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[1] World Meteorological Organization (WMO) regression models for precipitation
gauge bias developed by Goodison et al. (1998) were optimized using the very fast
simulated annealing algorithm. The regression model uncertainties were estimated by use
of a Bayesian stochastic inversion (BSI) algorithm. Legates and Willmott’s (1990)
precipitation correction factors database (applicable to average monthly conditions) were
used to constrain model parameters. Daily wind speed, air temperature, and precipitation
from the North American Land Data Assimilation System (NLDAS) were used as
input for the WMO regression models in the United States. The results show that the
optimal regression model is reasonably bounded by the WMO Alter-shielded and
unshielded models for both rain and snow. The optimized regression model, aside from
reproducing reasonably well the Legates-Willmott average monthly adjustment factors,
also describes daily and interannual variation of precipitation correction factors. The
relations among model parameters and model uncertainties, including regression
parameter uncertainty and input data uncertainty, are examined. The results show strong
relations between regression model uncertainties and uncertain NLDAS wind speed.
Uncertainty of NLDAS data has little effect on optimization of the WMO regression
model. However, it has significant effects on uncertainty of the regression model
parameters and the precipitation correction factors.
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1. Introduction

[2] Precipitation is one of the most influential atmospher-
ic variables for simulations of land surface water balance,
because it sets the scale of all other water fluxes. The
partitioning of precipitation into evapotranspiration, runoff
and soil moisture storage is a complicated nonlinear process
that depends upon soil moisture and snow accumulation,
and spatial and temporal distributions of precipitation and
snowmelt processes. Recently, Lohmann et al [2004] sim-
ulated three years (1997–1999) of streamflow and water
balance analysis in the United States with four land surface
models, deriving by precipitation from the North American
Land Data Assimilation System (NLDAS) [Mitchell et al.,
2004]. They used measured streamflow data from 1154 U.S.
Geological Survey (USGS) gauges to evaluate the ability of
the four land surface models to capture temporal and spatial
variations of streamflow. All four models were found to
underestimate streamflow in areas with significant snowfall,

such as the northern Rocky Mountains [Lohmann et al.,
2004]. The main reason for this underestimation was under-
catch of snowfalls in the area [Sheffield et al., 2003; Pan et
al., 2003]. When snowfall was increased by a constant
factor of 2.17, most of the errors caused by snowfall
undercatch were significantly reduced. Clearly, large sys-
tematic bias in gauge measurements of snowfall greatly
hampers simulation of streamflow and water balance and
evaluation of land surface models.
[3] The World Meteorological Organization (WMO)

Solid Precipitation Measurement Intercomparison
[Goodison et al., 1998] has evaluated the relative biases
of standard precipitation gauges using an extremely rigor-
ous method [Yang et al., 1998a]. The WMO organizing
committee for the measurement intercomparison designed
the octagonal vertical double fence, surrounding a shielded
Tretyakov gauge, to measure ‘‘true’’ precipitation data in a
range of climatic conditions. These ‘‘true’’ precipitation data
were compared with data measured by standard gauges.
Two types of gauges, Alter-shielded and unshielded U.S. 8"
nonrecording gauges, were compared and evaluated in the
United States. On the basis of this comparison, Goodison et
al. [1998] and Yang et al. [1998a, 1998b] developed
regression models for different types of precipitation (i.e.,
snow, mixed precipitation, rainfall) and gauges (i.e., Alter
shielded and unshielded).
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[4] The U. S. precipitation gauge network contains a
variety of shielded and unshielded gauges (i.e., weighing,
tipping bucket, Fischer and Porter) installed at heights
ranging from 0.9 to 7.6 m [Yang et al., 1998b]. Adam and
Lettenmaier [2003], lacking detailed information on gauge
type, shielding details, and height, used the regression
models derived for unshielded gauges at a height of 1.1 m
to adjust the U.S. precipitation for all gauges. Undoubtedly,
this led to overall improvement in precipitation estimates.
Their adjustments probably overestimate precipitation for
gauges with Alter shields and underestimate precipitation
for other gauges [Adam and Lettenmaier, 2003], leading to
area mean biases of unknown sign and magnitude. To
overcome this defect, in this study the equations used for
bias adjustments are not assumed a prior. Only their
functional form is assumed, and the parameters are deter-
mined so as to minimize departures from the average
monthly mean adjustments determined by Legates and
Willmott’s [1990]. The minimization is accomplished by
use of the very fast simulated annealing (VFSA) optimiza-
tion algorithm, which has been widely used to search for
optimal parameters in solid geophysics [Sen and Stoffa,
1996], simple paleoclimate modeling [Jackson et al., 2004],
and the land surface modeling [Jackson et al., 2003; Xia et
al., 2004a, 2004b].
[5] The Legates and Willmott’s [1990] correction factor

database is selected because it is used by the Global
Precipitation Climate Centre (GPCC, http://www.dwd.de/
en/FundE/Klima/KLIS/int/GPCC/) to scale global gridded
precipitation [Huffman et al., 1997] and it is applicable to a
wide range of gauge types. The database is based on
monthly rather than daily meteorological data. However,
the results obtained by Ungersboeck et al. [2000] using the
methods of Rubel and Hantel [1999] for 2 years of (1996–
1997) daily meteorological data showed that monthly
results were not significantly different from Legates and
Willmott’s [1990] results in the United States.
[6] In order to derive optimal regression models, the

