was mentioned in Section 3 that the appearance
~of the F-mode bands at a low-order analysis level is
associated with the Coriolis force and each band has
a predominant amplitude at a certain level only. The

analysis of F-mode bands at higher analysis levels -

showed that the most unstable F-mode in the inner
area of a tropical cyclone is the F3-mode with S-type
pattern. Fig. 9 shows the growth rate of the F3-mode
at AL8 as a function of wavenumber and radial scale.
The neutral stability curve at AL7 is also drawn. The
 dynamical instability of the S-type spirals is clearly
indicated. This is in contrast to the case of the gravity
- wave modes, i.e., the G-modes and H-modes, for which
the N-type pattern is dynamically unstable. As sug-

owth rate (1055)
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gested in Section 3, selection of an unstable spiral
pattern in the presence of the radial shear of the
basic flow is apparently related to the transport of
angular momentum. All the dynamically unstable
bands, i.e., N-type G-mode, N-type H-mode and
S-type F-mode, transport the angular momentum
radially outward. The maximum growth rate of the
F3-mode at ALS8 is found at m=2 and D=2300 km.
However, as mentioned before, the accuracy of solu-
tion is lowered for a larger value of D. The slight
difference in the size of the unstable domain between
AL7 and ALS$ suggests that there is little effect of
heating on the F3-mode.

The variation in growth rate of the F-mode bands
with the analysis level is presented in Fig. 10 for the
case m=2 and D=200 km. It is evident from this
figure that the N-type pattern is stable for all F-mode
bands except F2 which is nearly neutral. On the
other hand, the S-type spiral is unstable for the three
modes, F3, F4 and F5. The growth rate for these
modes increases when the horizontal shear of the basic
azimuthal flow are taken into consideration at AL4.
Their phase propagation at AL8 is directed radially
inward (14, 12 and 7 m s for the F3, F4 and F$
bands, respectively) and counterclockwise (32, 31 and
27 m s71, respectively). The azimuthal movement may
be compared to the azimuthal component of the basic
flow at the level where each mode has the maximum
amplitude. It is 32 m s* at 700 mb for the case of
F3, 29 m s~ at 500 mb for F4, and 19 m s™* at 300 mb
for F5. Accordingly, the unstable F-mode bands ap-
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pear to move in the azimuthal direction with a phase
velocity close to that of the basic flow. Two other
F-modes (F1 and F2) which show the largest am-
plitude at the surface at AL4 are suppressed at ALS
by .the basic radial wind. The growth rate of the
F6-mode is positive but relatively small at all analysis
levels after AL4, as shown in the figure.

The behavior of F-mode bands in the outer region
(R=400 km) was also investigated. The N-type
F-mode cannot develop at all. For some modes of
the S-type spiral, the growth rates are slightly posi-
tive. For instance, the e-folding time for the most
unstable mode, which is F3, is 63 h at AL7 and 53 h
at ALS.

According to the present analysis, the F-mode
bands may appear in the inner area of a storm, al-
though the detection may not be easy: because they
grow in the free atmosphere and have small vertical
extent. The F-mode bands have never been reported
in actual observations.

7. Energetics of the unstable spiral bands
a. Energy budget equations

The energetics of spiral bands is investigated by
analyzing the energy budget equations which can be
derived from the system of perturbation equations.
In the following, square brackets are used to denote
the space average of a quantity, ie., average with
respect to pressure for the range 0 to 1000 mb, with
respect to azimuthal angle ¢ to ¢o+ (2r/m) where
¢o is arbitrary, and with respect to radius R— (D/2)
to R+ (D/2).

