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ABSTRACT

The mesh nesting strategy proposed by Kurihara er al. (1979) was used to construct a movable,
nested-mesh, 11-level primitive equation model. The framework of the model is described in detail.

With the use of a triply nested mesh system with 1°, 14° and ¥%° longitude-latitude resolution, a small
intense dry vortex in a zonal flow of 10 m s~! was successfully advected for 48 h. The shape of the vortex
was well preserved during the time integration which involved over 50 movements of the innermost
mesh. The noise, which was excited when a mesh moved, was suppressed in ~4 min after the movement.
For comparison, the results from similar experiments performed with reduced inner mesh resolutions

are also presented.

1. Introduction

Nested-mesh numerical models are useful opera-
tional or research tools for simulating mesoscale
meteorological phenomena in the large-scale en-
vironment. Nested-mesh models have been de-
veloped for the prediction and investigation of
tropical cyclones (e.g., Hovermale, 1976; Ookochi,
1978; Ley and Elsberry, 1976; Jones, 1977a) as well
as for disturbances in the middle latitudes (e.g.,
Miyakoda and Rosati, 1977; Shuman, 1978; Sobel
and Anthes, personal communication).

As defined by Phillips and Shukla (1973), there are
two different strategies, i.e., one-way and two-way
nesting, in combining coarse-grid and fine-grid
meshes. In the case of a two-way system, two adja-
cent domains interact with each other all the time.
When such a scheme is applied to the time integra-
tion of a model with multiple nesting, the predic-
tions on all meshes proceed simultaneously.

To perform the time integration of a two-way
system, special caution is required because of the
peculiar condition at an interface where two meshes
with coarse and fine resolutions meet. In general,
numerical characteristics of a solution for the wave
equation depend on the grid resolution. This implies
that the condition at a mesh interface cannot be
compatible with both of the numerical solutions at
the two sides of the interface. Thus, a wave is in-
evitably distorted at a mesh interface. Furthermore,
the interface condition may cause the false reflection
of waves, generating small-scale noise in the model
(Matsuno, 1966). If a movable mesh model is used,
noise may also be excited due to dynamical im-
balance near the leading and trailing edges of the

mesh, just after the movement. The involved nu-
merical problem, therefore, is how to obtain a
smoothly connected, noiseless and reasonable solu-
tion across the mesh interface during an integra-
tion time.

In the present paper, the framework of a movable
nested-mesh three-dimensional primitive equation
model, which has been constructed at the Geo-
physical Fluid Dynamics Laboratory/NOAA is de-
scribed. This model uses the two-way nesting
strategy designed by Kurihara et al. (1979). In con-
trast to other two-way nesting methods that have
been proposed, the present scheme of nesting has
the following features:

1) The dynamical interface, where the two integra-
tion domains are dynamically connected to each
other, is separated from the mesh interface by a nar-
row ‘zone of two coarse grid points. Grid data in
this region are utilized for the integration of the outer
integration domain at each time step. Gridpoints
with coarse resolution only are involved in this step
of the computation. For the integration of the inner
domain, which consists of the abovementioned nar-
row zone and the enclosed fine-mesh area, flux
boundary conditions are computed at the dynamical
interface, i.e., on the outer edge of the zone. The
distinct advantage of the above strategy is that the
mesh interface is free from the immediate impact of
the boundary conditions.

In other two-way systems proposed so far,
probably without exception, the dynamical interface
coincides with the mesh interface. In such a case,
boundary conditions at the external boundary points
of the fine-mesh area have to be determined by a
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scheme which can deal not only with problems
resulting from grid resolution changes but also with
those concerning dynamical coupling of two integra-
tion domains. Grid values or tendencies of certain
variables at these points may be derived from
coarse-grid data by spatial and temporal interpo-
lation, either linear (Harrison, 1973; Sobel and
Anthes, personal communication) or Lagrangian
type (Madala and Piacsek, 1975; Jones, 1977a). In
the model by Ookochi (1972), an elaborate scheme
is used to predict the values at the boundary points.
Jones (1977a) states that it was desirable to avoid
computing mass convergence across the mesh inter-
face because of its high sensitivity to small errors.
He expected some difficulty in the application of the
box method (Kurihara and Holloway, 1967) to treat
the mesh interface. However, use of the box method
did not cause serious problems in the present study.
This is perhaps partly due to the separation of the
dynamical interface from the mesh interface. Sobel
and Anthes (personal communication) also have
used the box method to compute mass convergence
with apparent success.

2) A large part of the noise excited at a mesh
interface usually appears as high-frequency short
waves. However, there may be stationary noise
generated too. In order to suppress noise, time-
damping integration schemes, which yield fre-
quency-selective damping of waves, as well as spa-
tial smoothing schemes have been proposed (e.g.,
see review by Mesinger and Arakawa, 1976). In the
present model, noise is controlled by the applica-
tion of a time-damping integration method and the
occasional use of a spatial smoothing. In the models
by Ookochi (1978) and Jones (1977a, 1977b), a spatial
smoothing operator is applied at each step in addi-
tion to a time-damping scheme. Furthermore, Jones’
model employs the upstream method to treat the
advection at outflow points of the fine mesh. In some
of the experiments with their model, Sobel and
Anthes (personal communication) employ a hori-
zontal diffusion term to suppress the noise.

3) The present strategy of mesh nesting in our
model allows flexibility in deciding grid resolutions
in case of multiple nesting. The ratio of grid in-
crements between the adjacent meshes can be varied
casily at each step of nesting. This kind of flexibility
virtually does not exist in most of the other models
(e.g., Harrison, 1973).

4) The computational method which is used for
treating the uniform portions of each grid is also
applied to the mesh interfaces in the present study.
Consequently, if the above-mentioned grid ratio is
made to be unity in the present nested-mesh model,
the model simply reduces to a uniform grid model
which has no trace of mesh nesting. Whether such
a feature is desirable or required is not clear.
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However, other models do not necessarily possess
this property.

In the next section of this paper, the governing
equations of the model, the grid system and the two-
way nesting strategies are explained. An initializa-
tion method for a nested model is the subject of
Section 3. Results of the time integration of the triply
nested model are presented in Section 4. They are
compared in Section 5 with the results from the same
models but with coarser inner meshes. Some critical
comments on the numerical method used in the
present study are made in Section 6. Readers who
are not interested in the computational detail of the
model but only in the performance of the model
should skip Sections 2e-2i and Section 3.

