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We have found a new way to express the solutions of the RSM (Reynolds Stress Model) equations that
allows us to present the turbulent diffusivities for heat, salt and momentum in a way that is considerably
simpler and thus easier to implement than in previous work. The RSM provides the dimensionless mixing
efficiencies Ca (a stands for heat, salt and momentum). However, to compute the diffusivities, one needs
additional information, specifically, the dissipation e. Since a dynamic equation for the latter that includes
the physical processes relevant to the ocean is still not available, one must resort to different sources of
information outside the RSM to obtain a complete Mixing Scheme usable in OGCMs.

As for the RSM results, we show that the Ca’s are functions of both Ri and Rq (Richardson number and
density ratio representing double diffusion, DD); the Ca are different for heat, salt and momentum; in the
case of heat, the traditional value Ch = 0.2 is valid only in the presence of strong shear (when DD is inop-
erative) while when shear subsides, NATRE data show that Ch can be three times as large, a result that we
reproduce. The salt Cs is given in terms of Ch. The momentum Cm has thus far been guessed with differ-
ent prescriptions while the RSM provides a well defined expression for Cm(Ri,Rq). Having tested Ch, we
then test the momentum Cm by showing that the turbulent Prandtl number Cm/Ch vs. Ri reproduces the
available data quite well.

As for the dissipation e, we use different representations, one for the mixed layer (ML), one for the ther-
mocline and one for the ocean’s bottom. For the ML, we adopt a procedure analogous to the one success-
fully used in PB (planetary boundary layer) studies; for the thermocline, we employ an expression for the
variable eN�2 from studies of the internal gravity waves spectra which includes a latitude dependence;
for the ocean bottom, we adopt the enhanced bottom diffusivity expression used by previous authors
but with a state of the art internal tidal energy formulation and replace the fixed Ca = 0.2 with the
RSM result that brings into the problem the Ri, Rq dependence of the Ca; the unresolved bottom drag,
which has thus far been either ignored or modeled with heuristic relations, is modeled using a formalism
we previously developed and tested in PBL studies.

We carried out several tests without an OGCM. Prandtl and flux Richardson numbers vs. Ri. The RSM
model reproduces both types of data satisfactorily. DD and Mixing efficiency Ch(Ri,Rq). The RSM model
reproduces well the NATRE data. Bimodal e-distribution. NATRE data show that e(Ri < 1) � 10e(Ri > 1),
which our model reproduces. Heat to salt flux ratio. In the Ri� 1 regime, the RSM predictions reproduce
the data satisfactorily. NATRE mass diffusivity. The z-profile of the mass diffusivity reproduces well the
measurements at NATRE. The local form of the mixing scheme is algebraic with one cubic equation to
solve.

Published by Elsevier Ltd.
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., et al. Ocean turbulence, III
1. Introduction

In two previous studies (Canuto et al., 2001, 2002, cited as I and
II), two vertical mixing schemes for coarse resolution OGCMs
(ocean general circulation models) were derived and tested. How-
ever, because of shortcomings in I, II of both physical and structural
nature, a new mixing scheme became necessary which we present
: New GISS vertical mixing scheme. Ocean Modell. (2010), doi:10.1016/
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1 The 1D-GOTM ocean model (Burchard, 2002) has included and solved the e-
equation in the mixed layer.
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here. By structural we mean that the expressions for the heat, salt
and momentum diffusivities in I, II were rather cumbersome. By
physical, we mean the need to include important physical pro-
cesses that were missing in I, II.

Concerning the structural issue, we have found a new solution
of the Reynolds Stress Model, RSM, that yields expressions for the
diffusivities that are simpler and thus easier to code than the ones
in II. If we denoted by Ka the diffusivities for momentum, heat and
salt (subscript a), the new solutions of the RSM are:

Mixed layer : Ka ¼ Sa
2K2

e
; ð1aÞ

Deep Ocean : Ka ¼ Ca
e

N2 ; Ca �
1
2
ðsNÞ2Sa ð1bÞ

Here, K is the eddy kinetic energy, e its rate of dissipation, N is the
Brunt–Vaisala frequency with N2 = �gq�1qz, s = 2Ke�1 is the
dynamical time scale and Sa are dimensionless structure functions
which are functions of:

SaðRi;Rq; sNÞ ð2aÞ

where the Richardson number Ri and the density ratio Rq (charac-
terizing double diffusion DD processes) are defined as follows:

Ri ¼ N2

R2 ; Rq ¼
asoS=oz
aToT=oz

ð2bÞ

Here, the variables T, S and U represent the mean potential temper-
ature, salinity and velocity. The thermal expansion and haline con-
traction coefficients aT,s = (�q�1oq/oT, +q�1oq/oS) may be computed
using the non-linear UNESCO equation of state and R = (2SijSij)1/2 is
the mean shear with 2Sij = Ui,j + Uj,I, where the indices i, j = 1,2,3 and
a,i � oa/oxi. Relations (1a) and (1b) contain two unknown variables,
the dissipation e and the eddy kinetic energy K:

e; s ¼ 2K
e

ð3Þ

which means that to complete the RSM, one must add two more
relations that provide the variables (3). In engineering flows, these
two variables are traditionally obtained by solving the so-called K–e
model which means two differential equations for those two vari-
ables. The solution of the K–e model, represented by Eq. (20), would
close the problem since every variable would now be expressed in
terms of the large scale fields. Let us analyze how these two vari-
ables are determined in the present oceanic context.

1.1. Determination of s

Since most of the ocean is stably stratified, the vertical extent of
the eddies is much smaller than the vertical scale of density varia-
tion (except of course in deep convection places), a local approach
to the kinetic energy equation, first relation in Eq. (20), is a sensible
one. Physically, this is equivalent to taking production equal dissi-
pation, P = e, where P = Ps + Pb is the total production due to shear
and buoyancy. Since P = KmR2 � KqN2, the derivation is presented
in Eqs. (22) and (23), use of relations (1b) in P = e, transforms the
latter into an algebraic equation for the variable s given by Eqs.
(40) and (41) the result of which is the function:

s ¼ sðRi;RqÞ ð4Þ

Use of (4) in the second of (1b) and in (2a) yields the structure func-
tions and the mixing efficiencies in terms of the large scale variables:

SaðRi;RqÞ; CaðRi;RqÞ ð5Þ

Let us note that the above procedure applies in principle to the
mixed layer, the thermocline and the ocean bottom. The problem
is to know how to determine the Richardson number in each region,
Please cite this article in press as: Canuto, V.M., et al. Ocean turbulence, III
j.ocemod.2010.04.006
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a problem we discuss in Sections 6 and 7.3. When applied to the
mixed layer, the above determination of the mixing efficiencies is
physically equivalent to assuming that the external wind directly
generates oceanic mixing. There is, however, a second possibility,
namely that the wind first generates surface waves which then be-
come unstable and break, generating mixing (Craig and Banner,
1994; Umlauf and Burchard, 2005). To account for such a process,
one needs the full K-equation in (20) with a non-zero flux FK of K
for which one needs a closure. The K-flux FK is a third-order mo-
ment and, as discussed in Cheng et al. (2005), there is still a great
deal of uncertainty on how to close such higher-order moments.
The wave breaking phenomenon is introduced into the problem
by taking the value of FK at the surface z = 0 equal to the power pro-
vided by the wave breaking model, as described in the two refer-
ences just cited. In the present case, local limit P = e, relations (5)
are still not sufficient to determine the diffusivities given by the
first relation in (1b) for we require the dissipation e whose determi-
nation we discuss next.
E
D

P
R1.2. Determination of e

In principle, one could solve the second of Eq. (20) and obtain
the dissipation e(Ri,Rq) in analogy with the procedure that lead
to relations (5). Regrettably, such a procedure is not feasible since
the equation for e has been problematic since the RSM was first
employed by Mellor and Yamada (1982). The reason is that, con-
trary to the K-equation whose exact form can be derived from tur-
bulence models, the e-equation has thus far been entirely
empirically based and a form that includes stable stratification,
unstable stratification and double diffusion, does not exist in the
literature. Recently, some progress has been made in deriving an
e-equation from first principles (Canuto et al., in press) but only
for the case of unstable stratification, while most of the ocean is
stably stratified. For these reasons, we still cannot employ the dy-
namic equation for e and we must rely on a different approach. As
for the mixed layer, we shall employ the length scheme discussed in
Section 6, leading us to relations (62)–(64).1 In the thermocline, we
borrow from the IGW (internal gravity waves) studies-parameteriza-
tions by several authors (Polzin et al., 1995; Polzin, 1996; Kunze and
Sanford, 1996; Gregg et al., 1996; Toole, 1998) the form of e, more
precisely, of eN�2, that contains the dependence on latitude given
by Eqs. (65)–(68) which should lead to a sharper tropical thermo-
cline. As for the ocean bottom, first we include the enhanced bottom
diffusivity due to tides, Eq. (70) as suggested by previous authors but
with the latest representation of the function E(x,y) (Jayne, 2009), as
well as relation (5) instead of the value C = 0.2 used in all previous
studies (St. Laurent et al., 2002; Simmons et al., 2004; Saenko and
Merryfield, 2005); second, the tidal drag given by Eq. (72) contains
a tidal velocity which thus far has been taken to be a constant while
we suggest it should be computed consistently with the same tidal
model that provides the function E(x,y), as we explicitly discuss in
the lines after Eq. (72); third, the component of the tidal field not
aligned with the mean velocity cannot be modeled as a tidal drag.
Since its mean shear is large, it gives rise to a large unresolved shear-
with respect to the ocean’s bottom. This process, which lowers the
local Ri below Ri = O(1) allowing shear instabilities to enhance the
diffusivities, was recognized only in one work by Lee et al. (2006)
who employed an empirical expression for it. Rather, we adopt the
knowledge we acquired in dealing with the same problem in the
PBL (Cheng et al., 2002) which gives rise to relation (73) which
was tested and assessed in previous work and which was shown
to work pretty well.
: New GISS vertical mixing scheme. Ocean Modell. (2010), doi:10.1016/

http://dx.doi.org/10.1016/j.ocemod.2010.04.006
http://dx.doi.org/10.1016/j.ocemod.2010.04.006