following are used as input data: NLDAS surface precipi-
tation, 2 m air temperature, daily wind speed at 10 m,
together with Legates and Willmott’s [1990] correction
factors. The VFSA algorithm was then used to optimize
WMO regression model parameters. Through this process
an optimal regression model was derived together with
other optimal parameters such as gauge height, and the
derived optimal regression model was used to adjust the
NLDAS 0.125� gridded precipitation product. This adjust-
ment reflects the known effects of measurement biases
because root mean square error between the derived and
Legates and Willmott’s [1990] correction factors is minimal
in the United States. Clearly, this bias adjustment method
still includes many uncertainties such as wind speed,
temperature, precipitation in the NLDAS database together
with WMO regression model uncertainty. In addition,
temporal and spatial scale issues also result in additional
uncertainties (these issues are discussed in sections 4.5, and
5.4, respectively).
[7] The Bayesian stochastic inversion (BSI) algorithm

has been used to estimate the uncertainty of paleoclimate
models [Jackson et al., 2004] and land surface models [Xia
et al., 2004a, 2004b]. In this study, BSI was also used to
estimate WMO regression model uncertainty, gauge height

uncertainty, and NLDAS input data uncertainty. Finally,
correction factor uncertainty and adjusted precipitation
uncertainty were estimated.
[8] This paper is organized as follows: Section 2 gives a

brief description of the VFSA and BSI methodology, the
regression model with uncertainty parameters, and NLDAS
data, and section 3 describes the experiment design.
Section 4 derives optimal regression models and analyzes
optimal adjustment of NLDAS. Section 5 estimates the
uncertainties coming from different uncertainty sources.
Conclusions are given in section 6.

2. Data, Model, and Methods

2.1. Data

[9] Two databases were used in this study. They were the
NLDAS database and Legates and Willmott’s [1990] cor-
rection factors (hereafter called LW). The NLDAS database
was used as input data for the WMO regression model, and
the LW database was used as a reference database. The
monthly LW global database has a 1� resolution, with
12 monthly correction factors for each grid box.
[10] Seven years of NLDAS data (1997–2003), covering

a part of North America from 65�W to 120�W, and from
25�N to 52�N were obtained from the NLDAS project
[Mitchell et al., 2004]. These data include hourly downward
solar radiation, downward longwave radiation, surface pres-
sure, wind speed at 10 m, surface air temperature at 2 m,
specific humidity at 10 m, and precipitation, at a 0.125�
resolution. Detailed description of the data set is given by
Cosgrove et al. [2003]. Daily temperature at 2 m, daily wind
speed at 10 m and daily precipitation calculated from this
database were used in this study.

2.2. WMO Regression Model

2.2.1. Regression Equations
[11] Following Goodison et al. [1998] and Yang et al.

[1998a, 1998b], the WMO regression equation for snow,
mixed precipitation and rain is given as follows:

Snow

CFs ¼ 100:0= exp 4:61� aV hð Þb
� �h i

ð1Þ

Mixed precipitation

CFm ¼ 100:0= 101:0� cV hð Þ½ � ð2Þ

Rain

CFr ¼ 100:0= exp 4:61� dV hð Þeð Þ½ � ð3Þ

where a, b, c, d, e are adjustable parameters for Alter-
shielded and unshielded gauge types (see Table 1), V(h) is
the wind speed at gauge height h; CFs, CFm, and CFr are
daily correction factors for snow, mixed precipitation and
rain, respectively.
[12] The wind speed at gauge height h was calculated

from 10 m NLDAS grid wind speed using similarity theory
(logarithmic profile):

V hð Þ ¼ f1V Hð Þ ln f2=Z0ð Þ= ln H=Z0ð Þ½ � ð4Þ
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where V(H) is the NLDAS daily wind speed at 10 m, and Z0

is the roughness parameter (m). According to Sevruk [1982]
and Golubev et al. [1992], Z0 = 0.01 m for a winter snow
surface and Z0 = 0.03 m for a short grass site in the summer
are appropriate average roughness parameters for most sites.
In this study, a roughness length of 0.01 m and 0.03 m was
used for the colder (November to April) and warmer (May
to October) halves of the year, respectively. The f1 and f2 are
adjustable parameters for correction of NLDAS daily wind
speed and gauge height. The ranges of these two parameters
are listed in Table 1.

[13] Following Forland et al. [1996] and Rubel and
Hantel [1999], the precipitation is identified as rain, mixed
precipitation and snow as follows:

Rain

Tþ f3 � 2	C ð5aÞ
Mixed

0	C < Tþ f3 
 2	C ð5bÞ
Snow

Tþ f3 
 0	C ð5cÞ

where T is the NLDAS daily air temperature at 2 m, and f3 is
an adjustable parameter ranging from �2�C to 2�C
according to Pan et al. [2003].
2.2.2. Calculation of Monthly Mean Correction Factors
[14] Following Yang et al. [1998b], the bias-adjusted

precipitation at each day and grid cell can be expressed as

Rain
Par ¼ CFr Pg þ DPwr þ DPer

� �
ð6aÞ

Mixed
Pam ¼ CFm Pg þ DPwm þ DPem

� �
ð6bÞ

Figure 1. Sensitivity analysis of five model parameters and three input data parameters. Y axis values
were computed as a ratio of the difference between calculated error values and minimum error value to
minimum error value. The minimum error value is the minimum value of the all calculated errors.