2. Framework of the model

a. Governing equations

A primitive equation model for the dry at-
mosphere is used in the present study. The govern-
ing equations are written as follows in the o-co-
ordinate system which was originally proposed by
Phillips (1957):

‘)

EQUATION OF MOTION
tan¢

9 (puw) = D) + (f+
ot

p

i)
X Dyl = Dy + 4F, + vF,, (2.1
ad\
0 tan
= (pyt) = =D() ~ (£ + ¢ )
ot a
feL0)
X p*Ll - p* ———p + HFd) + VFdJ’ (2.2)

add
where ¢ is the time, A the longitude, ¢ the latitude,
a the radius of the earth, @ = a cos¢, f the Coriolis
parameter, 4 and v the eastward and northward com-
ponents, respectively, of the horizontal wind and
D, the surface pressure. The operator D denotes
the three-dimensional divergence

_ 9C Ip,u
alA

+ a( )p,v cosd + o( p.o
add oo

where o = p/p,., p is the pressure, and ¢ the vertical
o-velocity defined by do/dt. The pressure gradient
force is obtained from the slope of the geopotential
@, of an isobaric surface. The last two terms in
(2.1) and (2.2) represent the frictional forces due
to the horizontal and vertical diffusion of momen-
tum, respectively.

D( )

» (2.3)
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TENDENCY EQUATION

0
or D«

-D(1)

_ J‘ (6p*u + op v cos
o \ adA add

where the boundary conditions, i.e.,d = 0ato = 0

and 1, are implied.

)do-, (2.4)

- VERTICAL o-VELOCITY

. 1 [ op
o=—/|-0
P or
—f (a”*“ 4 9Py coS$ )dc’] . @5)
HYDROSTATIC RELATION
9P
= —RT (2.6)
0 Ino
or
b
® - RT = 22, Q.7
oo

where @ is the geopotential of a constant o-surface,
T the temperature, and R the ga$ constant.

THERMODYNAMIC EQUATION

RT
-D(T) + =22 &+ ,Fp + Fp, (2.8)

Cp O

0
—_— T) =
v (pT)

where c, is the specific heat of the air at constant
pressure. The vertical p-velocity w is given by

S N
dt P+ o do
_ (6u " ov cosd )] 2.9
adA add

The last two terms in (2.8) represent the effects of
the horizontal and vertical diffusion of heat, respec-
tively.

b. Subgrid-scale mixin:g.

The subgrid-scale horizontal diffusion is treated
by the nonlinear viscosity scheme proposed by
Smagorinsky (1963). The general form of the scheme
for the o-coordinate system was formulated by
Kurihara and Holloway (1967). In this study, the
simplified version explained in the paper by
Holloway and Manabe (1971, p. 340) is used. The
von Karman constant, which appears in the viscosity
formula, is fixed at 0.2. '

The effects of subgrid-scale vertical mixing are
represented by the last terms.of (2.1), (2.2) and (2.8).
These terms may be expressed as
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JF=—g 2| (2.10)
oo
' oH
vFr = -g—, (2.11)
do

where 7 is the downward diffusive flux of momentum
and H the downward diffusive flux of heat. It is
assumed that these fluxes vanish at the surface. The
fluxes above the surface are estimated by the level
2 formulas of the turbulence closure model derived -
by Mellor and Yamada (1974). The formulas, which
are written in Appendix A, are applicable at any
stability condition. The so-called dry adiabatic ad- -
justment scheme is not used in this study.

¢. Boundary conditions

The present model is a regional, longitude-
latitude grid model. It has a longitudinal span of
35°. A cyclic boundary condition is used at the west
and east boundaries. v

The model domain is bounded at 2.5 and 39.5°N
by open lateral boundaries. It is assumed that the
meridional flux, including the diffusive flux, of any
meteorological quantity does not contribute to the
flux divergence at the boundaries, i.e., (3F cosd)/
(ad¢d) = 0, where F is a meridional flux. Thus, the
zonal averages of P, T, u and v along the boundary
are not affected by the advection process and, in
particular, the zonal mean of » vanishes. In addi-
tion, it is assumed that the isobaric surface has no
curvature at the boundaries, i.e., (8°®,)/(d¢)*> = 0.

The boundary condition at the top and the bottom
of the model is & = 0. The vertical diffusive fluxes of
momentum and heat do not exist at o = 0 as men-
tioned before, and are set to zero at o = 1.

d. Grid system

The horizontal structure of the triply nested mesh
system is illustrated in Fig. 1. The resolutions of
meshes A, B and C are 1°, ¥5° and Y%° longitude-
latitude, respectively. Each mesh domain is bounded
by a mesh interface (solid line in the upper part
of Fig. 1). Positioning of the mesh domains B
and C are determined with respect to the loca-
tion of the vortex. The center of mesh C never
deviates from the vortex center more than a distance
equal to the resolution of mesh B. The center of
mesh B is never displaced from the center of mesh C
by a distance greater than the resolution of mesh A.

A grid point is placed at the center of each mesh
square or box. Meteorological variables are defined
at each grid point without horizontal staggering.

In the present model, the entire region is divided
into three integration domains. Two neighboring
domains are dynamically coupled at the boundary
called the dynamical interface, in the course of the
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time integration of the model. The dynamical inter-
faces are indicated by the dashed lines in Fig. 1.
These interfaces are separated from the mesh inter-

faces by atwo-grid-point interval. Thus, noise due to.

dynamical coupling is kept from occurring at the
mesh interface where numerical noise tends to take
place because of the change of resolution.

The model atmosphere is divided vertically into 11
layers. Each layer has an integer level contained in
it and is bounded by half-integer levels. Those levels
in the o coordinate and their approximate heights
are shown in Table 1. This vertical division is the
same one used by Kurihara and Tuleya (1974) in
their hurricane model. The variables u, v, T, w are
defined at the integer levels, whereas ® and & are
defined at the half-integer levels.

e. Time integration

A scheme for the numerical integration of a two-
way nested-mesh model was examined by Kurihara
et al. (1979, hereafter referred to as KTB). Their
scheme, which will be explained briefly, is used in
the present work.

Suppose that a local tendency of a quantity 4 is
determined by

h
(';— = LF + HF + DIF, 2.12)
t
Integration Domain
1
[ T
bl e e i
T CoiLe ﬁ: = T
é B 5deg ¢i
T e
Mesh A ,

(T,‘;ﬂ’) Mesh A MeshB Mesh C
- — —- P —————— —
1 deg 1 deg. 1 deg.

F1G. 1. The horizontal structure of the triply-nested-mesh
system, showing the area and grid resolution of the outermost
mesh (A), the medium mesh (B) and the innermost mesh (C).
Integration domains 1, 2 and 3 are also shown.