T

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259
260

262262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292
293

295295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

2 Observe the motion of the water surface, which resembles that of hair, that has
two motions: one due to the weight of the shaft, the other to the shape of the curls;
thus, water has eddying motions, one part of which is due to the principal current, the
other to the random and reverse motion (translated by Prof. U. Piomelli, University of
Maryland, private communication, 2008).
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1.3. Determination of Ri(cr)

It is part of any RSM to determine whether there is a critical
Ri(cr) above which mixing vanishes, as it was assumed in the liter-
ature for many years. The Mellor and Yamada (1982) model pre-
dicted Ri(cr) = 0.19 which was shown to be so low that the
resulting mixed layer depths were far too shallow to be acceptable
(Martin, 1985). In our opinion, the MY result was a motivation for
the KPP model (which is not based on a turbulence closure) since
its authors believed that turbulence based models could not give
better results. Model I yielded an Ri(cr) not 0.19 but O(1) and more
recently (Canuto et al., 2008a) we showed that there is no Ri(cr) at
all, as several data of very different nature have now established
beyond any reasonable doubt. In particular, the new data have
shown that while the heat flux still decreases toward zero at
Ri > 1, the momentum flux does not, which means that the surface
wind stresses are transported deeper than in models with
Ri(cr) = O(1). Before using the new mixing scheme in a coarse res-
olution OGCM, and in the spirit of previous schemes such as KPP
(Large et al., 1994), we carried out a series of tests without an
OGCM which we briefly describe below.

(1) In the presence of strong shear, the model predicts that heat
and salt diffusivities become identical, as expected.

(2) The model predicts that salt fingers become prevalent at
a critical density ratio Rq � 0.6, in agreement with mea-
surements.

(3) Momentum diffusivity Km(Ri,Rq); most mixing schemes (e.g.,
the KPP model, Large et al., 1994) employ heuristic argu-
ments. Though lack of direct data does not allow a direct
assessment of the model prediction of this variable, the pre-
dicted Prandtl number rt (=ratio of momentum to heat dif-
fusivities) is shown to reproduce well the measured data vs.
Ri for the no-DD case, Fig. 3c. Most OGCMs assume rt = 10
which corresponds to Ri = O(1).

(4) On the basis of temperature microstructure measurements,
it was generally assumed that Ch = 0.2. Using data from
NATRE, St. Laurent and Schmitt (1999) have, however,
shown that such a value is valid only in regions of strong
shear and no double diffusion. In the opposite regime of
weak shear and strong DD, Ch can be 3–4 times larger. The
RSM results yield a Ch(Ri,Rq) that fits the data, Fig. 4, quite
well.

(5) NATRE data have revealed a bimodal distribution of the
energy dissipation rate e: in the high e, shear dominated
Ri < 1 regime, the dissipation is an order of magnitude larger
than in the low e, salt finger dominated Ri > 1 regime, a fea-
ture that we reproduce reasonably well, Fig. 5a.

(6) The heat to salt flux ratio r(Ri,Rq) for Ri > 1 reproduces well
the values measured at NATRE, as well as laboratory mea-
surements, Fig. 5b.

(7) The profile of the mass diffusivity Kq at NATRE reproduces
well the measurements, Fig. 9.

(8) In the thermocline, in locations where there is no Double
Diffusion, the RSM model predicts that for Ri(bg) = 0.5 we
have Ch = Cs = 0.2, Cm = 0.6; while the first two relations
are as expected, the momentum mixing efficiency turns
out to be three times as large as those of heat and salt.

In summary, the complete Mixing Scheme is a combination of
results from the RSM which lead to a new determination of
the mixing efficiencies (5) plus prescriptions of how to compute
the dissipation e, the latter being different in different parts
of the ocean. It is only by combining these two parts that one
obtains a complete mixing scheme that can be used in an
OGCM.
Please cite this article in press as: Canuto, V.M., et al. Ocean turbulence, III
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2. Overview of previous and present mixing models

Ocean general circulation models (OGCMs) solve the dynamic
equations for the mean temperature T, salinity S and velocity U:

o

ot
ðT; SÞ þ UioiðT; SÞ ¼ �

o

oxi
uih;uis
� �

oUi

ot
þ UjojUi þ 2eijkXjUk ¼ �q�1

0 oiP �
o

oxi
uiuj

ð6Þ

Here, h, s, ui are the fluctuating components of the temperature,
salinity and velocity fields, X is the Earth’s rotation, P is the mean
pressure and eijk is the totally antisymmetric tensor; overbars de-
note ensemble averages. To solve Eq. (6), the temperature, salinity
and momentum fluxes uih; uis; uiuj, representing unresolved pro-
cesses, must be parameterized in terms of the resolved mean vari-
ables T, S, U. In Eq. (6), the mean velocity field is assumed to be
incompressible (divergence free) but a treatment of compressible
flows is available (Canuto, 1997).

Historically, it was Leonardo da Vinci who, by watching the riv-
er Arno in Florence, described the water flow as being made of two
distinct parts,2 which in modern language are called the mean flow
and the turbulent, fluctuating component. Several centuries later,
Reynolds (1895) suggested splitting the total fields into mean and
fluctuating parts, such as T + h, S + s, U + u, in what has become
known as the Reynolds decomposition. The non-linear terms in the
momentum and temperature (salinity) equations then give rise to
the terms on the rhs of Eq. (6). Historically, it took a long time to
realize that Eq. (6) were not the last step of the process. By subtract-
ing (6) from the equations for the total fields, one obtains the equa-
tions for the fluctuating fields and from them, one proceeds to derive
the dynamic equations for the three second-correlations that appear
in (6). However, such a suggestion was not made until the twenties
by the Russian mathematician A. Friedmann (the same of the
expanding universe solution of Einstein’s general relativity equa-
tions). But, as we shall see in Section 3, even his suggestion was
not taken up in a concrete form until 1945 (Chou, 1945). Soon after
O. Reynolds’ proposal, Boussinesq (1877, 1897, cited in Monin and
Yaglom, 1971, vol. I, Section 3) was the first to suggest heuristic,
down-gradient type expressions of the form:

wh ¼ �Kh
oT
oz
; ws ¼ �Ks

oS
oz
; wu ¼ �Km

oU
oz

ð7Þ

in which Kh,s,m represent ‘‘turbulent diffusivities”. Several com-
ments are needed concerning (7). First, even though we have not
written out the z-dependence explicitly, each function in (7) is com-
puted at the same z, which means that the model is local. Even
without knowing the explicit form for the diffusivities (which Bous-
sinesq did not), it is clear that when large eddies are present, as in
an unstably stratified, convective region, it is unrealistic to assume
that the fluxes at a given z are governed only by what occurs in the
vicinity of z since in reality large eddies span much larger extents so
large in fact as to be of the same size H of the region, a variable that
ought to appear in a non-local version of (7), as we show in Eq. (17).

Stated differently, since by Taylor expansion, to express a non-
local function one needs an infinite number of derivatives, taking
only the first of them, as in (7), may not be applicable to convective
regimes, a topic we shall return to at the end of this section. For the
time being, however, we assume that locality is an acceptable
approximation since the majority of the ocean is stably stratified
and the eddies are correspondingly small. This is likely to be the
: New GISS vertical mixing scheme. Ocean Modell. (2010), doi:10.1016/
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reason why the relations (7) have been widely used and are
amended only when applied to unstably stratified, convective re-
gimes, as discussed in Section 3.

The second problem concerns the construction of the diffusivi-
ties themselves which we have denoted by Ka. Since diffusivities
have dimensions of (length)2 time�1, on dimensional grounds
alone, one has several relations to choose from:

Ka � ‘2s�1 � Ks � K2e�1 � e1=3‘4=3 ð8Þ

where ‘ is a typical eddy size, K is the eddy kinetic energy, s = 2Ke�1

is the dynamical time scale and e is the rate of dissipation of K. It is
important to note that the last relation in (8), which follows from
the preceding one using Kolmogorov’s law K � e2/3‘2/3, was actually
discovered experimentally by Richardson (1926) 15 years before
the appearance of the Kolmogorov’s law (Kolmogorov, 1941). How-
ever, since contrary to the atmospheric related studies of Richard-
son in which ‘ represented the separation of two ‘‘puffs”, in a
fully turbulent regime the prescription of ‘ is not straightforward,
the most physical representation is the third one that involves K,
e which are calculable quantities for which there exist two dynamic
equations, Eq. (20). There is a further reason that can be gleaned
from the definitions of K, e in terms of the spectrum E(k) of the ki-
netic energy:

K ¼
Z

EðkÞdk; e ¼ 2m
Z

k2EðkÞdk ð9Þ

These relations show that K peaks at low wavenumbers (large
scales) while e peaks at large wavenumbers (small scales) and thus
a K–e representation catches both large and small scales. It may be
useful to recall that even though the second relation in (9) contains
the kinematic viscosity m, it is known that e is independent of it
(Frisch, 1995). Postponing the discussion of how to compute K–e
for a moment, we return to (7) and choose the third relation in
(8). This gives rise to the two representations (1a) and (1b). The
dimensionless structure functions Sa that differentiate heat, salt and
momentum diffusivities and the mixing efficiencies Ca, were first
introduced in the literature by Mellor and Yamada (1982) and Os-
born (1980), respectively. It is quite difficult to guess the structure
of Sa and/or Ca with any confidence. The reason is rather simple.
One must take into account for temperature, salinity and velocity
or more precisely, their gradients, which are usually represented
by the Richardson number Ri and the density ratio Rq defined in
Eq. (3). A key task of any mixing scheme is that of constructing
the structure functions (2). In the absence of double diffusion, even
without knowing the exact form of (2), the general dependence on
Ri can be guessed at: since shear is a source of mixing, the larger is
Ri, the smaller must be the diffusivity. It follows that the structure
functions Sa(Ri) must be decreasing functions of Ri. Such general
argument is at the basis of the Pacanowski and Philander heuristic
model (1981, PP) in which Ks = Kh. However, no heuristic structure
function has yet been proposed for the momentum diffusivity and
in most OGCMs, Km is treated as a free parameter, e.g., in the GFDL
model, it is taken to be Km = 1 cm2 s�1 (Griffies et al., 2005). One
could in principle improve on that by using available data on the
turbulent Prandtl number (Webster, 1964;Gerz et al., 1989;
Schumann and Gerz, 1995; Canuto et al., 2008a, and Fig. 3c):
Table 1

Mixing scheme RSM DD K–e Ri(cr)

I, 2001 Complex No Local O(1)
II, 2002 Complex Yes Local Rq

III, present Simpler Yes improved Local 1
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rtðRiÞ ¼ Km

Kh
ð10aÞ

and obtain an Ri-dependent Km using the PP and/or KPP models for
Kh with the additional information that at Ri = 0, we have (Canuto
and Dubovikov, 1996, Eq. (43e)):

rtðRi ¼ 0Þ ¼ Ba
Ko
¼ 0:72 ð10bÞ

where Ba and Ko (=1.66) are the Batchelor and Kolmogorov con-
stants, respectively.

When double diffusion processes are included, guessing the
structure functions (2) as a function of both Ri and Rq using only
heuristic arguments is almost impossible, and the only alternative
is to adopt the dynamic model known as the Reynolds Stress Mod-
el, RSM. After the original work of Chou (1945), within the geo-
physical context the pioneering work was that of Donaldson
(1973) and Mellor and Yamada (1982) who derived the structure
functions:

SaðRiÞ ð11Þ

thus opening the way for non-heuristic derivations of such func-
tions. Since the RSM contains parameters that enter the closure of
the pressure correlations terms (a detailed discussion can be found
in several papers, e.g., Cheng et al., 2002), the state of the art of tur-
bulent modeling at the time of the MY model was such that the
resulting structure functions (11) decreased rapidly with Ri and
above a critical Ri(cr) mixing become negligible. Specifically, the
MY predicted that:

RiðcrÞ ¼ 0:2 ð12Þ

a value that three years later Martin (1985) showed to yield too
shallow a mixed layer (ML). The same study also showed that in or-
der to reproduce the observed much deeper MLs, a value five times
as large was required:

RiðcrÞ ¼ Oð1Þ ð13Þ

It is fair to say that the apparent inability of the original 1982-MY
model to produce ‘‘more mixing” was a key motivation for the KPP
model (Large et al., 1994) which is not based on the RSM but on
an analogy with mixing in the atmospheric boundary layer.

In 2001, a mixing scheme using the RSM was proposed (Canuto
et al., 2001, I in Table 1) which showed that (13) can be derived
from the RSM, the reason for the difference with (12) being a more
complete closure model for the pressure correlations and the abil-
ity to compute several of the constants that were poorly known at
the time of the MY model but that more recent turbulence model-
ing allowed to compute, as discussed in I. Thus, the primary
achievement of I was to restore ‘‘confidence” in the ability of the
RSM to yield results in agreement with empirical relations such
as (13) by Martin (1985). The model, however, had limitations,
the most important of which are (Table 1): (a) the solutions of
the RSM equations were rather complex, (b) double diffusion pro-
cesses were not included, (c) mixing due to tides was missing, and
(d) a bottom boundary layer BBL model was not included.

In 2002, a second mixing scheme was proposed (Canuto et al.,
2002, II in Table 1) with the goal to include double diffusion pro-
cesses while the other parts of the model were the same as in I.
C: Mixing efficiency Latitude dependent IGW Tides BBL

Ri No No No
Ri, Rq No No No
Ri, Rq improved Yes Yes Yes

: New GISS vertical mixing scheme. Ocean Modell. (2010), doi:10.1016/
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The remaining shortcomings of II are therefore: (a) the solutions of
the RSM equations are more complex than in I, (b) no mixing due
to tides, and (c) no bottom boundary layer.

In 2008, two new features were found which needed to be
incorporated into a mixing model: the non-existence of a critical
Richardson number (Canuto et al., 2008a) and a better DD model
so as to reproduce the measurements of the heat mixing efficiency
Ch(Ri,Rq) (Canuto et al., 2008b). Both features are now included in
the mixing scheme we present here. In Table 1, we summarize the
key features of the models that have been worked out thus far.

Since the additional physical features in III naturally made it
more complex, it was necessary to solve the RSM equations so as
to obtain a simpler representation of the results than in I, II. Con-
cerning this point, we need to clarify an important issue.

The solutions of the RSM provide the structure functions Sa(Ri,Rq)
but not the functions K–e which must be computed separately. This
means that in the fourth column in Table 1 one could have used
a non-local model for K–e in any of the three models described thus
far, which is how Burchard (2002) carried out extensive studies of
models I-II by adopting the structure functions of those models
with a non-local model for K–e.

As already discussed, the fact that the ocean is mostly stably
stratified, making locality a legitimate approximation, led us to de-
cide in favor of a local treatment of the K–e equations. It must,
however, be remarked that it is not clear how poorly local models
do in an unstably stratified regime such as Deep Convection. For
that reason, Canuto et al. (2004a) tested the local K–e model with
the RSM solutions of II in the Labrador Sea and compared the pre-
dicted mixed layer depths with both observations and predictions
of KPP and MY-2.5 models in which the equation for K is non-local.
Comparing the data in Fig. 1 of the paper just cited and the model
results displayed in its Figs. 2, 3, 9 and 10a, one concludes that,
U
N

C
O

R
R

E
C

T

Fig. 1. The structure functions Sa for momentum, heat, salt and dens
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while all models predict too deep a ML, mixing scheme II in spite
of its local nature, performs better than the two non-local models.
In addition to the non-locality of the K–eequations, there is an
equally important missing feature, mixed layer mesoscales and
sub-mesoscales that are known to re-stratify the ML leading to a
shallower ML, as we discuss in the Conclusions. At this point, it
is therefore not entirely clear to us how physically relevant is the
local vs. non-local nature of the vertical mixing model, a feature
we plan to study in the future.

3. Structure of the new mixing scheme

In describing the new parameterization, we follow the items as
they appear in Table 1, fourth row, from left to right. We begin with
the RSM, Reynolds Stress Model which, as already mentioned, has a
long history whose first application to shear flows appeared in
1945 (Chou, 1945). For discussions of the RSM, especially in geo-
physical problems, we suggest the pioneering work of Donaldson
(1973) and Mellor and Yamada (1982), and the recent reviews by
Burchard (2002), Cheng et al. (2002) and Umlauf and Burchard
(2005). The work of Donaldson (1973) is particularly relevant not
only for its extensive discussion of the closure of higher-order mo-
ments in terms of lower-order ones, but because it is the first time
that ‘‘four basic principles” were presented in Section 8.4 which we
briefly enumerate: (1) the model must be written in covariant or
tensor form (so as to be invariant under arbitrary transformation
of coordinate systems), (2) the model must be invariant under a
Galilean transformation, (3) the model must have the dimensional
properties of the term it replaces, and (4) the model must satisfy all
the conservation properties characterizing the variables in ques-
tion. How these principles helped the closure problem is elucidated
by several instructive examples in the same Section 8.4.
ity, see Eqs. (30)–(41) and (55) are plotted vs. Ri for different Rq.

: New GISS vertical mixing scheme. Ocean Modell. (2010), doi:10.1016/

http://dx.doi.org/10.1016/j.ocemod.2010.04.006
http://dx.doi.org/10.1016/j.ocemod.2010.04.006


T
E
D

P
R

O
O

F
494

495

496
497

499499

500

501
502

504504

505

506

507

508

509

510

511

512
513

515515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

546546

547

548

Fig. 2. Same as Fig. 1 but for the mixing efficiencies Ca defined in Eq. (1b).

3 Along a streamline of an inviscid fluid one has (Euler’s law) 1
2 qou2=o‘ ¼ �op=o‘

which leads to 1
2 qu2 þ p ¼ const: which shows that the pressure is a second-order

moment.
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3.1. Local and non-local RSM equations

Though the mean equation (6) require only the fluxes of heat,
salt and momentum:

wh ðheat fluxÞ; ws ðsalt fluxÞ; uiuj

¼ sij ðReynolds stressesÞ ð14aÞ

the dynamic equations of the variables (14a) involve three more
correlations (see Appendix A):

h2 ðtemp: varianceÞ; s2 ðsalin: varianceÞ;
hs ðtemp:-salin: correlationÞ ð14bÞ

For completeness, we present a brief, hopefully illustrative, example
of how the RSM equations are derived. One begins with the Rey-
nolds decomposition whereby the full velocity and temperature
fields are written as the sum of a mean and a fluctuating part,U + u,
T + h; next, one averages the resulting equations using �u ¼ 0; �h ¼ 0
and subtracts the results from the original equations for the total
fields. The results of this purely algebraic procedure are the equa-
tions for the fluctuating u,h fields that read as follows:

Dui

Dt
þ o

oxj
uiuj � uiuj
� �

¼ � op
oxi
� ujUi;j þ aT gihþ m

o2ui

ox2
i

Dh
Dt
þ o

oxi
uih� uih
� �

¼ �uiT ;i þ jT
o2h

ox2
i

ð15Þ

where jT is the thermometric diffusivity and m/jT is the molecular
Prandtl number (�7 for seawater). Since each fluctuating variable
has zero average, averaging Eq. (15) yields an identity 0 = 0. To ob-
tain the equations for the second-order moments (14), one proceeds
as follows: multiply the first of (15) by h and the second by ui and
add the two; the result is the equation for the heat flux uih. Multi-
Please cite this article in press as: Canuto, V.M., et al. Ocean turbulence, III
j.ocemod.2010.04.006
plying the second of (15) by h, one obtains the equation for the tem-
perature variance and so on. The physical difficulty, known as the
closure problem, is represented by the third-order moments,3 TOMs,
such as pih; piuj and uiujuk; uiujh; uih

2 which physically represent
the fluxes of Reynolds stresses, heat fluxes and temperature vari-
ance that must also be ‘‘closed”, that is, parameterized in terms of
the second-order moments. How this is done was discussed in de-
tail in Canuto (1992) and more recently in Cheng et al. (2002,
2005) and there is therefore no need to repeat the discussion here.
However, what must be stressed is the non-local effects represented
by the TOMs. The point is that turbulence not only gives rise to non-
zero second-order correlations but it also transports them around,
that being the meaning, for example, of the term uiujh that repre-
sents the flux of ‘‘heat fluxes”. Similar interpretations apply to the
other TOMs. When such transport processes are included, one has
a non-local model since even if the local gradients are zero at some
point, implying a zero flux and no mixing on the basis of (7), the
non-local terms ensure the existence of mixing brought about by
the fluxes just discussed. To give a concrete and simple example,
consider the equation for the temperature variance obtained from
the second of (15). Using the closure jThh;ii ¼ �h2=sh that was de-
rived and justified in the papers just cited, one obtains in the 1D
and stationary limits:

h2 ¼ �shwh
oT
oz
� sh

o

oz
wh2 ð16Þ

This shows that where the mean temperature gradient is zero, the
temperature variance does not vanish due to the flux of h2 repre-
: New GISS vertical mixing scheme. Ocean Modell. (2010), doi:10.1016/
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ized non-locality by adding a counter-gradient term Ch:

J � wh ¼ �Kh
oT
oz
þ ch; ch � sh

owh2

oz
� sH�1w�J� ð17Þ

where the ‘‘closure” of ch proposed by Holtslag and Moeng (1991) is
a simplified form of the z-derivative of wh2 but one that exhibits an
essential feature, the extent H which represents, as we discussed
earlier, the fact that when eddies are as large as the ‘‘container”,
the size of the latter H ought to appear in the equations (* represent
fiducial values). We have also taken sh � s � K/e. It must be stressed
that it would be unjustified to adopt the same form (17) of the
counter-gradient also for the salinity and/or momentum fluxes
whose form requires modeling the corresponding TOMs, an active
field of research, as discussed in a recent work (Cheng et al., 2005).

The problem of how to solve the RSM equations for the second-
order correlations (14), including the non-local terms, was studied
in a recent paper (Canuto et al., 2005) where it was shown how to
write the fluxes as the sum of local and non-local terms, see for
example Eq. (9a) of the cited paper. The strategy here is that of first
solving the local limits of the RSM equations and then adding the
non-local TOMs terms once a closure form has been chosen. How-
ever, since the closure of the TOMs is still an active field of re-
search, it would be premature to adopt any particular closure now.

3.2. Ri and Rq dependence of the RSM solutions

The structure functions derived in paper II, Eqs. (13a)–(15), de-
pend on three variables:
Please cite this article in press as: Canuto, V.M., et al. Ocean turbulence, III
j.ocemod.2010.04.006
Sa ¼ Sa ðsNÞ2;Rq; ðsRÞ2
h i

ð18Þ

Since in general, N2 and R2 appear separately and not as their ratio
Ri, Eq. (18) does not exhibit the form (2) which entails only two
large scale variables, Ri and Rq. This dissimilarity between (2) and
(18) needs some comments. First, even if we rewrite (18) in the
equivalent form:

Sa ¼ Sa Ri;Rq; ðsRÞ2
h i

ð19Þ

the function (sR)2 still depends on turbulence via the dynamical
time scale s and therefore at the level of (18) and (19), the problem
is not ‘‘closed”. At this point, one has two choices.

The first choice is to adopt a non-local K–e model (for a detailed
discussion of the K–e model, its applications and the e-equation,
see Pope (2000, Section 10.4) and Burchard (2002)):

DK
Dt
þ oFK

oz
¼ P � e;

De
Dt
þ oFe

oz
¼ e

K
ðc1Pb þ c3Pm � c2eÞ ð20Þ

where c1,2 = 1.44, 1.92 and FK,e are the TOMs representing the fluxes
of K and e:

FK ¼
1
2

wuiui; Fe ¼ we ð21Þ

while the buoyancy and shear production terms are defined as
follows:

Pb ¼ g aT wh� asws
� �

¼ �gaT
oT
oz
ðKh � KsRqÞ ð22Þ

Pm ¼ � uwUz þ vwVzð Þ ¼ KmR2 ð23Þ
: New GISS vertical mixing scheme. Ocean Modell. (2010), doi:10.1016/
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As discussed in Canuto et al. (2009), the sign and magnitude of the
coefficient c3 in Eq. (20) are still uncertain. In writing (23), we have
anticipated the fact, to be proven shortly below, that the solutions
of the RSM are indeed of the form (7). Once a closure for (21) is
chosen, the solutions of (20) yield K and e and thus s = 2K/e.
This was the procedure used by Burchard (2002) in the 1D-GOTM
ocean model in which the following closure for the TOMs was
adopted:

FK ¼ �Km
oK
oz
; Fe ¼ �r�1

t Km
oe
oz

ð24Þ

To our knowledge, Eq. (20) have not yet been used in 3D global
OGCMs. The French 3D ocean code OPA employs the first of Eq.
(20) and a heuristic representation of e in lieu of the second equa-
tion (20).

The second choice is to adopt a stationary, local model for K:

P ¼ e; production ¼ dissipation ð25Þ

and a model for e, as discussed in Section 6. Anticipating that the
RSM does gives rise to diffusivities of the form (1), P = e becomes
the following algebraic relation:

P ¼ e :
1
2
ðsRÞ2Sm �

1
2
ðsNÞ2Sq ¼ 1 ð26Þ

where:

Sq ¼
Sh � SsRq

1� Rq
ð27Þ

Using Eq. (19), the solution of (26) yields the desired relation (4):

ðsRÞ2 ¼ f ðRi;RqÞ ð28Þ

and thus the final form of (19) is:

Sa ¼ SaðRi;RqÞ ð29Þ

which coincides with Eq. (2), thus explaining the conditions of
validity of the latter. The explicit form of (28) is obtained by solving
Eqs. (40) and (41). Of course, after determining s we still need a
model for e which is discussed in Section 6.

3.3. New strategy for the solution of the RSM

The RSM equations (5)–(11) of paper II are presented in Appen-
dix A for several reasons:

(1) to make this paper self-contained,
(2) to correct misprints in II, specifically, Eqs. (5) and (9),
(3) to give directly the 1D form which is the one being solved

(using also a simplified notation w00T 00 ! wh; T 002 ! h2;

w00s00 ! ws; s002 ! s2; T 00s00 ! hsÞ,
(4) Eq. (5, II) for the Reynolds stress can be considerably simpli-

fied by dropping the second term on the rhs of it since the
coefficient p1 is very close to unity, and by rounding off
the value of p2 to 1/2. The p1 term added much complexity
to the solution and yet its contribution was quite small. As
a result, Eq. (A.6) is simpler than Eq. (5, II) and yet it pre-
serves the key physical ingredients,

(5) in paper II, we employed a method of symbolic algebra to
solve Eqs. (A.1)–(A.7) simultaneously. The resulting struc-
ture functions Eqs. (13a)–(15, II) were algebraic but cumber-
some. However, inspection of the 1D form given in Appendix
A reveals that this was not an optimal choice since the first
five equations do not depend on shear which appears only in
Eq. (A.6). Thus, one can separate the problem into two parts:
first, one solves Eqs. (A.1)–(A.5) analytically (without the
Please cite this article in press as: Canuto, V.M., et al. Ocean turbulence, III
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need of symbolic algebra methods) and in a second step,
one solves Eqs. (A.6)–(A.10) for w2. This simple observation
has allowed us to obtain solutions that are considerably sim-
pler than those in paper II.

4. Explicit form of the new mixing scheme

4.1. Heat and salt diffusivities

The analytic solutions of Eqs. (A.1)–(A.5) yield the following
form of the dimensionless structure functions:

Sh;s ¼ Ah;s
w2

K
ð30Þ

where:

Ah ¼ p4 1þ pxþ p4p2x 1� r�1� �� ��1
; As ¼ AhðrRqÞ�1 ð31Þ

Following standard notation, we denote by r the heat-to-salt flux
ratio given by the following relations:

r � aT wh
asws

¼ 1
Rq

Kh

Ks
;

Kh

Ks
¼ p4

p1

1þ qx
1þ px

ð32Þ

where the dimensionless variables x, p and q are defined as
follows:

x ¼ ðsNÞ2 1� Rq
� ��1

; p ¼ p4p5 � p4p2 1þ Rq
� �

;

q ¼ p1p2 1þ Rq
� �

� p1p3Rq ð33Þ

The pk’s are the dissipation time scales defined in Eq. (12) of II made
dimensionless by using the dynamical time scale s = 2K/e. As one
can observe, the fact that we have not yet used Eq. (A.6) for the Rey-
nolds stresses is manifest in the still unknown w2=K term in (30)
which we determine next.