The time rate of change of the perturbation kinetic
energy Kg, which is defined by [(u?412)/2], is de-
termined by ) ‘

0K g
—5t—= {Ku,Keyu+{Ku,KE}v

~+generation+dissipation. (7.1)

The first and second terms in the right-hand side
indicate the transformations from K, (the kinetic
energy of the basic flow), each being associated with
the horizontal and the vertical transport of momen-
tum, respectively. They are written as

U U av v
{Ku,Ke}n =[—u"’-—v2——m)—+uv—],
ar R or R
aU v
{KM,KE}V{—W—-—W—]
ap 9p

The generation and dissipation of Ky are calculated
from
d¢ d¢
generation =|: —u——v—],
dr R

dissipation = [%(4Fu+vF.)+v(aFy+vF,)].
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The available potential energy Ag is defined for
the perturbation field by

02
Agp= I:C—],
2

R, T( a®)—1
c= » O\ a5 .

The time variation of Ar depends on the energy
conversion from the available potential energy of the
basic state 4, the conversion relating to the over-
turning process, the generation due to heating and
the effect of diffusion of 4:

where

0Ag .
—={A4m 45}
ot

+conversion-generation+diffusion. (7.2)

The budget components are calculated from

90
{AM,A E} = |: —6%9*—:[,
ar

90
conversion (overturning)= I: —aoﬁ———],
ap.

generation {q,4 g} =[cqf],
 diffusion = [c6uFs).

The conversion effect is indirectly included, with the
opposite sign, in the generation term in (7.1) and,
hence, denotes the energy conversion from Kg to xfl B,
i.e., {KE, AE}

The perturbation temperature T'x is defined by
Tg=0T/0O. In the present study, the radial pressure
work u¢ and the radial transports of v and Tz are
also computed.

b. Energetics

The energetics of the primary unstable bands in
the inner area of a tropical cyclone, shown in Table 4
for the G, H and F modes, was derived from the eigen-
solutions at the analysis level ALS8. This. table
also includes the energetics of a neutral G-mode band
in the outer region at AL7. Note that a small radial
scale is chosen for the S-type H3-mode band. A com-
parison of values in this table is meaningful only
among the numbers in the same column. The ap-
propriate units for each quantity is shown in the last
column of the table for the sake of convenience,
although the absolute magnitude of the numbers
cannot be determined. The values in this table in-
evitably include some truncation errors which are due
to the schemes used for numerical estimates.
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TaABLE 4. Budget of kinetic and available potential energy of spiral bands. The transports [wv], [uT] and [#¢] are also shown.
Comparison of values is meaningful only among numbers in the same column. The appropriate units for each quantity is shown in the

last column.

Bands

Parameters G-mode H-mode F-mode Appropriate units
Position R (km) 150 400 150 150 150
Type of spiral N N N ) S
Wavenumber 2 2 2 2 3
Radial scale D (km) 200 200 200 25 200
Chosen mode G3 G3 H3 H3 F3
Analysis level ALS8 AL7 ALS8 ALS8 ALS8
Kg 4.20 2.81 0.77 0.57 2.76 107t m? 52
{Kwm, Ke}n 5.27 0.17 0.56 —0.52 7.83 1075 m2 g3
{Ku, Kp}v 0.26 0.01 0.16 0.15 - 0.09 1075 m? 573
Generation of Kg —0.90 —0.10 0.32 498 1.09 107° m? s™3
Dissipation of Kg —1.12 —0.09 —0.23 —0.79 —2.10 1075 m2 573
AEg 2.11 2.38 0.28 0.17 0.15 10t m2s™2
{Aum, Ag) 0.36 —0.03 —0.09 —0.06 0.03 1075 m2 g3
Overturning effect 1.16 0.07 —0.18 —4.07 -1.18 1078 m2 ™3
{q, AE} 0.65 0.0 0.51 5.41 1.63 1075 m2 g3 .
Diffusion effect -0.50 - —0.06 - =0.06 —0.22 —0.12 10~% m2 g2
Transport [uv] 2.29 0.86 0.46 —0.08 2.07 1071 m? 52
Transport {#Tg] 0.18 0.08 —0.02 —0.02 0.08 10K ms™!
Transport [u¢] 1.51 1.37 —0.17 —0.12 —0.07 10 m? 73