Table 1. Descriptions and Ranges of Eight Parameters for the

WMO Regression Model and Input Data

Parameter Description
Minimum
Value

Maximum
Value

a regression model parameter 1 for snow 0.035 0.16
b regression model parameter 2 for snow 1.25 1.80
c regression model parameter for mixed 5.00 9.00
d regression model parameter 1 for rain 0.04 0.06
e regression model parameter 2 for rain 0.40 0.70
f1 wind scaling factor 0.70 1.30
f2 gauge height (m) 0.90 2.00
f3 temperature correction factor (�C) �2.00 2.00
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Snow

Pas ¼ CFs Pg þ DPws þ DPes
� �

ð6cÞ

where Pa is the adjusted daily precipitation, Pg is the
NLDAS daily precipitation, DPw is wetting loss, DPe is
evaporation loss, and CF is the daily correction factor
calculated using WMO regression equations described
above. The subscripts r, m, and s denote the rain, mixed
precipitation and snow, respectively. Wetting loss is
0.15 mm/day for rain [Adam and Lettenmaier, 2003], and
0.075 mm/day for mixed precipitation and snow. Evapora-
tion loss is 0.05 mm/day for all types of precipitation [see
Forland et al., 1996]. For the period 1997 through 2003,
precipitation was adjusted using equations (6a)– (6c)
according to different types of precipitation for each day
and each grid. The adjusted and unadjusted precipitation
values were accumulated to get 8-year mean monthly totals,
and the mean monthly correction factor (CCFijn) for each
month and each grid cell were calculated as

CCFijn ¼
Pa

Pg

ð7Þ

where i and j are indices of the grid point in longitude and
latitude direction, respectively, n is the month, Pg is the
mean monthly NLDAS precipitation, and Pa is the mean

monthly bias adjusted precipitation. Equation (8) (described
in section 2.3) was used to calculate the error function.

2.3. Error Function

[15] The error function (E) is defined as a root mean
square error between reference data (LW) and the data
calculated using WMO regression equations. It represents
the mismatch between reference and calculated data. It is
defined as

E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
n¼1

PI
i¼1

PJ
j¼1

RCFijn � CCFijn
� �2
N � I � J

vuuut
; ð8Þ

where N = 12 is the number of months, i, j are grid point
indices in longitude and latitude directions, RCFijn and
CCFijn are reference correction factors and calculated
correction factors at each grid point and month, respec-
tively. Here E is a function of adjustable parameters a, b, c,
d, and e for the first experiment, and parameters a, b, d, f1,
f2, f3 for the second experiment (see section 3).

2.4. Very Fast Simulated Annealing

[16] The VFSA is an optimization algorithm. One may
use the temperature construct within the Metropolis algo-
rithm [Metropolis et al., 1953] to locate the global minimum
of error function by very slowly lowering the temperature
parameter within

P ¼ exp
�DE

T

� 
ð9Þ

where P is the probability of acceptance of a new parameter
set with positive change of error function values, DE is the
change of error function between new and previous
parameter sets, and T is a control parameter analogous to
temperature. If the change is negative, this new parameter
set is accepted. If the change is positive, and if and only if P
is less than a randomly generated number between 0 and 1,

Figure 2. A schematic diagram for optimization and
uncertainty estimation processes in this study. Gray lines
and boxes represent optimization process, and black lines
and boxes represent uncertainty estimation process.

Table 2. Default Parameter Set and Optimal Parameter Set for

WMO Regression Models and Input Dataa

Parameter
AM

Default
UM

Default
Experiment 1

Optimal
Experiment 2

Optimal

Snowb

a 0.036 0.157 0.117 0.149
b 1.750 1.280 1.260 1.250

Mixed Precipitationc

c 5.62 8.34 8.38 8.34

Raind

d 0.041 0.062 0.040 0.041
e 0.690 0.580 0.70 0.580

Input Data
f1 1.1 1.1 1.1 0.96
f2 1.0 1.0 1.0 0.85
f3 0.0 0.0 0.0 �0.83

aSymbols can be found in section 2.2.
bCFs = 100.0/[exp(4.61 � aV(h)b)].
cCFm = 100.0/[101.0 � cV(h)].
dCFr = 100.0/[exp(4.61 � dV(h)e)].
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the new parameter set is rejected. This iterative section
process is analogous to the annealing process within a
physical system where the lowest energy state between
atoms or molecules is reached by the gradual cooling of the
substance within a heat bath. Because of this physical
analogy, the algorithm is called simulated annealing. In
order to enhance the ability of simulated annealing to
converge to the global minimum of the error function,
Ingber [1989] introduced a new procedure for selecting
parameter sets according to a temperature-dependent
Cauchy distribution. This modified simulated annealing
algorithm is called very fast simulated annealing. Ingber’s
algorithm can be described as follows.
[17] Let us assume that a model parameter mi at kth

iteration (annealing step k) is represented by mi
(k) such

that

mmin
i 
 m

kð Þ
i 
 mmax

i ð10Þ

where mi
min and mi

max are the minimum and maximum
values of the model parameter mi. This model parameter
value is perturbed at iteration (k + 1) using mi

(k+1) =
mi
(k) + yi (mi

max � mi
min), mi

min 
 mi
(k+1) 
 mi

max and yi 2
[�1,1]. Yi is generated from the distribution

gT(y) =
QNM
i¼1

1

2 yij j þ Tið Þ ln 1þ 1
Ti

� � =
QNM
i¼1

gTi (yi) and has

a cumulative probability GTi
=

1

2
þ sgn yið Þ

2

ln 1þ yij j
Ti

� �

ln 1þ 1
Ti

� � .
Ingber [1989] showed that for such a distribution the
global minimum could be statistically obtained by using
the following cooling schedule

Ti kð Þ ¼ T0i exp �cik
1

NM

� �
ð11Þ

where T0i is the initial temperature for model parameter i
and ci is a parameter to be used to control the
temperature. The NM is the number of selected model
parameter sets. The acceptance rule of the very fast
simulated annealing algorithm is the same as that used in
the Metropolis rule. However, very fast simulated
annealing is more efficient when compared with simu-
lated annealing.