4.2. Momentum diffusivity

Consider the Reynolds stress equations (A.6)–(A.10). In the sta-
tionary limit, one obtains a set of linear algebraic equations in the
variable bij which can be solved. The structure functions for the
case of momentum have the following form:

Sm ¼ Am
w2

K
; Am ¼

Am1

Am2
ð34Þ

where:

Am1 ¼
4
5
� p4 � p1 þ p1 �

1
150

� �
ð1� r�1Þ

� 	
xAh ð35Þ

Am2 ¼ 10þ p4 � p1Rq
� �

xþ 1
50
ðsRÞ2 ð36Þ
4.3. The ratio w2=K

The general form of the ratio w2=K is given by:

w2

K
¼ 2

3
1þ 2

15
X þ 1

10
AmðsRÞ2

� 	�1

; X � ð1� r�1ÞxAh ð37Þ

It is important to note that, contrary to what has been done in many
ocean models, it is no longer necessary to guess the momentum dif-
fusivity, as discussed in Section 1, since the model provides Km as it
provides heat and salt diffusivities. In conclusion, the above formu-
lation shows that all the variables exhibit the dependence on the
three functions:

ðsNÞ2; ðsRÞ2;Rq ! Ri;Rq; ðsRÞ2 ð38Þ
: New GISS vertical mixing scheme. Ocean Modell. (2010), doi:10.1016/
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4.4. Dynamical time scale s

If one solves Eq. (20) for K and e, s = 2K/e is automatically given
as a function of Ri and Rq. If, on the other hand, one uses the local
model represented by the assumption P = e, simplifications of the
above equations are possible. Expressions (31) for Ah,s remain the
same while expressions (35)–(37) simplify to:

Am ¼
2

ðsRÞ2
15
7
þ X

� �
;

1
2

w2

K
¼ 30

7
þ X

� ��1

ð39Þ

Next, using the notation by Mellor and Yamada (1982):

Gm � ðsRÞ2 ð40Þ

Eq. (26) becomes a cubic equation for Gm in terms of Ri and Rq:

c3G3
m þ c2G2

m þ c1Gm þ 1 ¼ 0

c3 ¼ A1Ri3 þ A2Ri2
; c2 ¼ A3Ri2 þ A4Ri; c1 ¼ A5Riþ A6

ð41Þ

The functions Ak’s are given in Appendix B, Eqs. (B.12). Once the
function Gm(Ri,Rq) is known, one can construct all the relevant func-
tions the most prominent of which, the structure functions, are pre-
sented in Fig. 1, the mixing efficiencies in Fig. 2 and the time scales
in Fig. 3a and b. For example, Fig. 3a exhibits several new features;
in mixing model II with a finite Ri(cr), the function Gm became infi-
nitely large at Ri(cr) = O(1) corresponding to the vanishing of the
eddy kinetic energy since s � ‘K�1/2, which is the way Ri(cr) was de-
fined in that scheme. An alternative interpretation is that at Ri(cr),
the eddy lifetime becomes very large indicating a tendency toward
laminarity, that is, in the absence of the breakups of the linear struc-
tures by the non-linear interactions, the eddy life times s ?1. In
the present mixing scheme with no Ri(cr), in the case without DD
processes Rq = 0, Gm still increases as Ri increases and turbulence
decreases but it no longer diverges at any Ri reaching instead a fi-
nite asymptotic value. However, in the presence of DD processes
and at sufficiently large Ri corresponding to a vanishing shear (a
source of mixing), the DD itself becomes a source of mixing which
leads to a decrease of the eddy life time and Gm decreases corre-
spondingly. On the other hand, the results also show that as long
as shear is strong (small Ri), DD has no effect being overpowered
by the stronger action of shear and thus all Rq give the same result
as Rq = 0. It is known from laboratory data (Linden, 1971) that
strong shear disrupts salt finger formation. As the data presented
in Figs. 9 and 10 of Canuto et al. (2008a) show, the lack of an Ri(cr)
is more evident in the momentum than in the heat flux which be-
comes very small at Ri > O(1) and that is why the function Gq �
(sN)2 in Fig. 3b still grows with Ri when DD processes are not pres-
ent (Rq = 0), and why the presence of DD processes softens the
growth but does not have nearly as dramatic an effect as in Fig. 3a.

In Fig. 3c we present the turbulent Prandtl number, Eq. (10), vs.
Ri. We have superimposed data for the no-DD case to show that the
model reproduces them satisfactorily. Finally, in Fig. 3d we plot the
flux Richardson number derived from Eqs. (22), (23) and (32):

P ¼ KmR2ð1� Rf Þ; Rf ¼ Ri
Kq

Km
¼ Ri

Kh

Km

1� r�1

1� Rq
ð42Þ

For the Rq = 0 no-DD case, the available data are well reproduced
since (1 � r�1)(1 � Rq)�1 is unity in this case. DD processes affect
Rf quite significantly: in the strongest DD case considered here,
Rq = 0.8, Rf becomes negative quite early. The physical interpreta-
tion of Rf < 0 is that the buoyancy flux, instead of acting like a sink
as in the absence of DD processes, becomes a source of mixing due
to salt fingers instabilities and contributes positively to the total
production P.
Please cite this article in press as: Canuto, V.M., et al. Ocean turbulence, III
j.ocemod.2010.04.006
4.5. Overview

The mixing model is now complete since momentum, heat and
salt diffusivities have been expressed in terms of the resolved fields
represented by two large scale variables Ri and Rq, and Eq. (6) can
therefore be solved.
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5. Tests of the mixing model without an OGCM

Before using the above mixing model in an OGCM, we believe it
is important to assess its validity and predictions without using an
OGCM. In what follows, we present the tests we have carried out.

5.1. Test: strong shear

Since x defined in Eq. (33) represents the eddy turnover time s,
a strong turbulent regime (Ri� 1) corresponds to small s’s and a
small x, in which case the last relation in Eq. (32), together with
Eq. (A.11), yields:

Kh ¼ Ks ð43Þ

which is a reassuring result since when mixing is strong, such as in
the ocean’s wind driven mixed layer, there is no difference between
salt and heat diffusivities, as it was proven in laboratory experi-
ments (Linden, 1971). Double Diffusion processes can only operate
when shear has subsided, which occurs below the ML.

5.2. Test: weak shear

This case corresponds to neglecting shear in (26). Using (32), Eq.
(26) acquires the form:

1
2
ðsNÞ2Sh ¼ 1� Rq

� �
ðr�1 � 1Þ�1 ð44Þ

Using the representation (1b), that is:

Ka ¼ Ca
e

N2 ; Ca �
1
2
ðsNÞ2Sa ð45Þ

and combining Eqs. (44) and (45), the mixing efficiency for the tem-
perature field is given by:

Ch ¼ 1� Rq
� �

ðr�1 � 1Þ�1 ð46Þ

In the case of salt fingers, measured data give r � 0.6–0.7, Rq � 0.6–
0.7 (Kunze, 2003; Schmitt, 2003) and thus the model predicts that
Ch has the value:

Ch ¼ 0:6—0:7 ð47Þ

in agreement with the last panel in Fig. 4. We also note that (47) is
more than 3 times larger than the canonical 0.2 with no double dif-
fusion (Osborn, 1980, Eq. (10)).

5.3. Test: onset of salt fingers at Rq(cr)

Next, we assess the model ability to predict the value of Rq(cr)
that characterizes the onset of salt fingers (SF) and diffusive con-
vection (DC). It is important to recall that linear analysis predicts
that SF occur in the regime (Schmitt, 1994):

js

jT
’ 10�2

6 Rq 6 1 ð48Þ

where the lhs is the ratio of the salt to heat kinematic diffusivities.
On the other hand, Schmitt and Evans (1978) showed that in the
ocean SF become strongly established when:

Rq P RqðcrÞ � 0:6 ð49Þ
: New GISS vertical mixing scheme. Ocean Modell. (2010), doi:10.1016/
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Fig. 4. The heat mixing efficiency Ch(Ri,Rq) defined in Eq. (1b). The model results (dashes and full lines) are superimposed on the data from NATRE-TOPO from St. Laurent and
Schmitt (1999, Fig. 9).
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that the present model is sufficiently general to encompass (48)
in the appropriate limit and then show that it does yield the correct
result (49). The present RSM formalism is valid for arbitrary dissipa-
tion-relaxation time scales that appear in the last terms in Eqs.
(A1)–(A5) and (A9) and (A10) and which, when written in units of
the dynamical time scale s, are denoted by the p’s which in general
depend on both the kinematic heat, salt and momentum diffusivi-
ties, a well as on Ri and Rq. Relations (A.11) used here correspond
to relatively large Reynolds numbers Re. In the limit of small Re,
the form of the p’s was given by Zeman and Lumley (1982) and
when used in (32), it yields (48). In spite of several attempts, we
have not yet been able to find a general expression for the p’s valid
for all Re. To show that the present large Re model yields a value
corresponding to (49), we consider Fig. 2b which represents the
heat mixing efficiency Ch vs. Ri for different Rq. The interesting fea-
ture is that as one begins with Rq = 0 and increases its value, there is
an uppermost curve past which a further increase in Rq corresponds
to lower values of Ch. The Rq value corresponding to the maximum
Ch, which we shall call Rq(cr), can be read from the curves to be
around:

RqðcrÞ � 0:6 ð50Þ

which reproduces (49) corresponding to the onset of SF.

5.4. Test: mixing efficiency Ch

Using NATRE and TOPO data to estimate v (rate of dissipation of
the temperature variance) and e, St. Laurent and Schmitt (1999)
plotted the heat mixing efficiency Ch (Oakey, 1985) as a function
of Ri and Rq:
Please cite this article in press as: Canuto, V.M., et al. Ocean turbulence, III
j.ocemod.2010.04.006
Ch ¼
1
2

v
e

N2

ðoT=ozÞ2
ð51Þ

Let us note that (51) corresponds to the stationary limit of Eq. (A.5)
where v ¼ 2h2s�1

h , with sh = sp5. SS99 results, shown in Fig. 4, exhi-
bit new and interesting features, the most prominent of which is the
fact that the canonical value Ch = 0.2 which has been used for years,
is valid only in the presence of strong shear when double diffusion
(DD) processes cannot operate. However, when shear subsides and
DD become active, the mixing efficiency becomes 3–4 times as large
(Fig. 4f).