It is clearly seen from this table that the N-type
G3-mode band in the inner area develops primarily
through the process which transforms K to Kg, i.e.,
{Ku, Kg}u. This process is related to the outward
transport of momentum (#v>0) and the horizontal
shear of basic flow (—a4V/3r+V/R>0). It is noted
- here that the relative vorticity of the basic flow field
is positive at all levels. Thus, the present basic flow
field is inertially stable. The energy sources for Ap
of this band are the conversion from Kz and diabatic
heating to a lesser degree. The positive conversion
{Kg, Ag} is associated with the development of the
6 perturbation due to the sinking of warm air and
the rising of cold air. The energy sinks of Kz and Az
are small compared with the energy supply so that
the instability of this band is established. This band
yields an outward transport of angular momentum
and internal energy. 7

In the outer area (R=400 km), the N-type G3-mode
band is almost neutral as discussed in Section 4.
Table 4 shows that the term {Ka, Kz} in the Kz
equation and the conversion term in the 4z equation
are well balanced with the other terms of the opposite
sign, respectively. The correlation [¢u] is positive,
indicating the outward transport of energy by the
pressure work as mentioned before.

The N—type H3-mode band with the radial scale
200 km is excited by the effects of both {Ku, K E}
and diabatic heating. A certaln amount of energy is
converted from Ag to Kg.

On the other hand, the instability of the S-type
H3-mode band with a small radial scale is caused by

diabatic heating. The Ag is generated and becomes
a main energy source for Kg. The conversion from
Ag to Kg is achieved by the so-called overturning
process. The term {Ku, Kg}x in the K budget takes
a small negative value. The above-described energetics
reflects the sensitivity of this band to the effect of
heating which was analyzed in Section 5.

As for the S-type F3-mode band, it is different
from the G3 and H3 bands in that the ratio of Ay
to Kg is fairly small. The transformation process
{Kw, Kg}x is the main source of K. This is related
to the down-gradient transport of angular momentum
by the S-type F-mode band in the basic circular flow.
A weak conversion from A4 g is the other source for Kg.
The diabatic heating causes an increase of Ag for
this band.

Tuleya and Kurihara (1975) investigated the ener-
getics for their three-dimensional numerical model of
a tropical cyclone. In their model, the asymmetries
primarily developed through the transformation of .
both the kinetic energy of the axisymmetric flow and
the total potential energy. They mentioned the pos-
sibility of the coexistence of two kinds of eddies,
each being energetically independent of the other.
The results of the energy budget analysis presented
in this section support the above speculation to some
dégree. Namely, the process {Ku, Kg}n contributes
to the growth of the N-type G3-mode and the S-type
F3-mode bands, while the conversion of potential
energy through the overturning process is responsible
for the development of the S-type H3-mode band.
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8. Summary and remarks

A linear stability analysis was carried out for the
spiral bands in a tropical cyclone. It was revealed
that three kinds of bands can be intensified in the
inner area of a present model. The N-type G3 mode,
the S-type H3-mode, and the S-type F3-mode are
typical of these bands. The baroclinicity of a basic
field is not required for the development of these
spirals. The G-mode and H-mode bands are reduced
to neutral gravity-inertia waves if the basic circular
vortex is removed. The N-type G3-mode is an internal
mode solution at this low-order analysis level. It is
excited dynamically by the radial shear of basic flow
and receives energy through the transformation
{Ku, Kr}n. Its preferred spiral scale is represented
by wavenumber 2 and a radial scale (twice the band
width) of 200 km. The S-type H3-mode is also an
internal gravity-inertia wave at a simplified analysis
level. Diabatic heating is responsible for its develop-
ment. Its preferred radial scale is very small, about
25 km. At a low-order analysis level, the F-mode
band has the form of a geostrophic mode. The vertical
coupling of the F-mode bands are very weak at all
levels. The major energy source for this band is the
transformation {Ku, Kg}y. This band is most un-
stable for wavenumber 2 and a radial scale of about
300 km.