YOSHIO KURIHARA AND MORRIS A. BENDER

1795

TABLE 1. The o-levels and their approximate heights.

Height
Level £ o (m)
0.5 0.00000000
1.0 0.03060333 23637
1.5 0.08318847 17270
2.0 0.12000000 14940
2.5 0.17310091 12616
3.0 0.21500000 11242
3.5 0.26704077 9847
4.0 0.33500000 8328
4.5 0.42025419 6738
5.0 0.50000000 5478
5.5 0.59487807 4168
6.0 0.66500000 3311
6.5 0.74338763 2424
7.0 0.80000000 1843
7.5 0.86092366 1258
8.0 0.89500000 926
8.5 0.93042512 575
9.0 0.95000000 435
9.5 0.96998671 260
10.0 0.97700000 196
10.5 0.98406400 132
11.0 0.99200000 68
11.5 1.00000000 -0

where LF denotes the low-frequency tendency due
to advection, HF represents the terms contributing
to the high-frequency tendency and DIF represents
the diffusion terms. The time integration of (2.12)
from the time level 7 to * + 1 may be made by
the following two-step iterative method (Kurihara
and Tripoli, 1976):

(h* — h")/At = LF" + HF" + DIF
(k" — h)/At = [(1 ~ )LF + oLF*] ¢ ,
+ [(1 - HHF" + HF*] + DIF

(2.13)

where At is a time increment and A* a temporary
value. With the use of appropriate weights o and 8
in (2.13), high-frequency waves can be suppressed
while low-frequency waves are preserved. In the
present study, « and B are set to 0.506 and 2.5,
respectively. Recently, Masuda (1978) pointed out
that the use of a large value such as 2 or 3 for 8 in
(2.13) gives rise to a very rapid damping of noise
in a primitive equation model.

Egs. (2.1), (2.2), (2.4) and (2.8) are written in the
flux form

d
o () = =D(h) + -

In such a case, the quantity —D(h) + hAD(1), which
represents the advection of /4, should be treated as
the LF term of (2.12) and —hD(1) has to be included
in the term HF as mentioned in KTB. As to the DIF
term, the effect of horizontal diffusion is estimated
by an explicit scheme while that of vertical diffu-
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FiG. 2. In a two-dimensional domain, the dynamical interface
(line N) is separated from the mesh interface (line M) by a nar-
row zone A, (shaded).

sion is obtained by an implicit method in the
present experiment.

The time increments used to integrate the model
are 180, 60 and 30 s for the integration domains 1, 2
and 3, respectively. The 180 s integration of the en-
tire three-nest system is complete with the following
succession of domain integrations: domain 1, 2, 3, 3,
2, 3, 3, 2, 3, 3. As seen in Fig. 1, the integra-
tion domain 2(3) consists of the mesh B(C) area and
a narrow zone of coarser resolution, which sur-
rounds the mesh B(C). The ratio of grid size be-
tween the narrow zone and the enclosed mesh B is
3:1, while the corresponding ratio for mesh C is 2:1.
When the integration for the domain 2(3) is made, the
weight 8 in (2.13) is increased in the narrow zone by
the above ratio and takes the value 7.5(5). This was
done in order to damp the high-frequency noise in
the integration domain uniformly, since the damping
rate is inversely proportional to the grid size.

f. Spatial finite differencing

The finite-differencing scheme used to estimate
the flux and the gradient of a quantity is described
in Section 2d of KTB. In general, the scheme is
quite similar to the box method, version 1 (Kuri-
hara and Holloway, 1967). The conservation prop-
erty for mass, momentum and internal energy is
satisfied everywhere. At the mesh interface, the
value on the interface is obtained not by the original
box method formula but by a different interpolation
method (see KTB, Section 2d).

The lateral open-boundary conditions mentioned
in Section 2¢ are implemented at the northern-

- most and the southernmost boxes of integration
" domain 1. The flux of any quantity across the
northern (southern) boundary of a northernmost
(southernmost) box is assumed to be equal to the
flux across the southern (northern) interface of the
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same box. The geopotential of an isobaric surface
at the northern (southern) boundary of a northern-
most (southernmost) box is obtained by linear extrap-
olation of geopotentials at the southern (northern)
interface and at the grid point of the same box.

g. Dynamical interaction

The dynamical coupling of two adjacent integra-
tion domains is performed by applying the strategy
of two-way nesting proposed in Section 2¢ of KTB.
The coupling between domains 1 and 2 is now briefly
explained as an example. Fig. 2 shows an area which
is divided into meshes A and B by the mesh inter-
face M. The dynamical interface N in the figure
indicates the boundary between the integration
domains 1 and 2. Note that a shaded narrow zone A,,
between the lines M and N, is a part of mesh A and
belongs to the integration domain 2. Now suppose
that meteorological data are givenin A,, A, and B at
a certain time level. First, with the use of the data in
A, and A,, the prediction with a coarse time step is
performed for domain 1, i.e., for the area A,. During
the above prediction, the area A, gives a dynamical
influence on the area A,. In the course of numerical
integration, the fluxes of various quantities across
the interface N as well as the values of certain
variables at N are obtained and preserved. These
values are used for the dynamical link between
domain 2 and domain 1. The prediction for domain 2
is made based on the data in A, and B. It proceeds
until the time level of domain 2 aligns with that of
domain 1. The conditions at the boundary of domain
2 (i.e., at N) are derived successively for each new
time level. In KTB, a scheme was proposed which
made the sum of the fluxes across N during the
integration of domain 2 exactly equal to the flux ob-
tained in the integration for domain 1. This conserv-
ing scheme is used in the present study.

h. Mesh movement

The movable meshes B and C are positioned with
reference to the location of the disturbance. A refer-
ence position is determined in this study from the
distribution of the surface pressure in mesh C.
Namely, the apparent center of gravity for the fol-
lowing quantity 7 in the mesh C is taken as the posi-
tion of the vortex, i.e.,

_ {Po —Psxs DPsx <Do
m =
0’ p* 2p09

where p, is a truncation pressure. The quantity py
is obtained from

Po = y(maxp,) + (1 — y)(minp,),

where maxp, and minp, are the highest and the
lowest value of p, in mesh C. The weight y in the
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above formula should be chosen so that p, at a
certain distance from the vortex is excluded from the
definition of the position of the vortex. In case of an
intense vortex, 0.5 is used for y. When the vortex is
weak, a smaller value of y and/or only a central
portion of the mesh C may be used to define the
center of gravity for the field m. The above scheme
resembles the one used by Jones (1977a).