The challenge for any mixing scheme is to reproduce the data of
Fig. 4. We begin by showing that Eq. (4) of SS99 (we recall that
RqðSS99Þ � R�1

q ):

Ch ¼
Rf

1� Rf

1� Rq

1� r�1 ð52Þ

is identical to our Eq. (1b). First, the flux Richardson number,
including double diffusion processes, is defined as:

Rf ¼
Kq

Km
Ri ¼ Cq

1þ Cq
ð53Þ

The buoyancy diffusivity Kq follows from (22) rewritten as:

Pb ¼ �gaT
oT
oz
ðKh � KsRqÞ ¼ �KqN2 ð54Þ

where Kq is the mass diffusivity given by:

Kq ¼ Khð1� r�1Þ 1� Rq
� ��1 ð55Þ

This allows us to write the total production P in the compact form:
: New GISS vertical mixing scheme. Ocean Modell. (2010), doi:10.1016/
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P ¼ KmR2 � KqN2 ð56Þ

Eliminating Km between (53) and (56), the form of Ch given in (52)
becomes:

P ¼ e : Ch ¼
N2

e
Kh ¼

1
2
ðsRÞ2RiSh ð57Þ

which is Eq. (1b). The model predictions based on Eq. (57) are plot-
ted in Fig. 4. The model reproduces the major features of the SS99
data.

To put the model results of Fig. 4 in perspective, we point out
that to the best of our knowledge, no mixing model has thus far
reproduced these data. In fact, all treatments we have seen employ
a heat mixing efficiency of 0.2 irrespectively of whether there are
DD processes or not. It is perhaps more accurate to say that they
neglect DD and in so doing, they underestimate the true mixing
which, as demonstrated in Fig. 4f, can be up to three times as large
as the No-DD case.

5.5. Test: low and high e-modes

SS99 analysis of the NATRE data further revealed a bimodal dis-
tribution of the kinetic energy dissipation rate e. The first regime,
called the high e-mode, is characterized by a dissipation rate of
the order of 10�9 W/kg, while the second regime, called the low
e-mode, is characterized by values 10 times smaller than those of
the first mode, e = 0.1 	 10�9 W/kg. The first mode was identified
with an Ri < 1 turbulent regime while the latter was identified with
an Ri > 1, salt finger dominated regime. The challenge posed by
these data to any mixing model is not trivial. The reason is that
the latter usually do not include dynamic equations for the dissipa-
tion variables e, v which in SS99 were taken from the data them-
selves. An heuristic equation for e exists, second of Eq. (20) but,
as recently discussed (Canuto et al., 2009) in the case of stably
stratified flows, such as the ones we are dealing with, even the sign
of the coefficient c3 is still under dispute and furthermore there is
no double diffusion, thus making the second of (20) too incomplete
for the case under study. We therefore suggest the following alter-
native. Using Eq. (51), we derive the following relation:

e ¼ 1
4

C
1� Rq
� �2

N2
�Ch

ð10�9 W=kgÞ ð58Þ

where we have used the following notation: N2
� ¼ N2=N2

NATRE;

N2
NATRE ¼ 1:7	 10�5 s�2; C ¼ v9a2

3; v9 ¼ v=10�9 K2 s�1 and a3 = aT/
U
N

C
O

Fig. 5. (a) Plot of the kinetic energy dissipation e in units of 10�9 W/kg given by Eq. (58)
accord with the SS99 finding of a bimodal distribution of the kinetic energy dissipation; (
NATRE data of SS99 are indicated by the blue line with the gray area indicating the e
references in color in this figure legend, the reader is referred to the web version of this
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(3 	 10�4 K�1). Using the mixing model result shown in Fig. 4 for
the mixing efficiency Ch, in Fig. 5a we plot relation (58) for the NA-
TRE case corresponding to C = 1 and N2

� ¼ 1. From the figure we de-
duce that:

eðRi ¼ 0:05Þ ¼ 10eðRi ¼ 10Þ ð59Þ

a result in general agreement with the SS99 finding. It must be
noted, however, that contrary to the case of the mixing efficiency
Ch(Ri,Rq) for which the mixing model provided the full function
Ch(Ri,Rq) which we compared directly with the data, in relation
(58) the uncertainties still present in modeling v are such that
the mixing model is unable to provide the full function e(Ri,Rq).
To arrive at the results presented in Fig. 5a, we borrowed the func-
tion v from the SS99 data. Regrettably, at this stage of model devel-
opment, we cannot do any better.

5.6. Test: heat to salt flux ratio r(Ri,q)

In the Ri� 1 case, the heat to salt flux ratio is given by Eq. (46)
which we rewrite as:

r ¼ Ch

1þ Ch � Rq
ð60Þ

which depends on the mixing efficiency Ch(Ri,Rq) which we have
already assessed in Fig. 4. Eq. (60) is plotted in Fig. 5b together with
the data of Fig. 10a of SS99. The SS99 data, represented by the blue
line and the gray area representing the errors, are satisfactorily
reproduced by the model.

5.7. Test: momentum diffusivity and turbulent Prandtl number

The turbulent Prandtl number, given by Eqs. (10), (1) and (30)–
(37), is shown in Fig. 3c. In most OGCMs, the momentum diffusiv-
ity Km is treated as a free parameter with a value frequently taken
to be 10 times larger than Kh, that is, 1 cm2 s�1, which means a tur-
bulent Prandtl number of 10 which corresponds to an Ri = 2–4, as
shown in Fig. 3c, which is larger than the value corresponding to
the internal gravity waves field, as discussed in Section 7.2.

5.8. Previous models

In paper II, we reviewed some previous models and here we
need to update the discussion. We begin with the work of Smyth
and Kimura (2007) who employed linear stability analysis to study
DD under the influence of shear. When they compared the model
vs. Ri for Rq = 0.5; the two values at Ri = 0.05 and 10 yield a ratio of 10 which is in
b) plot of the heat to salt flux ratio r(Ri,Rq) given by Eq. (60), for vanishing shear. The
rror bars. The model reproduces the data satisfactorily. (For interpretation of the
article.)

: New GISS vertical mixing scheme. Ocean Modell. (2010), doi:10.1016/
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results for Ch with the data of Fig. 4, the predicted dependence on
Rq was the opposite to that of the data. Inoue et al. (2007) em-
ployed a model similar in spirit to the partition first suggested by
Walsh and Ruddick (2000) which reads:
1004

1005

1006

1007
KaðRi;RqÞ ¼ KaðRi > 1;RqÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
DD

þKaðRi < 1Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Turb

ð61Þ
1008

1009

1010

1011

1012

1013

1014

1015

1016
with the understanding that the turbulent part no longer depends
on the density ratio Rq. Since the ratio K(turb)/K(DD) is not given
by the WR model, it was treated as a free parameter. Inoue et al.
(2007) defined the crossing point when the Reynolds number Re = -
e(mN2)�1 = 20; they further employed a heuristic expression for the
salt diffusivity Ks in the SF regime suggested by Zhang and Huang
(1998) while for Kh they employed the first of (32) with a constant
r = 0.71. For the DC regime, they employed a model for Kh and r sug-
U
N

C
O

R
R

E
C

T

Fig. 6. Salt Fingers. Ocean regions susceptible to SF; R�1
q intervals are: 1–1.5 (red), 1.5–2

favorable to SF. Courtesy of D.E. Kelley.

Fig. 7. Diffusive convection. Ocean regions susceptible to DC; Rq intervals are: 1–3 (red)
most favorable to DC. Courtesy of D.E. Kelley.
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gested by Kelley (1990). However, as none of their relations con-
tains Ri, it seems unlikely that they can reproduce the data in Fig. 4.

As for coupled global oceanic-atmospheric codes, the GFDL code
(Griffies et al., 2005, see Eqs. (2)–(4)) accounts for SF but not DC
and employs laboratory data to model SF. However, since there is
no Ri dependence in such DD model, the resulting heat mixing effi-
ciency may be underestimated when SF processes are strong.

We complete the discussion about DD with some brief remarks
about their oceanic importance (Ruddick and Gargett, 2003). WR
noted that at NATRE (Ledwell et al., 1993, 1998) the diapycnal mix-
ing of heat, salt and tracer is dominated by turbulence but en-
hanced by salt fingers, and Kelley (2001) noted that at NATRE up
to half of the diffusion (of an injected tracer) might have been
transported by DD (St. Laurent and Schmitt, 1999; Kelley, 2001).
Furthermore, from the maps of the oceanic sites susceptible to
DD process presented in Figs. 6, 7 (kindly provided to us by Dr.
D.E. Kelley), one observes that the likelihood of SF (salt fingers)
E
D

P
R

O

(light brown) and 2–3 (yellow). The reddest color has the lowest R�1
q which is most

, 3–5 (light brown) and 5–10 (yellow). The reddest color has the lowest Rq which is

: New GISS vertical mixing scheme. Ocean Modell. (2010), doi:10.1016/
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processes is higher in the Atlantic (the location of NATRE) than in
most of the Pacific and that DC (diffusive convection) may play a
significant role in the Arctic and Southern oceans, a point discussed
with extensive references by Kelley et al. (2003, Section 2.3.2) who
concluded that DC ‘‘could be of major importance to the properties
of the global ocean”. In general, DC is more likely in high-latitude
precipitation zones (Schmitt, 1994) and Muench et al. (1990) also
found it in Antarctica over much of the Weddell Sea. Overall, in
the circumpolar current, both SF and DC may be quite important.
In conclusion, the results of the present model are closer to the
data than those of any previous models.