2.5. Bayesian Stochastic Inversion

[18] The Bayesian stochastic inversion (BSI) algorithm
[Sen and Stoffa, 1996] is based on the Bayes theorem and,
usually, a stochastic method to select sets of parameter

Figure 3. Daily correction factors versus wind speed for (a) snow and (b) rain for the AM model, UM
model, and optimal regression models. The AM and UM regression models were taken from Yang et al.
[1998a], AM and UM are represented by dotted line, Exp1 is represented by solid line, Exp2 is
represented by dashed line, and dotted line for AM and solid line for Exp1 are overlapped.
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values from a distribution of realistic choices for model
parameters. Within the Bayesian nomenclature, the relative
probability for each combination of parameter values is
expressed as a ‘‘posterior’’ probability density function
(PPD) assumed to be Gaussian, which is given mathemat-
ically as

s mjdobsð Þ ¼ exp �E mð Þp mð ÞðR
exp �E mð Þð Þp mð Þdm ; ð12Þ

where the domain of integration spans the entire model
parameter space m, s(mjdobs) is the PPD, vector dobs is the
observational data, E(m) is the error function, exp[�E(m)]
is the likelihood function, p(m) is the ‘‘prior’’ probability
density function for m. Because only the range for each
model parameter in m is known, a uniform distribution
within the range is used as the ‘‘prior’’ probability density
function. This selection is the least biased as a uniform
distribution indicates maximum uncertainty range.

[19] Because the PPD is multidimensional, it is difficult
to visualize. Therefore a one- dimensional projection of the
PPD (i.e., the marginal PPD) for a particular parameter, the
posterior mean parameter set and the posterior parameter
covariance matrix or correction matrix, are often used. The
marginal PPD of a particular parameter mi is given by

s mi dobsj Þ ¼ð
Z Z

. . . :

Z
s m dobsj Þdm1dmð 2. . . dmM ð13Þ

where M is total number of model parameters. The posterior
mean parameter set is given by

mh i ¼
Z

ms m dobsj Þdmð ð14Þ

The posterior parameter covariance matrix is given by

CM ¼
Z

m� mh ið Þ m� mh ið ÞTs m dobsj Þdmð ð15Þ

Figure 4. Comparison of mean monthly LW correction factor (solid line), optimal correction factor for
Exp1 (dashed line), and optimal correction factor for Exp2 (dotted line) in (a) northwest United States,
(b) northeast United States, (c) southwest United States, (d) southeast United States, and (e) the United
States as a whole. Dashed line and dotted line almost overlap.
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The VFSA, described in section 2.4, was used to
stochastically select parameter sets. The VFSA is a form
of importance sampling that reduces the computational
burden of modeling of the effect of every possible
combination of model parameters. The VFSA algorithm
will sample more frequently those regions of the PPD that
are more probable [Sen and Stoffa, 1996].

3. Experiment Design

[20] Table 1 lists eight adjustable parameters and their
assumed feasible ranges. Parameters a and b, which affect
the snow correction rate, are regression model parameters
for snow. Parameter c is a regression model parameter for
mixed precipitation, and it affects the mixed precipitation
correction rate. Parameters d and e are regression model
parameters for rain and they affect the rain correction rate.
Parameters f1 and f2 are factors for gauge height and wind
correction, respectively. Both f1 and f2 affect wind speed at
gauge height. Parameter f3 is air temperature correction
factor. It affects portioning of rain, mixed precipitation
and snow. Overall, these uncertainty parameters cover
almost all uncertainties of the WMO regression model and
input data. The ranges of parameters in the WMO regres-
sion equations were taken from Yang et al. [1998b]. A

gauge height range from 0.9 to 2.0 m was taken because
Yang et al. [1998b] showed that most gauges are in this
range. The range of the air temperature correction factor
was taken from Pan et al. [2003]. There is no information
for the range of the wind speed scaling factor so an
acceptable range was assumed to be from 0.7 to 1.3, which
may be a bit arbitrary.
[21] Two experiments were designed in this study. In

the first experiment (Exp1) only the WMO regression
model uncertainties were considered and input data
uncertainties were ignored. Therefore the first five param-
eters were optimized and are shown in Table 1. In the
second experiment (Exp2), all uncertainties discussed
above were considered leaving eight parameters to opti-
mize. In order to reduce the computational burden in the
second experiment, a traditional perturbation method (one
factor at a time) was used initially, following Xia et al.
[2004b], to make an error profile analysis, to select
sensitive parameters, and to remove insensitive parame-
ters. This error profile is a ratio of the difference between
calculated and minimum error values to minimum error
values. The error is calculated as a function of variations
in a given parameter while holding the value of all other
parameters constant using equation (8). A sensitivity
analysis of eight parameters is shown in Figure 1. Com-