Of the three spiral bands mentioned above, only
the N-type G3-band propagates radially outward while
the other two move inward. In the outer. region of
‘the storm, there exists practically no instability for
a spiral of any type and mode. The N-type G3-mode
band is neutral in the outer area. It is speculated
that the G3-band developed in the inner area becomes
a neutral wave while propagating outward. The results
of the present analysis suggest a possibility that some
of the observed outer spiral bands in the Northern
Hemisphere may indeed be interpreted as internal
gravity-inertia waves of the N-type G-mode.

The spirals corresponding to the H-mode or F-mode,
which should appear in an inner area only, have never
been definitely observed in a real storm. The solutions
of these modes, obtained for a linearized system, may
be “either fictitious, or too idealistic, or difficult to
detect in a real storm.

Recently, Diercks and Anthes (1975) made an
analysis of the spiral band. They also investigated
the dynamics of bands by dealing with an initial

“value problem. They concluded that the rainbands are
the visual evidence of internal gravity-inertia waves
in the lower troposphere. They also mentioned that
the formation of bands requires neither inertial in-
stability nor latent heat release. However, the growth
of bands in an inner area in their linear analysis for
the statically stable and adiabatic case was very slow.
It is speculated that this is probably due to the crude
vertical resolution of their linear model, which proba-
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bly makes down-gradient radial transport of angular
momentum above the boundary layer very small.
Then, the supply of kinetic energy to the perturbation
from the mean azimuthal flow would be far less com-
pared to that in a model with better vertical resolution.

The behavior of the spiral bands in the Southern
Hemisphere was investigated by changing the sign of
the Coriolis -parameter. The terms including the
Coriolis force are, of course, directly affected. More-
over, the direction of the basic azimuthal flow, which
satisfies the gradient wind relation, is reversed. The
results of the analysis shows that all the arguments
made for the Northern Hemisphere hold with the
exchange of N-type and S-type. Accordingly, only
the S-type G-mode spiral band may be observed in
the outer region of a tropical cyclone in the Southern
Hemisphere.

There are some factors which may play a role in
the dynamics of the bands but could not be treated
in this study. The Ekman layer instability is one of
them. In the present study, the basic meteorological
field is assumed to be axisymmetric. When the asym-
metric component is included in the basic state, there
may be a quadrant where the mean condition is
particularly favorable for the development of a per-
turbation. The asymmetric basic flow may also con-

tribute to the possible formation of the banded struc-
tures of the different kind.

It goes without saying that the movement of
individual convective cells is different from the propa-
gation of a spiral band discussed in this paper. A care-
fully designed mesoscale analysis, such as the analysis
of the time variation in rainfall intensity or the tracing
of groups of radar rain bands (e.g., Staff Members,
Tokyo University, 1969), is required to reveal a meso-
scale spiral structure in a tropical cyclone.

An analysis method similar to the one used in this
study may be applied to the study of other meteoro-
logical phenomena. Also, it may be utilized in de-
tecting the potential for the development of mesoscale
systems in a given large-scale meteorological field.
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APPENDIX A

Remarks on the Numerical Schemes Applied to the
Perturbation Equations

It was mentioned in Section 2 that the numerical
scheme for the terms involving vertical derivatives in
the perturbation equations should be formulated
carefully when the vertical resolution of the model
is coarse.

In the present study, the hydrostatic equatlon is
treated based on the estimate of thickness between p
and p+ 100 mb, where p is a multiple of 100. The
values of 8, which are defined only at 200 mb inter-
vals as seen in Table 1, are linearly interpolated with

respect to pressure to obtain values at the p+50 mb.

level (#=0 at p=0 mb is assumed). Multlplylng 6 thus
mterpolated with the factor

R,[(p+50)/pocT In[(p 4 100) /5]

gives the thickness or the difference in ¢ between
the p and p-+100 levels.

In dealing with the continuity equation, # and v
are considered to vary linearly with p between levels
where they are defined.