6. Modeling dissipation

As previously discussed, Eq. (20) for the dissipation e has never
been derived from first principles (see, however, Canuto et al.,
2009), it contains adjustable parameters whose sign is still in dis-
pute, it does not contain double diffusion and it is not clear how to
extend it to include internal gravity waves. Under such circum-
stances, the best one can do is to employ heuristic models, as we
now discuss.

6.1. Mixed layer

We follow the methodology discussed in paper I, Section 11 and
paper II, Section 9a and model e as follows (Mellor and Yamada,
1982):

eML ¼ g‘2R3; g ¼ g0ðsRÞ
�3 ð62Þ

Since the mixing length ‘ and the shear R are the natural vari-
ables, the combination ‘2R3 follows; the second relation in (62)
comes from using the following relations e = K3/2/K, s = 2K/e,
K = 8�1/2B1‘, where the numerical coefficient g0 ¼ B2

1 stems from
the relation K = 8�1/2B1‘, where B1 ¼ G3=4

m ðRi ¼ 0Þ ¼ 21:6 as dis-
cussed in Cheng et al. (2002). As for the mixing length, we employ
the relation:

‘�1
B ¼ ðjzÞ�1 þ ‘�1

0 ð63Þ

which follows from Blackadar (1962) who suggested that the mix-
ing length ‘ be taken as half of the harmonic mean of jz and
‘0 = 0.17H, H being the depth of the mixed layer and j = 0.4 the
von Karman constant. The z-dependence in (63) is such that for
small z’s, one recovers the law of the wall ‘ �jz, whereas for larger
z’s, ‘ becomes a constant fraction of H, as indicated by LES (Moeng
and Sullivan, 1994). Following previous authors, e.g., Large et al.
(1997), H is where the potential density differs from the surface va-
lue by jr(H) � r(0)j > 3 	 10�5 g cm�3. However, Zilitinkevich et al.
U
N

C

Fig. 8. (a) Same as in Fig. 3d with Rf re-plotted on a linear scale to exhibit negative valu
indicates the value of Rq = 0.61 past which SF dominate over shear. The corresponding R
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(submitted for publication) found that to match boundary layer
data the length scale had to be reduced for large values of the flux
Richardson number. For the purposes of a model which includes salt
and heat contributions to stratification, we use the flux Richardson
number defined in (53). Since the ratio Kq/Km depends on Ri, Rq, so
does Rf. As Fig. 8a shows, at each Rq, as Ri increases towards infinity,
Rf approaches a finite limit Rf1 which is still a function of Rq. Gen-
eralizing the formula of Zilitinkevich et al. (submitted for publica-
tion), we then write:

‘ ¼ ‘B 1� Rf

Rf1

� �4=3

ð64Þ

The factor introduced by Zilitinkevich in the above length scale
causes the mixed layer contribution to the diffusivity to fall off
quickly below the mixed layer so that we may use it in the region
below as well to allow a continuous transition. In the mixed layer,
Ri is computed using the resolved large scale fields.

6.2. Thermocline

In this region, we have two main contributors, IGW (internal
gravity waves) and double diffusion which we now discuss. We be-
gin by generalizing relation (1b) in the following way:

Ka ¼ CaðRi;RqÞ
eth

N2 Lðh;NÞ ð65aÞ

with:

Lðh;NÞ ¼ ½f ArcoshðN=f Þ
½f30ArcoshðN0=f30Þ
�1 ð65bÞ

where f30 means f computed at 30�, N0 = 5.24 	 10�3 s�1 and eth is
the dissipation in the thermocline. The function L(h,N) accounts
for the measured latitudinal dependence of the IGW spectra (Gregg
et al., 2003) which affects all diffusivities. The effect of the latitude
dependence on the sharpness of the tropical thermocline was stud-
ied in Canuto et al. (2004b). As for eth, the best procedure would be
to identify it with relation (58) which, formally, is quite general.
This is, however, not a feasible procedure because we lack a model
for the dissipation v(Ri,Rq) of general validity while we have only a
few values measured at selected locations, e.g., NATRE. Use of (58)
everywhere would therefore be unjustified.

Next, consider the contribution of IGW to eigw which we quan-
tify using the Gregg–Henyey–Polzin model (Polzin et al., 1995; Pol-
zin, 1996; Kunze and Sanford, 1996; Gregg et al., 1996; Toole,
1998) which gives:

eigw

N2 ¼ 0:288A ðcgs unitsÞ ð66Þ
es; (b) the values of Rq corresponding to Cq = 0 derived from Fig. 2d. The black dot
i is discussed in the text.
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where the dimensionless constant A accounts primarily for devia-
tions from the Garrett–Munk background internal gravity wave
spectrum and it varies at most by a factor of 2. If we employ again
the NATRE data with A ¼ 1; N2 ¼ N2

NATRE, we obtain from (66):

eigw ¼ 0:5 ð10�9W=kgÞ ð67Þ

which is in the middle of Fig. 5a. For example, with an efficiency of
Ch = 0.25, Eq. (66) yields a diffusivity of 0.07 cm2 s�1 which is in
accordance with the NATRE measurements (Ledwell et al., 1993).
At present, lacking a more complete model, we shall use relations
(65) with:

eth

N2 ¼ 0:288 ðcgs unitsÞ ð68Þ

The last problem concerns the Ri in (65). It cannot be identified with
the large scale Ri for it would yield practically zero diffusivity. It
must be a much lower value, which we call Ri (back), which is con-
tributed mostly by the shear generated by the internal waves which
is not resolved by the OGCMs and which must therefore be mod-
eled. To identify Ri (back), we suggest the following procedure. Con-
sider the plot Cq vs. Ri (Fig. 2d): we observe that Cq becomes
negative at different Ri for different Rq. The physical meaning of
the transition is as follows. While shear produces Cq > 0, DD pro-
duces Cq < 0: thus, we identify the change from Cq > 0 toCq < 0
as the transition to a DD regime. In addition, since Schmitt and
Evans (1978) and Zhang and Huang (1998) showed that SF become
prevalent only at/or past Rq � 0.6, this value is plotted in Fig. 8b
(Ri � Rq points corresponding to Cq = 0) as a horizontal line. The
corresponding Ri � 0.5 is taken to be the value of Ri (back).

It must be stressed that we are not suggesting that the mea-
sured values of Ri below the mixed layer be identified with Ri
(back). Instead, we view Ri (back) as an effective Ri at which the
diffusivity approximates the average of the diffusivities over a re-
gion of space and time containing points with a wide range of Ri.
We take the point of view that the heat and salt diffusivities pro-
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C

Fig. 9. NATRE: the crosses represent the mass diffusivity Kq defined in Eq. (55) as a fun
diffusivities in Eqs. (55) and (32) are given by the model as a functions of both Ri and Rq

(1999) data while Ri is taken to be 0.5, as discussed in the text. The error bars of the mode
bars.

Please cite this article in press as: Canuto, V.M., et al. Ocean turbulence, III
j.ocemod.2010.04.006
E
D

P
R

O
O

F

duced by SF, IGW shear mixing, and the interaction of the two,
have spatial and temporal scales larger than those of the two pro-
cesses separately. In building models for coarse OGCMs that do not
resolve IGW or patches of SF, we can only attempt to model these
large scale diffusivities. While the offline results in Fig. 4 show that
our mixing model can reproduce the results of local measure-
ments, they also illustrate the difficulty of translating such success
into an OGCM parameterization. In fact, even after restricting to a
SF favorable Rq and removing 75% of the data with lower dissipa-
tion, SS99 data in Fig. 4 still show a wide range of Ri, that is, for
a fixedRq, the measured Ri may vary from less than 0.25 to greater
than 5. A single OGCM point represents a range of conditions
including those where wave breaking produces strong shears and
small Ri, as well as quiescent regions where no wave-breaking is
occurring and Ri is large. With Ri (back), we attempt to represent
the effects of this whole range of Ri’s that the OGCM does not re-
solve. Although most of the data points in Fig. 4 for Rq = 0.6 have
Ri > 0.5, it must be remembered that the lowest Ri entails large dif-
fusivities and thus carry greatest weight in the average diffusivity.

However, there remains the question of the dependence of Ri
(back) on Rq. In paper II, Ri (back) was taken to be a fraction of
Ri(cr), the latter being traditionally defined as the value past which
turbulent mixing vanishes. On the other hand, since in the present
more realistic model there is no longer an Ri(cr), the approach in II
is no longer viable. We have examined several alternatives to find
the Rq dependence of Ri (back) but have not yet obtained a credible
result. While the search continues, we decided to examine the sim-
plest case of taking Ri (back) constant. Since Ri (back) is introduced
to produce average diffusivities for coarse resolution OGCMs, it
must be tested against averaged data. In Fig. 9, we compare the
mass diffusivity Kq from the model with Ri (back) = 0.5 with the
SS99 data which are averages over many measurements (the 90
meter point was excluded because there may be contamination
from the boundary layer and the error bar on the measurement
is quite large).
ction of depth at the location of NATRE without use of an OGCM. The heat and salt
, together with Eq. (68). The values of Rq are taken from the St. Laurent and Schmitt
l results reflect the errors bars in Rq. The squares represent the SS99 data with error

: New GISS vertical mixing scheme. Ocean Modell. (2010), doi:10.1016/
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Since the model vs. data are in reasonable agreement, we feel
that while we keep on searching to improve it, the relation Ri
(back) = 0.5 is a tolerable, provisional approximation.

7. Tides

The effect of tides was studied by several authors (Kantha et al.,
1995; Munk, 1966, 1997; Munk and Wunsch, 1998; St. Laurent
et al., 2002; St. Laurent and Garrett, 2002; Garrett and Kunze,
2007; Munk and Bills, 2007) and it requires the modeling of three
distinct processes: (a) enhanced bottom diffusivitydue to baroclinic
tides, (b) tidally induced drag, and (c) unresolved bottom shear,
which we now discuss in that order.