Figure 5. Horizontal distribution of (a, d) mean monthly LW correction factor, (b, e) optimal correction
factor for Exp1, and (c, f) optimal correction factor for Exp2. LW, Exp1, and Exp2 are represented from
top to bottom, and January and July results are represented from left to right.
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parison of sensitivity tests shows that a, b, f1, and f2 are
the most sensitive parameters, d and f3 are also sensitive
to calculated error function, and c and e are less sensitive
to calculated error function. From this analysis it is
known that the model parameters related to snow correc-
tion (e.g., a, b, f3) are sensitive, and the model parameter
related to rain and mixed precipitation are less sensitive
except for d. The parameters related to wind speed
correction (e.g., f1, f2) are sensitive because they affect
both snow and rain correction factors. After removing
two less sensitive parameters, six parameters remain to be
optimized. For each experiment 40,000 parameter sets
were run, and the parameter set which has a minimum
error function value was selected as the optimal parameter
set.
[22] Performance of the regression model was assessed

using root mean square error between reference and
calculated data. In addition, comparisons of reference
and calculated data, optimal and WMO regression models
[Yang et al., 1998b] were also used to evaluate the
performance of the regression model. Adjusted and un-
adjusted precipitation in the United States also was
compared. Daily and annual variations of correction
factors were also analyzed in the United States. Finally,
regression model parameter and input data uncertainties
were analyzed, together with the effect of input data
uncertainty on regression model parameters, and uncer-
tainties of adjusted precipitation. A detailed schematic
diagram for this study is shown in Figure 2. Gray lines

and boxes represent optimization process, and black lines
and boxes represent uncertainty estimation process.

4. Optimization of WMO Regression Models

4.1. Comparison of Optimal Regression Model with the
Results of Yang et al. [1998b]

[23] In order to present the results more concisely, the
WMO regression model derived using Alter-shielded gauge
data will be referred to as the AM model, and the WMO
regression model using unshielded gauge data will be
referred to as the UM model. Table 2 shows the parameters
of the AM model, UM model, and optimal regression
models obtained in Exp1 and Exp2. The different models
have different correction factors (rates). Figure 3 shows a
comparison between optimal regression models and the
WMO regression models listed in Table 2. The results
demonstrate that if certain input data uncertainties (gauge
height, daily wind speed and temperature) are ignored, the
optimal regression model is bounded by the AM model and
the UM model for snow [Yang et al., 1998a, 1998b]. This
means that neither model is appropriate for adjusting snow
systematic bias because the AM model underestimates and
the UM model overestimates the correction factor for snow.
For rain, the optimal regression model is close to the AM
model. Therefore the AM model is appropriate for the
systematic bias adjustment of U.S. rainfall. When input
data uncertainties are included, the optimal regression
model for snow is still bounded by the AM model and

Figure 6. Optimal daily correction factors versus wind speed for (a) snow and (b) rain for the Exp1
(solid line) and Exp2 (dashed line) when optimal input data were used for the Exp2.
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UM model, although it is closer to the UM model because
of the effect of input data error on optimal regression. For
rain, the optimal regression model has a smaller correction
factor than the AM model because of the effect of uncertain
input data on the optimal regression model. This means that
neither the AM nor the UM model is appropriate for both
rain and snow bias adjustment when optimal gauge height,
NLDAS wind speed, and air temperature are used. Because
of input data uncertainties, the optimal regression model is
outside the boundary of the AM and UM models for rain.
[24] It is clear that neither the AM model nor the UM

model is appropriate for both rain and snow systematic bias
adjustment in the United States because the U.S. gauge
network includes Alter-shielded and unshielded gauges.
Therefore a reasonable systematic bias adjustment is diffi-
cult for the whole United States using one type of WMO
regression model except if site-specific information, e.g.,
gauge type, shielding, gauge height, wind sensor height, and
degree of exposure, is obtained for each gauge. However,
collection of such information would entail a large invest-
ment of effort and is currently unavailable in any central
data archive [Adam and Lettenmaier, 2003]. Therefore a
compromise method as described in this study may be

useful for systematic bias adjustment in the United States.
These results show that optimal regression models seem to
be reasonable when compared to WMO regression models
because they are bounded by the WMO AM and UM
models. Optimal regression models are therefore used to
calculate the optimal mean monthly correction factor in the
United States.

4.2. Comparisons of Mean Monthly Correction Factors
in the United States

[25] Figure 4 shows comparison of the optimal mean
monthly correction factor for Exp1 (dashed line) and
Exp2 (dotted line) to LW results (solid line) in the United
States and four subregions. The four subregions are divided
into the northwest region (98�W–125�W, 40�N–53�N),
northeast region (59�W–98�W, 40�N–53�N), southwest
region (98�W–125�W, 25�N–40�N), and southeast region
(59�W–98�W, 25�N–40�N), according to the definition of
Lohmann et al. [2004]. The results show that optimal mean
monthly correction factors are consistent for Exp1 and
Exp2, and they are similar to LW results in the United
States and four subregions. They have significant seasonal
variation, that is, the correction factor is large in winter and

Figure 7. Mean monthly NLDAS precipitation (solid line), mean monthly Exp1 adjusted LDAS
precipitation (dashed line), and mean monthly Exp2 adjusted NLDAS precipitation (dotted line) in
(a) northwest United States, (b) northeast United States, (c) southwest United States, (d) southeast United
States, and (e) the United States as a whole. Dashed line and dotted line almost overlap.
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small in summer, particularly in the northwest and northeast
regions because of snowfalls. In January and February, the
optimal regression model underestimates mean monthly
correction factors in the northeast region (Figure 5).
[26] It should be noted that uncertain input data indeed

influences optimal regression models for both rain and snow
as shown in section 4.1. However, the effect is not signif-
icant for mean monthly correction factors when the results
of Exp1 and Exp2 are compared in Figure 4. The reason is
that optimal input data used here. Figure 6 shows the daily
correction factor for rain and snow when optimal input data
shown in Table 2 were used. The results demonstrate that
the optimal correction factor with uncertain input data
(Exp2) is similar to that with accurate input data (Exp1)
for snow although the effect of uncertain input data on rain
still exists. Therefore uncertain input data have little effect
on optimization of the WMO regression model. This result
is consistent with that of Xia et al. [2004c] where uncertain
forcing data have also shown little effect on optimization of
a land surface model.