When the time level of mesh C marches to the
same time level as mesh B, the center position of
mesh C is checked against the vortex center. If
the position difference in any direction exceeds the
grid spacing of mesh B, then mesh C is shifted by a
multiple, usually one, of the grid distance of mesh B
so that the vortex is again found near the center of
mesh C. As a result of successive shifts of mesh
C, its center may move away from the center of mesh
B. If the distance between the two centers becomes
larger than the spacing of mesh A, then mesh B is
shifted by a multiple of the grid distance of mesh A.
Due to the movement of mesh B, mesh C always
remains at or near the center of mesh B.

A shift of the nested mesh is achieved by chang-
ing coarse-mesh points in front of the leading side
of the nest to fine mesh and by reducing the fine-
mesh points along the trailing side to coarse mesh.
The meteorological values in a new fine-mesh and a
new coarse-mesh area can be specified by inter-
polation and averaging, respectively. The scheme
used in this study is the one proposed in Section 3
of KTB, which conserves mass, momentum and in-
ternal energy.

i. Noise control

As mentioned in Section 1, a movable nested-
mesh model cannot be free from computational
noises. In addition to these noises which are due to
mesh nesting and mesh movement, noise may also
develop in the present model at the northern and the
southern lateral sides which are treated as open
boundaries. Furthermore, the numerical scheme of
the present model uses centered differencing in
space which tends to cause a grid-scale irregularity
in the predicted fields. All the noises mentioned
above must be kept under control during the course
of the numerical integration.

The time-integration method mentioned in Section
2eis very effective in damping high-frequency noise.
The nonlinear horizontal viscosity works to sup-
press small-scale quasi-stationary noise. Ap-
parently, as a result of these processes, neither the
noise associated with mesh nesting nor with mesh
movement caused any computational trouble. It
was, nevertheless, found in the preliminary integra-
tions that noise which seemed to be related to the
finite-differencing method and noise near the open
lateral boundaries could be reduced further with the
following additional techniques.
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First, in order to suppress the grid-scale ir-
regularity in the mass field, a smoothing operator
is applied every 30 time steps for each of the three
nests. Namely, the surface pressure and tempera-
ture in each box element are replaced by the average
of the corresponding variable at the east and the west
interface of the box. The smoothing in the meridional
direction is carried out in a similar way. (For
programming reasons, the meridional smoothing in
the present model lags one step behind the zonal
smoothing. In the present study, the noise level was
found to be smaller when the first three and the last
three rows of the mesh A are excluded from the
meridional smoothing.) Weakening of the vortex by
smoothing is avoided by exempting the central por-
tion (about three-fourths) of mesh C from the
smoothing.

A Newtonian-type damping is applied to the flow
field within six grid rows from the open lateral
boundaries by the addition of the following term to
the equation of motion:

v
— = =(v = VI
or (v Ma

In (2.14), v, is the reference value and t,4 the relaxa-
tion time. In this study, v, is obtained for each grid-
point from the average of v at the latest time level at
the four surrounding gridpoints. For the boundary
row, the average of only the east and west grid-
point values is used to obtain v,. The tendency due
to the above damping term is estimated in an implicit
manner. The time ¢, is specified by nAt, where At is
the time step for the integration domain 1. The
parameter n used for each of the six grid rows is 20,
20, 40, 60, 90 and 120, respectively, increasing from
the boundary toward the inner row. An effect similar
to the Newtonian damping may be obtained if the
eddy diffusion coefficient in the horizontal diffusion
terms is increased appropriately.

(2.14)

3. Initial condition

The initial flow field for the present model
consists of a cyclonic vortex superposed on a
simple zonal flow. The initial mass field is dy-
namically balanced with the above flow field. The
zonal flow has a constant angular velocity which
yields an easterly wind of 10 m s~ at 20°N. The
cyclonic vortex is nondivergent. Its azimuthal wind
speed is a function of radial distance from the vortex
center and is given by

2R 3711 —
V:Vm—|:l+(i)j| R, —R
R R,

for R <Ry,and V = 0 for R = R,, where R is the
radial distance from the center of the vortex. In the
present experiment, it is assumed that V,, = 20 m s™,

3.1)

m m
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R,, = 100 km and R, = 1556 km (equivalent to 14°
latitude).

The mass field is obtained from the reverse bal-
ance equation in the o-coordinate system (Sundqvist,
1975), i.e.,

veg + 0 (E 6”*)
adA\ p, adl
+ —g—(cosqb_R—T-?p—*) =G, (3.2)
ald Dy a0
where @ is the geopotential of the o surface and
a? a
2 = + —(cosd; 9 ) ,
a?0\2 add add
G =2J(u,v) + ft —up — [(u? + v® singl,
aadd
[ = dv  du cos¢
ad\ add ’
of
B = ,
. aded
1
= Gy = {20y
aa\ O\ ¢ 9P OA

If T and 1/p, in (3.2) are replaced by appropriate
constants To(o) and 1/p,,, respectively, then the
simplified equations of the Poisson type for p, and
® are derived. Namely, the equations for ¢ = 1 and
o < 1 are written, respectively, as follows after
some manipulations:

V3, = (D4o/RT )G, — gV72,), (3.3)
Vb =G - (To/Tyo)(G, — gV%2,), (3.4

where the asterisk denotes the surface value, and
z, = 0 in the present study. The right-hand side of
the above equations can be calculated from a given
wind field. Accordingly, p, and ® are obtained by
arelaxation method under the appropriate boundary
conditions.

In case of a nested-grid system, a special tech-
nique may be required to perform the relaxa-
tion of the Poisson equation (e.g., Elsberry and
Ley, 1976). In the present experiment, the relaxa-
tion proceeds inward from the coarsestto the finest
grid resolution. In the first stage, the entire model
domain is covered by a grid network of mesh A
resolution. The forcing, i.e., the right-hand side of
(3.3) or (3.4), is computed from the wind data given
at each gridpoint. Then, an ordinary relaxation is
performed under a proper boundary condition. As
noted by Miyakoda and Moyer (1968), the finite-
difference form of the Laplacian operator in the
balance equation should be consistent with those of
the gradient and the divergence operators used in the
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governing equations. Application of the above rule
to the present case, however, causes a checker-
board-type oscillation in the numerical solution of
the Poisson equation. Such a noise is associated
with the type of centered differencing in space
used in the present numerical model. The resulting
irregularity is smoothed out by averaging the grid
values with the weight Y4, 15, Y4 in each of the
longitudinal and the latitudinal directions. The
smoothed field defines the mass field in the integra-
tion domain 1. It is slightly modified for specifying
the mass field in the two-gridpoint zone surrounding
mesh B. (Some computational remarks concerning
the initialization procedures are given in Appendix
B.) In the next stage, proceeding inward, the region
consisting of the integration domains 2 and 3 is
treated in the same manner as described above ex-
cept that the grid resolution of mesh B is used. Note
that the mass field in the two-gridpoint zone just
inside the border of this region is specified in the
first stage and serves as the numerical boundary
condition in the relaxation process. At the end of the
second stage, the mass field in mesh B is deter-
mined. In the third stage, the procedures taken in
the second stage are repeated for integration domain
3 with the change of grid resolution to that of mesh
C. The mass field in mesh C is finally obtained at
this stage. ‘

Once the initial field of geopotentials on the con-
stant o surfaces are obtained, the initial temperature
field can be derived easily through the hydrostatic
relation.