The vertical transport of momentum in (2.1} and
(2.2), L.e., Wou/op, wdU/dp, etc., are estimated in the
conventional manner at every 200 mb level starting
at 0 mb, where they are set to equal to zero. The
values thus obtained are linearly interpolated, if re-
quired, to give the value at the intermediate level
where # and v are defined. To obtain the vertical
transport term Wa#/dp in (2.6), centered differencing
is applied to calculate 96/9p.
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APPENDIX B
Procedures Used in Determining the Basic Field

Given the basic azimuthal flow ¥V and its radial
variation [Eq. (2.9)] at the 900 mb level, the basic
radial flow U and the vertical p-velocity W are de-
termined by the following procedures. In this Ap-
pendix, the suffix 9 and 10 will be used to ‘denote
the quantities at the 900 ‘and 1000 mb levels, respec-
tively. The 900 mb level is assumed to be the top
of the planetary boundary layer.

The numerical results from the tropical cyclone
simulation model (Kurihara, 1975) suggest that, at
mature stage of a tropical cyclone, the torque due
to the difference in the radial forces fV+V?%/R at the
900 and 1000 mb levels is approximately counter-

" acted by the torque caused by the difference in the

frictional forces at the corresponding two levels. This
balance condition gives the relationship among Vs,
V1o and Fy, where F is the frictional force and Fy is
assumed. to be negligible. Accordingly, if the relation
between V, and Vi, and between Fy, and Uy, are
found, then Vi, and Ui can be derived from V..
Figs. B1 and B2 illustrate each of these relations for.
data from the numerical simulation experiment (Ku-
rihara, 1975). In the present study, the empirical
relations drawn from these two figures are used,
namely,

! Vm] = 116] V9|0'824, (Bl)

where V is in m s and Vo has the same sign with V,
and

| Uzo] = 186.6| F 10|04, (B2)

y
A
40 T T T T T
.
30 . bl —
: 2
— .‘ L]
o~ -
& 20 c 4
i - - y=1.16-x0824
LL 4
-]
>
10+ -
| 1 ] . L > x
0 10 20 30 40 50 60

IVl ot 0=0.895 (m-s!)

F1c. B1. Scatter diagram of |V | at ¢=0.992 and ¢=0.895 (o =pressure nor-
malized by the surface value). Data are taken from the numerical results for the
radius range 60 through 700 km in a simulated mature tropical cyclone (Kurihara,
‘1975). The curve indicates the empirical relation used in the present study.
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F16. B2. Scatter diagram of the frictional force at the surface and —U at 0=0.992.
See Fig. B1 for further explanation.

where U is in m s™, F is in m s™% and the sign of Uy
is opposite to that of Fio.

The vertical profile of U is specified by assuming
an exponential variation with pressure in the boundary
layer and in an upper layer (< 100 mb) and a linear
‘variation with p between these layers: '

Up)=Unl(p),

. ( 1000-p)
exp| ——

(B3)
where

for 900< <1000
20 VA

p—lOO) < 100) ;
exp{ —— ) for 100<$» <900
400 40

~en{ )
L 40

In (B3), the factor 40 is chosen so that the thickness
of the boundary layer becomes approximately 100 mb.
1(p) is asymmetric with respect to the 500 mb level,
where it is zero.’

Eq. (2.9) in the main text yields (8V/dr)s. Then
@V /)10 can be derived from (B1). The result is
equivalent to taking A1 p=0.824)\, in (2.9). It is not
difficult to calculate (9U/d7)10, for the given (@V/d7),
and (8V/dr)1, with the application of the balance
" condition for the torque in the boundary layer as
mentioned before and also with the use of (B2). In
this study, oU/dr at other levels are determined by
the relation dU/dr= (3U/dr)10l (p) where I(p) is the
same function as defined by (B3).

I(p)=1 (—1+

for 0<p<100.

Finally, the vertical p-velocity is calculated by
integrating the continuity equation with the boundary
condition W=0 at p=0 mb:

W(”)=_<Z"U+3UE)N / " 1)ip.

r 0

(B4)

Since 7(p) is asymmetric with respect to the 500 mb
level, it follows that W vanishes at p= 1000 mb.
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