4.3. Comparisons of Adjusted and Unadjusted
Precipitation in the United States

[27] Figure 7 compares mean monthly adjusted and
unadjusted precipitation (1997–2003) in the United States.

A solid line represents NLDAS precipitation, a dashed line
represents adjusted NLDAS precipitation for Exp1, and
adjusted NLDAS precipitation is represented by dotted line
for the Exp2. The results show that NLDAS precipitation is
increased by 10–15 mm for the United States with this
adjustment. This increase is largest in the northeast region
and is smallest in the southwest region. Figures 8 and 9
show the horizontal distribution of adjusted and unadjusted
mean monthly precipitation and their differences for Janu-
ary and July, respectively. The results show that mean
January precipitation is increased by 20 to 50 mm in the
northwest and northeast of the United States (Figures 8d
and 8e). The main increase is located in the northern Cascade
Range, northern RockyMountains, and whole northeast area.
This is in good agreement with the results from Lohmann et
al. [2004] where they showed that all four land surface
models underestimate streamflow simulations when com-
pared to observed streamflow. Comparison of two optimal
adjustments (Figure 8f) shows a 3–5 mm difference. This
means that uncertain input data have a small effect on
systematic bias adjustment when compared to optimal
adjustment itself.
[28] For July precipitation adjustments, mean precipita-

tion is increased by 5 to 15 mm (Figure 9d and 9e). The
main increase is located in the east of the United States. In

Figure 8. Mean January (a) NLDAS precipitation, (b) Exp1 adjusted NLDAS precipitation, (c) Exp2
adjusted NLDAS precipitation, (d) difference between Figures 8b and 8c, (e) difference between Figures
8c and 8a, and (f) difference between Figures 8b and 8c.
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the west of the United States, the increase is less than 5 mm.
Again, uncertain input data have small effect on the optimal
adjustment of precipitation systematic bias.

4.4. Daily and Annual Variations of Precipitation
Correction Factors in the United States

[29] Compared to mean monthly LW correction factors,
the advantage of the optimal regression model is that it is
able to describe the daily and interannual variation of
precipitation correction factors. Figure 10 shows daily
variations of correction factors averaged in the United States
for February, April, June, August, October, and December
for the year 1997, 2000, and 2003, respectively. The results
show significant daily and interannual variation of precip-
itation correction factors for all seasons except for summer.
In summer, variation of daily correction factors with wind
speed is small for rain (Figure 3). Therefore, if daily and
interannual variations of the precipitation correction factor
are ignored, the study of snow processes, such as compar-
ison of snow water equivalent and snow cover fraction may
produce misleading results.

4.5. Discussion

[30] The optimal model presented here is not consistent
with the UM model used by Adam and Lettenmaier [2003].
However, it is not possible to judge which regression model
is more appropriate for the systematic adjustment of pre-

cipitation data in the United States because both methods
have their benefits and drawbacks. The benefit of Adam and
Lettenmaier’s [2003] work is that they directly used the UM
model to gauge sites as used by Yang et al. [1998b]. The
drawback is that they subjectively selected one of two types
of regression models due to the lack of information about
gauge types and the large nonhomogeneity of the U.S.
gauge network. As indicated by Adam and Lettenmaier
[2003], their adjustment included a lot of uncertainties such
as gauge representation uncertainty (e.g., sporadic shield,
different gauge height), regression model application un-
certainty, interpolation errors, and gauge measure network
uncertainty. In contrast, the results presented here accounted
for most of their uncertainties. An optimization algorithm
was used to select one optimal set of model and input data
parameters by making the RMSE between LW correction
factors and calculated using uncertain regression model and
the input data minimum. Clearly, these results depend on
two assumptions: (1) LW data covering the years 1920 to
1980 can be used to compare the data presented here,
covering the years 1997 to 2003, (2) the AM and UM
models derived from gauge sites are appropriate for a grid
box with an area of about 144 km2.
[31] These two assumptions can be justified in a number

of ways. First, because the LW correction factor is still
being used for correction of systematic bias for recent
GPCC precipitation data and this correction factor data set

Figure 9. Same as Figure 8 but for July results.
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is a climate-averaged database, this appears to be the most
appropriate reference database that can be used at the
current time despite the global warming effect. As the
method of Rubel and Hantel [1999] is used to adjust GPCC
precipitation data, it is reasonable to expect that a new
reference database will be available for future studies.
Secondly, like many other works [Sen et al., 2001; Pan et
al., 2003], this work also has an issue of scales as well.
Since WMO regression models were derived from gauge
sites rather than from grid box data, how representative
these models are of the grid average is somewhat question-
able, especially in relation to daily wind speed and air
temperature. However, this was addressed by using an
uncertain regression model with a mathematical form sim-
ilar to the work of Yang et al. [1998b] rather than the exact
WMO regression model. LW correction factors and the
correction factors calculated from uncertain regression
models are used to calculate error function, and the VFSA
selects optimal regression models to minimize the error
function in the United States. Therefore the optimal regres-
sion models can be considered representative for grid
points. Furthermore, uncertainties of daily wind speed and
daily air temperature were included in this analysis, and thus
the VFSA algorithm can select an appropriate wind speed

and temperature values at a grid box to fit the selected
regression model for that grid box when LW correction
factors are used to constrain the calculated error function
values.
[32] It should be noted that here the systematic bias

adjustment of precipitation mainly includes wind blowing,
wet loss and wet evaporation effects. It does not include the
topographic effect on precipitation. However, the systematic
bias of precipitation caused by topography is an important
part as indicated by Milly and Dunne [2002]. Therefore the
adjustment of bias due to topography needs to be
approached in the future using an expert system such as
that described by Daly et al. [1994].