4. Numerical results

In this section, some numerical results are
presented from the movable triply-nested-mesh
model described in Section 2. The model was time-
integrated starting smoothly from the balanced
initial field specified in the preceding section. As
mentioned before, the vortex in this experiment is
dry and the effect of surface friction is not included,
so that any numerical noise, which develops during
the integration, can be detected easily.

Fig. 3 shows the distribution of surface pressure
at 0, 24 and 48 h in the entire model domain, the
medium area (domain 2 and 3) and the innermost
domain. The contour lines are drawn by a computer
graphic routine and no smoothing is made. The left
column of the figure indicates that the nested-
mesh system was able to successfully trace the
vortex for 48 h. During the integration, mesh C was
moved 51 times to the west and three times to the
north, and mesh B was shifted west 17 times and
north one. The northward movement of the vortex,
which is about 68 km for 48 h in the present case,
may be associated with the 8 effect (e.g., Rossby,
1949; Adem, 1956; Madala and Piacsek, 1975).
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Despite the movements of the meshes, significant from 998.2 to 1002.2 mb, indicating a weakening of
noise is not observable in the surface pressure the vortex.

fields in Fig. 3. The right column of the figure shows The wind fields at level 11 (~68 m level) at 0, 24
a filling tendency of the central surface pressure, and 48 h in each integration domain are presented

SURFACE PRESSURE (1; )5 ; )& degree grid)
t=0h domain 1+2+3 do

main 3
)

R N R
]Qeg, 2.5mb interval ]:feg, 1.5mb interval 1deg. 1mb interval

Fi1G. 3. Dis}ribution of surface pressure at 0, 24 and 48 h for the entire model domain (left column), the medium area
(middle column) and the innermost domain (right column). Dots in the figure indicate the gridpoints.

T T
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in Fig. 4. The main portion of the vortex is always
contained in domain 3 and its shape is preserved
well. The maximum wind speed of the vortex
changed from29.9 m s™*at 0 hto26.5 m s™'at48 h.

This decrease is probably due to the horizontal
diffusion of momentum.

Although noise is not noticeable in Figs. 3 and 4,
it was excited at the movement of a mesh. However,

(1, I/3 : % degree grid)

domain 3

WIND AT LEVELTI (0=0.992)

domain 1

domain 2

lHdeg.

lowms'l lieg.

[ )
“10ms!

ldeg.

FiG. 4. Wind fields for level 11 at 0, 24, and 48 h, for each of the three integration domains.
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as Fig. 5 illustrates, the noise was suppressed very mb level) in domain 3 at a time 30 s (one time step
quickly after the movement in the present model. for mesh C) before the movement of mesh C. The
The top portion of the figure shows the fields of maximum upward velocity is about 5 mm s™*. The
surface pressure, the relative vorticity and the middle and the lower parts of the figure show the cor-
vertical p-velocity, respectively, at level 7 (near 800 responding fields, respectively, 30 s and 4 min after

(time relative
to movement) P, (vorticity), w,

-30sec domain 3 domain 3 domain 3

poin: ara

I

ldeg. 1mb interval ldeg. (107 s71) Vdeg. (1074 mb s7)

Fic. 5. Distribution of surface pressure, relative vorticity at level 7 and vertical velocity (w) at level 7, for the innermost domain
30 s before it moved to the west, 30 s after the movement and 4 min after the movement. Two points indicated in the left middle part
show the locations for which surface pressure tendency is analyzed in Fig. 6.
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SURFACE PRESSURE

TENDENCY
(103 mb s)
4 e grid point @
2_ L3
0 . XX x x
LR 3 8 8 FRakaR k0 8.8 08 "..._,..‘““*“’"’"“
2k x
-4 X ! g x grid point b
mesh C move
jI ] | \* 1 ] | L,
16:2h 10 20 30 16.5h

time steps past 16.2h

FiG. 6. Surface pressure tendency at gridpoint a (dot) and at
gridpoint b (cross mark), plotted every 30 s, during a period just
before and after the mesh C moved to the west. Locations of
two points are indicated in the left middle part of Fig. 5.

mesh C moved west at 16.325 h. These results are
typical of all moves of mesh C. In the surface pres-
sure field, the excited noise is detectable near the
leading edge of the mesh at 30 s but it is suppressed
in 4 min. In order to show the rate at which the noise
was damped, the surface pressure tendencies at two
gridpoints are plotted against time in Fig. 6. At these
two gridpoints, which are located at the leading
edge of mesh C as shown in the left middle por-
tion of Fig. 5, the largest positive and negative
tendencies were respectively observed after the
mesh movement. In comparison with the corre-
sponding graph by Jones (1977a, Fig. 3), Fig. 6 clearly
indicates that damping of the computationally in-
duced noise is significantly faster in the present
model. The fields of the wind vector (figures not
presented) show no apparent irregularity after the
mesh movement. The wind variation from an area
where the grid resolution was affected as a result of
the mesh movement to an unaffected area also ap-
pears quite smooth. Probably, the amplitude of noise
in the wind vector field is so small compared to the
vector itself that the noise is masked. Small-scale
noise in the wind field may manifest itself in the
fields of relative vorticity and divergence or the field
of vertical motion. According to Jones (1977b) and
Sobel and Anthes (personal communication), the
vorticity field is very sensitive to nesting noise. In
the present experiment, however, the vorticity field

remains surprisingly smooth during the integration -

period even after the mesh movement as shown in
the center column of Fig. 5. On the other hand, the
mesh movement causes an irregular vertical motion
which reached to ~3 cm s™! near the leading edge
and ~1 cm s™! near the trailing edge. The right part
of Fig. 5 shows that the above noise was sup-
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pressed to ~1 mm s™! in only 4 min. It was ob-
served that an abrupt increase of the vertical motion
after a mesh movement was always followed by its
sharp decline. The efficient control of noise in the
present model is largely due to the use of the time-
integration scheme described in Section 2e. (The
damping rate is reduced when the weight 8 in the
integration scheme is reduced.)