5. Uncertainty Estimates of WMO Regression
Models

5.1. Uncertainty Analysis of Model and Input Data
Parameters

[33] Marginal posterior probability density (PPD) func-
tion can be used to estimate uncertainties of model param-
eters. Figure 11 shows PPD distributions of five regression
model parameters for Exp1. The circles in Figure 11 show
optimal parameters that were identified using the VFSA

Figure 10. Daily correction factor for the year 1997 (solid line), the year 2000 (dashed line), the year
2003 (dotted line) in (a) February, (b) April, (c) June, (d) August, (e) October, and (e) December in the
United States.
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algorithm. The line between the two stars shows the
uncertainty range at the 95% confidence level. The circles
often line up with the peaks in the marginal PPD, although
this is not always the case since there is no requirement that
optimal parameters are also the most probable. The proba-
bility assigned to a given parameter value through the PPD
involves a combined measure of the likelihood function and
the frequency at which parameter values within a given
neighborhood are selected. Comparison of PPDs for five
parameters shows that a, b and d have smaller uncertainty
than c and e because of more peaks. This means that
marginal probabilities for a, b, and d have strong con-
straints. Parameters c and e show the largest uncertainty
because their marginal PPDs have a near uniform distribu-
tion. This large uncertainty is because c and e are not
sensitive to the calculated error function (Figure 1). In
general, sensitive parameters have small uncertainties and

insensitive parameters have large uncertainties. However, d
is also not sensitive to the calculated error function, but it
shows smaller uncertainty when compared to c and e. One
possible explanation for this is that d has a correlation of
�0.19 with a and a correlation of 0.20 with b (Table 3a), the
two most sensitive parameters, and this association in-
creased the relative influence of d. This issue has been
discussed by Jackson et al. [2003].
[34] Figure 12 shows PPD distributions of three regres-

sion model parameters and three input data parameters for
Exp 2. The results show strong constraints for a, b, d, f2 and
f3 and a weak constraint for f1. A comparison of Figures 12
and 11 shows that a has wider uncertainty range at the 95%
confidence level and less peaks for Exp2 when compared to
Exp1 results. This means that a has larger uncertainty for
Exp1 than for Exp2. This larger uncertainty is due to

Figure 11. Marginal posterior probability density function (PPD) for regression parameters (a) a for
snow (b) b for snow, (c) c for mixed precipitation, (d) d for rain, and (e) e for rain when the Exp1 was
conducted. Circles are optimal parameters, and lines between two stars represent an uncertainty range at
the 95% confidence level.

Table 3a. Correlation Matrix of Five Regression Model

Parameters for Experiment 1a

Parameter a b c d e

a 1.0 �0.66 0.03 �0.19 0.07
b �0.66 1.0 �0.07 0.20 �0.06
c 0.03 �0.07 1.0 �0.22 0.07
d �0.19 0.20 �0.22 1.0 �0.22
e 0.07 �0.06 0.07 �0.22 1.0

aBold values indicate significant correlation between two parameters.

Table 3b. Correlation Matrix of Three Regression and Three

Input Parameters for Experiment 2a

Parameter a b d f1 f2 f3

a 1.00 �0.43 �0.01 �0.12 �0.62 �0.14
b �0.43 1.00 0.20 0.03 �0.07 0.03
d �0.01 0.200 1.00 �0.18 �0.08 �0.06
f1 �0.12 0.03 �0.18 1.00 �0.09 0.08
f2 �0.62 �0.07 �0.08 �0.09 1.00 0.30
f3 �0.14 0.03 �0.06 0.08 0.30 1.00

aBold and italic values indicate significant correlation between two
parameters.
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nonlinearity between uncertain wind speed (f2) and model
parameter a. The nonlinearity can be represented by a
correction of �0.62 (Table 3b). Besides the strong correla-
tion between uncertain wind speed f2 and model parameter
a, there is also a correlation of �0.46 between model
parameter a and model parameter b, and a correlation of
0.30 between uncertain wind speed f2 and uncertain tem-
perature f3. These correlations show that there are interac-
tions between model parameters, between input data sets,
and between model parameters and input data sets.

5.2. Uncertainty Analysis of Daily Correction Factors

[35] Figure 13 shows the probability distribution of daily
correction factors for snow when wind speeds of 1, 2, 3, 4,
5, and 6 m/s are used. In Figure 13 the line between two
plusses represents the range of daily correction factors
calculated using the AM and UM models, the circle
represents the result of optimal regression model, and the
square represents the result of mean model shown in
equation (14). The results show that the range of the daily
correction factor calculated using the AM and UM models
covers over 95% of the uncertainty range for all examined
wind speeds. The mean model and optimal model generate
similar daily correction factors for all wind speeds except
for cases of 1 and 6 m/s where mean and optimal models
show some differences. As the uncertain input data were
included, the uncertainty range of daily correction factors
increased for examined wind speed (Figure 14) when
compared to the results in Figure 13. The range of the daily

correction factor calculated using the AM and UM models
covers less than 95% of the uncertainty range for cases of
large wind speed. This result is reasonable because uncer-
tain input data contribute additional uncertainties. Similar
conclusions can be drawn for mixed precipitation and rain
correction. This means that uncertain input data indeed have
a significant effect on the uncertainty estimates of daily
correction factors. They not only affect daily correction
factors but also affect mean monthly correction factors. A
cumulative distribution function (CDF) of RMSE for Exp1
and Exp2 shows that Exp2 has a larger RMSE than Exp1,
showing that the effect of uncertain input data. RMSE
involves a snow regression model, mixed precipitation
regression model and rain regression model so that it is a
combination effect of snow, mixed precipitation and rain. If
a given percentage of the best parameter sets is used (say,
10%) to estimate uncertainties of error functions as used by
Franks and Beven [1997], uncertain input data will lead to
larger uncertainty estimates of adjusted precipitation.