The above analysis results suggest that, at least in
the present case, noise was successfully controlled
and the impact of mesh nesting on the vortex
prediction was probably minimal. However, it
should be noted that the experiment in this section
was performed with a dry model without the effect
of surface friction and, moreover, the treated vortex
was almost entirely contained in mesh C. The noise
level in case of the general use of the present
nesting strategy would be definitely higher than the
noise level in this simple case. The proposed
scheme has to be examined by applying it to a moist
model in which the vortex is not well confined in
the finest mesh area. A result for such a case is
presented in the last section of this paper.

5. Experiments with coarser resolutions

If the grid resolution is not sufficiently fine rela-
tive to the scale of the disturbance being treated,
significant numerical dispersion of the disturbance
will result due to the scale dependency of the
truncation error. It was demonstrated in the pre-
ceding section that the shape of the moving vortex
was well preserved in the triply nested system with
1°, ¥5° and %° resolution, during the 48 h time integra-
tion of the model. In this section, the same vortex
is treated with a coarser resolution to determine the
effect of the numerical dispersion.

In one experiment, a 48 h integration was per-
formed with the use of a two-nest system. In this
case, the latitudinal and longitudinal dimension of
the inner mesh was 7° compared to 324° for the in-
nermost mesh of the triply nested system. The grid
resolution for the outer and the inner mesh were.1°
and 1%°, respectively, and the corresponding time
increments of 3 min and 1.5 min were used to carry
out the time integration. Fig. 7 shows the distribu-
tions of the surface pressure, in the entire domain as
well as in the inner domain, and the wind at the
lowest level in the inner domain at 0, 24 and 48 h.
The vortex was successfully advected for 48 h. Its
movement was almost the same as that which was
obtained in the triply nested model (see Fig. 3). How-
ever, the weakening of the vortex was more evident
in the double nest system. The maximum wind speed
decreased from 29 to 21 m s~! in 48 h. It should be
noted here that the above results were obtained for
a dry vortex. The degree of sensitivity of vortex .
intensity to the mesh resolution may be different in
the case of a moist vortex.
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In the final experiment, the grid resolution of the reduced to a regular, uniform grid of 1° longitude-
inner domain for the above double-nested system latitude resolution. The results for the 48 h integra-
was increased to 1°. The grid system was thus tion with a 3 min time step are presented in Fig. 8.

(1, }é degree grid)
P, P, \Vi

_ n
t=0Oh domain 1+2 domain 2 domain 2
- - DTl
- ’ /o~ N\ ~ - .~
- N
. .. [
- - I T
- 4 -~ ~ ~N - - - -
- - - . . N ~ ~ -
H . e — ) ]
ldeg. 2.5mb interval ldeg. Imb interval ldeg. 30ms”

F1G. 7. Results for the double-mesh system with grid resolutions of 1° and 0.5°. Shown here is the distribution of the surface pressure
for the entire domain, and the inner domain distribution of surface pressure and level 11 wind, at 0, 24 and 48 h.
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The intensity of the vortex was reduced con- pearedby 24 h. The vortex with a circular flow at the
siderably in this experiment. Closed isobars present initial time and a maximum wind of 27 m s™! de-
in the initial surface pressure distribution disap- teriorated to a wavy flow pattern with a maximum

(1., 1degree grid)
P, P, \Y

n
t=0h domain 1+2 domain 2 domain 2
[ 2T NN -
= — —_ =
ldeg. 2.5mb interval 1deg. I1mb interval 1deg. 30ms"~

FiG. 8. As in Fig. 7, but with a uniform grid resolution of 1° for both meshes.
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of 13ms™ at 48 h. The disturbance moved
primarily westward while causing a trailing noise of
small amplitude. The distance that the disturbance
moved in 48 h was about 1.5° longitude less than in
the experiment with the triply-nested-mesh model.

6. Remarks

The numerical results from the nested mesh model
with 1°, 3° and Y%° longitude-latitude resolution dem-
onstrate the capability of this model in tracking an
intense small dry vortex. Some features of the
adopted strategy of mesh nesting were mentioned in
Section 1. Comments on some of the other aspects
of the present model are briefly given below.

1) Since the present model has been constructed
based on the previously established framework of an
earlier hurricane model (Kurihara and Tuleya, 1974),
it also used a non-staggered grid system. According
to Ookochi (1972), a staggered grid system was
most successful in controlling noise in his model.
The same system was used by Jones (1977a) and
Sobel and Anthes (personal communication). Madala
and Piacsek (1975) chose another type of staggered
system for their hurricane model. A non-staggered
system yields large error in phase speeds of short
waves as compared to the staggered systems (e.g.,
see review by Mesinger and Arakawa, 1976). Al-
though this effect is lessened with the finer resolu-
tion attainable in nested-mesh models, it may still
cause undesirable features to develop more easily in
a non-staggered model unless the short waves with
wavelength less than four grid intervals are sup-
pressed adequately. In the present model, damping
of these short waves was done through a time-
damping integration method and the occasional
spatial smoothing.

2) Because of its property of frequency-selective
damping, a two-step iteration scheme is used in mak-
ing the time integration of the present model. It was
also used in the models by Ookochi (1972, 1978) and
Jones (1977a). In case of the present triply-nested,
11-level primitive equation model, performance of
the 48 h integration with 180, 60 and 30 s time steps
required 4 h 6 min computer time on the ASC (Ad-
vanced Scientific Computer) of Texas Instruments,
Inc. Use of a two-step iteration scheme did not
necessarily cause a doubling of the computer time,
since all diffusion calculations (as well as the con-
vective adjustment for the moist model) are com-
puted only for the first step. However, it still re-
mains one of the important problems in the future to
reconsider a time-integration method from the
viewpoint of time economy. It should be noted, in
this respect, that Madala and Piacsek (1975) used
a semi-implicit method in carrying out the time inte-
gration of their nested-mesh model.
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3) The finite-differencing method applied to the
present numerical model has a property to conserve
the mass, momentum and internal energy every-
where and preserve the Kinetic energy at a place of
evenly spaced grids. Since a spatial truncation of a
wave varies across the mesh interface, energy con-
servation may not be required at the interface. It is
not quite obvious whether the use of a scheme which
conserves first-order quantities such as mass and
momentum is desirable or not, since the wave pat-
terns are distorted at the interface. In the present
model which uses a mass- and momentum-conserv-
ing scheme, smoothness of fields was maintained
during 48 h integration. According to the previous
study (Kurihara et al., 1979), this scheme will not
cause a serious numerical problem if a wave is re-
solved at the coarse side of the interface. A mass-
and momentum-conserving scheme has also been
applied to a staggered-grid nested-mesh model
(Sobel and Anthes, personal communication). In
some other nesting systems, however, it may be
necessary to give up the use of a conserving scheme
at the interface in order.to obtain a smooth field
(e.g., Ookochi, 1972; Jones, 1977a). At any rate, the
erroneous accumulation of mass or momentum
should not occur at the interface of any model.