5.3. Uncertainty Estimates of Adjusted Precipitation

[36] Figure 15 shows uncertainty estimates of adjusted
mean monthly precipitation in the United States and four
subregions when only regression model uncertainties were
included. A solid line represents optimally adjusted NLDAS
precipitation, a dashed line represents the adjusted precip-
itation using mean model, and a dashed-dotted line repre-
sents uncertainty estimates of adjusted precipitation at the
95% confidence level. The results show that an optimal and

Figure 12. Marginal posterior probability density function (PPD) for regression parameters (a) a for
snow (b) b for snow, (c) d for rain, (d) f1 for gauge height, (e) f2 for wind correction factor, and (f) f3 for
temperature correction factor when Exp2 was conducted. Circles are optimal parameters, and lines
between two stars represent uncertainty range at the 95% confidence level.
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mean models gives similar adjusted precipitation. This is
consistent with the analysis described in section 5.2 where
optimal model and mean model give similar daily correction
factors. The uncertainty range of adjusted precipitation has
large seasonal and spatial variations. It is large in winter and
small in summer, and it is large in the north of the United
States and small in the south of the United States. This is
because uncertainty of regression models is large for snow
and small for rain. Uncertainty of 10–15 mm can be found
in winter and uncertainty less than 5 mm can be found in
summer. This estimate does not include input data uncer-
tainties. If input data uncertainty is included, the uncertainty
estimate of adjusted precipitation would increase somewhat.
However, a large increase of the uncertainty estimate is not
likely even if uncertain input data were involved.

5.4. Discussion

[37] Major uncertainties of adjusted NLDAS precipitation
come from uncertain regression models, uncertain NLDAS

data (i.e., wind speed, air temperature, precipitation), un-
certain gauge height, and LW data uncertainty. NLDAS
precipitation uncertainty and LW data uncertainty were not
discussed in this study. This does not necessarily mean that
they have little effect on uncertainty estimates of adjusted
NLDAS precipitation because NLDAS precipitation con-
tains model precipitation from Eta model outputs. However,
as indicated that by Cosgrove et al. [2003], CPC (Climate
Prediction Center) daily gauge analyses serve as the back-
bone of the NLDAS hourly precipitation forcing. Less than
10% NLDAS precipitation is replaced using Eta model
precipitation due to missing CPC precipitation. Therefore
the uncertainty of the NLDAS precipitation may be
expected to be not large.
[38] Imprecise model parameters generate uncertain mod-

els, the combined effect of uncertain models and input data
generate inaccurate correct factors, and finally inaccurate
correction factors generate unreliable adjusted precipitation.

Figure 13. Probability distribution of daily correction factors for Exp1 snow when wind speeds of (a) 1,
(b) 2, (c) 3, (d) 4, (e) 5, and (f) 6 m/s were used. A total 40,000 parameter sets were used here; the circle
represents the result calculated using optimal model, a square represents the result calculated using mean
model, and a line represents the range of the results calculated using AM and UM models.
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Figure 14. Same as Figure 13 but for the Exp2.
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It should be noted that the interaction between the model
parameter themselves, between the input data itself, and
also the interaction between model parameters and the input
data make the uncertainty estimation process more compli-
cated. Numerous optimization algorithms (e.g., variational
method) cannot be used because there are nonlinear rela-
tionships among model parameters and input data. As
indicated by Sen and Stoffa [1996], the VFSA and BSI
algorithms are appropriate for this study.

6. Conclusions

[39] This study includes two parts. Firstly, the VFSA was
used to optimize WMO regression model parameters and
input data to drive an optimal WMO regression model, and

then used the derived optimal regression model and input
data to adjust NLDAS precipitation. Secondly, the BSI was
used to estimate the uncertainties of adjusted NLDAS
precipitation.
[40] The results show that optimal models are reasonable

because they are bounded by the AM and UM models. The
calculated mean monthly correction factors are consistent
with LW data for the United States and four subregions.
Comparison of the Exp1 and Exp2 experiments shows that
uncertain input data have some effect on the selection of
optimal models. However, it has little effect on optimally
adjusted precipitation in the United States.
[41] The AM and UM models can estimate uncertainty of

adjusted precipitation for the United States well only if an
uncertain regression model is used. However, they cannot

Figure 15. Uncertainty estimates of mean monthly NLDAS precipitation adjusted for Exp1 in
(a) northwest United States, (b) northeast United States, (c) southwest United States, (d) southeast United
States, and (e) the United States as a whole. Solid line represents optimally adjusted NLDAS
precipitation, a dashed line represents the adjusted NLDAS precipitation using mean model, and dashed-
dotted lines represent an uncertain range at the 95% confidence level. Dashed line and solid line almost
overlap.
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estimate uncertainty of adjusted precipitation well when
inaccurate input data are involved because this increases
uncertainty in the precipitation correction factor and subse-
quently the adjusted precipitation. In addition, there is
significant interdependence within the model parameters,
the input data, and between the model parameters and the
input data.
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