4) The initialization scheme used in the present
study is described in Section 3 and Appendix B. The
same static initialization procedure has been suc-
cessfully employed later in a quadruply nested
model of 1°, 14°, ¥%° and Y1s° longitude-latitude resolu-
tion. In this case, a small circular vortex was as-
sumed at the initial time and a dynamic initializa-
tion of the boundary layer (Kurihara and Tuleya,
1978; Kurihara and Bender, 1979) was made after
the static initialization. No large noise was excited
at the start of the time integration of the model. The
proposed scheme has not yet been tested using real
wind data including a strong mature tropical cy-
clone. A test using real data will be made in the near
future. In this case, a procedure to decompose the
real wind into the rotational and non-rotational
components may have to precede the initialization.

5) The numerical model described in Section 2
includes neither moisture nor the effect of surface
friction. Although such a simple model is useful in
detecting a computationally excited noise, its useful-
ness as a simulation model is rather limited. Also,
the test of numerical schemes with the use of a
simple model is not sufficient to infer the general
capability of the schemes. Recently, the proposed
nesting scheme was applied to a tropical cyclone
simulation model which included the effect of
surface friction and the hydrologic process. Treat-
ment of these added physical processes in a model
is explained in Appendix C. Time integration of the
above moist model was performed with a quadruply
nested system of 1°, 15°, %° and Y%s° longitude-
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(vorticify)7 (10'55-‘)

1 degree

FiG. 9. Distribution of relative vorticity at 15.4 h atlevel 7 of a
moist model, for the innermost domain of a quadruply nested
system.

latitude resolutions and 126, 42, 14 and 7 s time
steps. In the early period of the integration, the
vortex was not well contained in the finest mesh
area. This provided a conditon suitable for testing
the mesh nesting method. Fig. 9 shows the distribu-
tion of relative vorticity at 15.4 h at level 7 of the
model (~800 mb level) for the finest mesh and the
surrounding area. As mentioned before, the vorticity
field is considered very sensitive to nesting noise.
The figure indicates that noise is kept under control
in the moist model. Time integration was extended
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progress in the present work. In particular, they
appreciate the continuous encouragement by J.
Smagorinsky and K. Miyakoda, and many useful
advices by R. Tuleya during the course of this study.
Also, they are indebted to J. Kennedy for typing the
manuscript and to P. Tunison and J. Conner for
preparing the figures.

APPENDIX A
Vertical Mixing of Momentum and Heat

The downward fluxes of momentum and heat
above the surface layer in the present model are
estimated by the level 2 equations of the turbulence
closure model derived by Mellor and Yamada (1974).
These fluxes are expressed in the o:coordinate
system by

2 0 00
Px O (KM—V,KH——), (A1)
oo oo

where 7 is the downward diffusive flux of mo-
mentum, v the horizontal wind, 6 the potential tem-
perature and g the acceleration of gravity. The ver-
tical eddy diffusion coefficients are determined by

v

z

(Ku,Ky) = [z (Su3S8), (A2)

where [ is the mixing length and S, and S are the
stability-dependent factors. In the present study,
Blackadar’s formula (1962) is used to specify /, i.e.,

kz

= —, A3
1+ kz/l, (A3)

with k = 0.4 and /[, = 30 m. To obtain the stability
factors, the Richardson number Ri and the flux
Richardson number Rf are computed first:

to 48 h without any sign of computational difficulty . g (9T g\ ov|?
at the mesh interface. The fact that the proposed Ri = —(— + —) | (A4)
nesting strategy was successfully applied to a moist T\ oz Cp/l 02
model is encouraging. Rf = 0.725[Ri + 0.186
Acknowledgments. The present authors would — (Ri% — 0.316 Ri + 0.0346)2]. (AS)
like to express their thanks to colleagues at
GFDL whose support and assistance helped the The following formulas give Sy and Sg:
0 for Rf > 0.213
= . - 0. . - 0. 32 ' A6
Sw 1 - Rf)”?[ 5.771(0.229 — 0.845y)(0.173 ~ 0.470y) } for RE < 0.213, (A6)
(0.229 — 0.689vy)



NOVEMBER 1980

where
v = Rf(1 — Rf)™!,

Sy =8y REfRI™! (A7)
APPENDIX B

Remarks on the Numerical Scheme of Relaxation

The simplified reverse balance equation, i.e., Egs.
(3.3) and (3.4) in the text, in the case of a flat
surface condition, are written

Vzp* = (p*O/RT*O)G*’
VZ(D = G - (T()/T*O)G*.

(B1)
(B2)

In order to solve the above Poisson-type equations,
it is assumed in the present study that Py and @ are
cyclic at the west and the east ends of the channel
domain. The conditions at the south and the north
boundaries are derived from the assumption of the
geostrophic balance in the background zonal fields.
Denoting a zonal field by an overbar, the geostrophic
relation in the o-coordinate system becomes

d Inp 1 t
npy _ 1 (f ané u*)u* (B3)
add RT, a
od _ —(f+ tang ﬁ)ﬁ _RTalnp*
aé a add
T
= —f(u - 7*—11*)
- ta“"’(az - _ia*z) . (B4)
a T,

Assigning appropriate values p,, and To(o), respec-
tively, to p, and T(o) at a certain latitude ¢,, and
approximating T, in (B.3) with T,,, 7/T, in (B4)
with T,/T ., p, and ® can be solved from the above
equations once i is given. [Note that ® at ¢y is
related to T,(o) through the hydrostatic relation.]
The lateral boundary values of p, and ® at each of
the two grid rows nearest to the boundaries are
obtained and fixed during the numerical process of
the relaxation.

The finite-difference Laplacian operator in the
present model is derived as follows. Using the dif-
ferencing scheme described in Section 2d of KTB,
the gradient of a quantity y at a box i, j is given by

5 .
(—d’—) = {la;bicr; + (1 — ai )P, - Wi} Ei s
aa)\ i,j

+ iy = [(A = by + bibi 1} Wi, (BS)
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o
— i i Wi+ = Cii)V¥i,i1 — Yi; Ni,j
(aéd) )i,j {[cm‘l’u + (1 CiiWiil {1 }

+ {di; — [(1 — di Wi + dijPii-11} Siss  (B6)

where E, W, N and § are the weights, i.e., the length
of the east, west, north and south interface of the
box divided by its area, and the coefficients are de-
pendent on the dimensions of boxes, i.e.,

a;; = AN /(AN + AN),
bij = ANy /(AN; + ANi-yy),
Cii = Ay /(A i1 + Adyy),
di; = Ay i/(Ady; + Ay jy).

The right-hand side of (BS) and (B6) may be ex-
pressed as (V,);; and (V4),;, respectively. The
finite-difference divergence of Vi, the components
of which are V,y and V., yields the finite-differ-
ence expression for the Laplacian of :

(V)i = (@i (Vaicry + (1 = ai ) V)i 1E:
= [ = bi)(Vad)i; + bi (Va1 IWs ;s
+ leuilVeiir + (1 = ¢ ) (V)i ;1IN
= [ = di)(Ve)i; + di (Voip)i;-11S5;.  (BT)

using (BS) and (B6), Eq. (B7) can be rearranged
to the following nine-point formula:

(V2)is = guPiva; + CaWijre + Caiios; + Gaisoe
+ g5ty T oWt T 8-y,
+ galij-1 T goti;, (BY)

where g, (n = 0, 1, . . ., 8) represents the coeffi-
cient to be specified for the grid point i, j. -

As mentioned in Section 3, the solution U, of the
relaxation obtained with (B8), tends to exhibit a_
computational mode, i.e., a grid-scale irregularity.
A smooth field y, is obtained by taking a spatial
average of y,. In the nested mesh model, the grid-
point values thus obtained define the field outside
the two-gridpoint frame surrounding the inner mesh.
The effect of smoothing on the physical mode must
be removed from the smoothed field within the
frame, since those points in the frame provide the
numerical boundary condition in making the relaxa-
tion for the inner area enclosed by the frame. Within
the western and the eastern frame, this is done by
adding (Ay); to (¥);;, where

(AY); =

where the overbar with index j means the two-point
average on the jth row within the frame. Correction
for ¢ in the northern and the southern frames is
made similarly. A correction amount for the four

Vit + 20 + ) ~ g,
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points at each of the four frame corners is given
by the difference between the four-point averages of
Y, and . The above corrections may cause a
small but abrupt change in the y-ficld across the
outer edge of the frame. Despite such a discon-
tinuity, which can be damped quickly after the start
of time integration of the model, the correction is
needed in order to obtain an accurate solution for
the inner mesh region. Since the relaxation for the
inner area is treated with a fine resolution, new
values in the east and the west frames at the same
latitude as each inner area grid row are obtained
by linear interpolation in the meridional direction,
using only the coarse points in the frame. For the
grid columns, new values in the north and the south
frames at the same longitude as each inner area
grid column are obtained similarly using the data
from-the coarse gridpoints in the frame.

APPENDIX C
A Model with Hydrologic Cycle

The hydrologic cycle in a moist model is ex-
pressed by the equation for the mixing ratio of water
vapor, i.e.,

%(P*r) = —D(r) + yF, + vF, + RCON, (Cl)

where r is the mixing ratio of the water vapor, and
the last three terms represent the effects of hori-
zontal diffusion, of vertical diffusion, and of the con-
densation and convection process, respectively.
Also a term corresponding to RCON has to be added
to the thermodynamic equation (2.8).

In the models currently in use by the hurricane
project at GFDL, the air-sea interaction process is
estimated in the Monin-Obukhov framework as de-
scribed by Kurihara and Tuleya (1974, p. 897). The
effects of horizontal and vertical diffusion are
evaluated by the schemes mentioned in Section 2b
and Appendix A. [In a moist model, Eq. (A4) is
modified by adding 0.61 T 8r/8z to 67/8z.] The dry
convective adjustment is not used.

The effect of free moist convection is incorporated
in the model through a method of moist convective
adjustment. The adjustment scheme used is the same
one outlined by Kurihara and Tuleya (1974, pp. 898-
900) with two changes. The parameter D, appear-
ing in (3.34) in their paper i$ modified so that it is
500 m above the 700 m height, 0 m at sea level, and
linearly increases in the layer between the 0 and
700 m levels. Also, the following change is made in
adjustment speed. If cumulus convection develops
in the model for a given initial condition, then
the large-scale thermodynamical state is altered to a,
new stable state through the adjustment, at the first
step in the time integration of the model. After the
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first step, however, the adjustments of T and r are
moderated by multiplying a factor At/t,, where
At is the marching step and ¢, the relaxation time,
which serves to spread the adjustment over a longer
period. By the use of the relaxation time, which is
assumed to be 5 min, the adjustment is made
smoothly across the mesh interfaces both timewise
and spacewise. )

In Section 2i, noise control in the nested-mesh
model is discussed. In case of the. moist model,
Newtonian damping in the form of (2.14) is applied
to u, v and p, within six grid rows from the open
lateral boundaries of mesh A. It is also applied to
r, if r is greater than the reference value. The refer-
ence values of u, p, and r at the first row from the
northern and southern boundaries are computed
from the averages of the east and the west points,
while the reference value for v includes the value
at the inner (south or north) gridpoint which is
weighted double in taking the average. The refer-
ence value for gridpoints on the second through
sixth row from the boundary is simply the average
of values at the four surrounding gridpoints for all
variables. Also, as mentioned in Section 2i, the
fields of p, and T are smoothed every 30 steps for
each mesh. The 1:2:1 smoothing in both the west—
east and north—south directions is applied, except
that west—east smoothing only is made for the first
row from the northern and southern boundaries of
mesh A. '

An alternate scheme to control noise is to
eliminate Newtonian dumping for # and v and
increase the value of the von Karman constant used
in the formula for horizontal viscosity, at the border
area in mesh A. Specifically, the square of the
constant at the fifth through the first grid rows from
the boundary may be sett0 0.2, 0.4, 0.6, 0.8 and 1.0,
compared to 0.04 for all other points. In this case,
Newtonian damping is needed only for r, or for r
and p,.
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