7.1. Internal, baroclinic tides

To generate bottom mixing, the key physical process has been
identified to be the conversion of barotropic into baroclinic tides
caused by the interaction of the former with rough bottom topog-
raphy. The non-linear interactions among the baroclinic tides (and
the shear they contain) allow part of their energy to be used to
raise the center of gravity and thus produce mixing.

The conversion of barotropic tides into baroclinic internal tides
was studied by several authors, e.g., Kantha and Tierney (1997),
Llewellyn Smith and Young (2002), St. Laurent and Garrett
(2002) and Legg (2004) and was included in OGCMs by two groups
(Simmons et al., 2004, cited as S4; Saenko and Merryfield, 2005, ci-
ted as S5). Here, we employ the work of one of the present authors
(S.R. Jayne). One begins by solving offline the 2D Laplace tidal
equation with a resolution of 1/2� to obtain the barotropic tidal
velocity ut, the 2D dynamical equations contain a drag which de-
pends on the bottom topographic roughness denoted by h which
is taken from the Smith and Sandwell (1997) data at 1/32� resolu-
tion and then binned into the 1/2� resolution of the 2D code that
provides ut. With the latter, one then constructs an expression
for the internal tidal energy E(x,y) using the following parameter-
ization by Jayne (2009):

Eðx; yÞ ¼ 1
2

�qNjh2u2
t ðW m�2Þ ð69Þ

where (j,h) are the wavenumber and amplitude. As discussed in
Jayne (2009), the topographic roughness h2 was derived from high
U
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Fig. 10a. Base 10 logarithm of the internal tida
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resolution bathymetry [US Department of Commerce, 2006: 2-min
Gridded Global Relief Data (ETOPO2v2). National Oceanic and Atmo-
spheric Administration, National Geophysical Data Center. Available
online at http://www.ngdc.noaa.gov/mgg/fliers/06mgg01.html;
Smith and Sandwell, 1997] as the root-mean-square of the topogra-
phy over a 50-km smoothing radius, and j is a free parameter set as
j = 2p/125 km. It should be emphasized that Eq. (69) is a scale rela-
tion and not a precise specification of internal tide energy flux. In the
barotropic tidal model, the value of j = 2p/125 km was tuned to give
the best fit to the observed tides. To construct the required etides, we
employ the model suggested by St. Laurent et al. (2002) which has
the following form:

qetides ¼ qEðx; yÞFðzÞ
FðzÞ ¼ Af�1 exp�ðH þ zÞ=f; A�1 � 1� exp�ðH=fÞ

ð70Þ

where the role of z�1 is played by the scale function F(z) in which
f = 500 m. The parameter q accounts for the fact that only a fraction
q of the baroclinic energy goes into creating mixing; the remaining
part 1 � q is radiated into the ocean interior where it may contrib-
ute to the background diffusivity. The last step is the construction of
the tidally-induced diffusivity using relation (1b):

Ka ¼ CaðRi;RqÞ
etides

N2 ð71Þ

Since S4,5 also used (69)–(71), we need to point out the differences
with their analysis. First, S4,5 used C = 0.2 for heat and salt while
for momentum S4 took Km = 10Kh,s and S5 took Km = 10�4m2 s�1,
whereas in our model we have different heat, salt and momentum
mixing efficiencies that depend on Ri and Rq. This means that since
these efficiencies are different, the mean T, S and velocity will be af-
fected differently by tides. Second, we have updated the Jayne and
St. Laurent’s (2001) original method. In particular, the model do-
main was expanded to cover the global ocean (rather than ±72� as
in the original work). Additionally, the gravitational self-attraction
and loading in the tidal model was implemented in an iterative
manner as in Arbic et al. (2004). Overall, these changes improve
the fit of the simulated tides slightly: the diurnal tides improved
significantly, likely due to including all of the Southern Ocean,
where the diurnal tides are large, and the simulated semidiurnal
tides did not improve. Though other parameterizations of the inter-
nal wave conversion were suggested by Arbic et al. (2004) and Eg-
l energy flux E, Eq. (69), in units of W m�2.

: New GISS vertical mixing scheme. Ocean Modell. (2010), doi:10.1016/
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Fig. 10b. Drag power in W m�2 from the tidal velocities ut from Jayne and St. Laurent (2001). In Figs. 10a and 10b, the model is extended past ±72� that characterized the
analogous figures in Jayne and St. Laurent (2001).
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bert et al. (2004), it was found that all of the schemes gave compa-
rable accuracies in the simulated tidal elevations. The new expres-
sion for E(x,y) is taken from Jayne (2009). Third, in the case of tides
the Ri in (71) was taken to be the background value 0.5.

7.2. Tidal drag, shallow seas

Since the tidal energy of 1.51 Terawatts (Egbert and Ray, 2000,
2003) dissipated as tidal drag is only 30% smaller than the one in
internal tides, it is necessary to account for it. As is the case in
Fig. 10a, the drag power in W m�2 shown in Fig. 10b corresponds
to the updated model while the analogous figure in Jayne and St.
Laurent (2001) corresponded to the old model ±72�. Contrary to
internal tides, tidal drag cannot be represented by a diffusivity
and its modeling is a non-trivial problem for several reasons. The
bottom tidal velocity is generally larger than the mean velocity,
for example, in shallow seas the tidal velocities are O(5) cm s�1

which are much larger than O(0.5) cm s�1 characterizing the mean
velocities (Webb and Suginohara, 2001a,b; Garrett and St. Laurent,
2002).

We begin by considering the component of the tidal field’s
velocity that is along the direction of the mean field which can
be modeled as an increased mean drag. That is done by extending
the traditional quadratic bottom drag formula that depends only
on the resolved mean flow �u to include the tidal velocities ut so
that the total velocity field is now u ¼ �uþ ut . Beckmann (1998)
and Haidvogel and Beckmann (1999, Eq. (5.19)) suggested the fol-
lowing expression:

sb ¼ CDujuj ! CD �u �u2 þ u2
t

� �1=2
; CD ¼ 0:003 ð72Þ

but since we did not find a derivation of it, we present one in
Appendix C. The tidal velocities were taken from the same tidal
model used to compute the function E(x,y) in Eq. (69) and therefore
the tidal contribution is location dependent.

Two OGCMs have employed (72), the OCCAM Code 66 level
model (SOC Inter. Report No. 99; http://www.noc.soton.ac.uk/jrd/
occam, 2005) and the GFDL Code (Griffies, private communication,
2008). However, in both cases, the tidal velocity was taken to be
constant while we employ the one derived from a tidal model
and thus location and topography dependent.
Please cite this article in press as: Canuto, V.M., et al. Ocean turbulence, III
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7.3. Unresolved bottom shear

The component of the tidal field not aligned with the mean
velocity cannot be modeled as a tidal drag. Since its mean shear
is not zero and often large, it gives rise to a large unresolved shear
Runr with respect to the ocean’s bottom. This additional shear de-
creases the local Ri possibly bringing it below Ri = O(1), thus allow-
ing shear instabilities to occur which ultimately enhance the
diffusivities.

We know of only one work (Lee et al., 2006) that includes Runr

in an OGCM using a heuristic expression for Runr that depends on
the M2 tidal velocity obtained from satellite data (Egbert et al.,
1994). Rather than using a heuristic expression for Runr, we
adopted the viewpoint that since modeling an unresolved shear
is a problem that has been widely studied in the context of the
PBL (planetary boundary layer), there is a well assessed formalism
we can adopt and which results in the following expression
(Businger et al., 1971; Kaimal and Finnigan, 1994; Cheng et al.,
2002):

Runr ¼
u�
jz

Um ð73Þ

where u* is a frictional velocity and Um(z/L) is a dimensionless
structure function of the dimensionless ratio z/L where L is the
Monin–Obukov length scale. Several field tested expressions for
U(Ri) are available in the literature (e.g., Kaimal and Finnigan,
1994). However, since Cheng et al. (2002) derived an expression
for U(Ri) from the RSM which is the formalism used in this work,
for consistency reasons, we have adopted Cheng et al.’s expression
for U(Ri) which was shown to reproduce previous empirical forms
assessed against field experiments, the classical one being the Kan-
sas experiment discussed in detail by Businger et al. (1971). As for
u*, we model it in terms of the mean and tidal velocities. To do so,
we consider the first relation (72) with u ¼ �uþ ut:

sbðtotalÞ ¼ CD �u �u2 þ 2�u � ut þ u2
t

� �1=2

þ CDut �u2 þ 2�u � ut þ u2
t

� �1=2 ð74Þ

In order to exhibit the contribution of the unresolved scales, we
subtract from (74) its average thus yielding the unresolved part
which then gives the desired u*:
: New GISS vertical mixing scheme. Ocean Modell. (2010), doi:10.1016/
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sbðunrÞ ¼ sbðtotalÞ � sbðtotalÞ u2
� � s2

bðunrÞ
h i1=2

ð75Þ

In Appendix C we derive the following expression:

s2
bðunrÞ

h i1=2
¼ CD u2

t

� �1=2
�u2 þ u2

t

� �1=2
ð76Þ

The u2
t from the tidal model averaged to the resolved scales charac-

terizing the OGCM one employs, is used in (76) and the results are
substituted into (75) and finally (73) to construct the Richardson
number in which the shear is now given by:

Ri ¼ N2

R2 ; R2 ¼ R2
res þ R2

unr ð77Þ

where R2
res is the square of the shear of the resolved velocity field.

8. Diapycnal velocity

Once an OGCM is run using the mixing scheme just presented,
the resulting large scale fields can be used to evaluate the diapyc-
nal velocity w* which is an important part of the discussion on the
origin of the MOC (meridional overturning circulation, Munk, 1966,
1997; Munk and Wunsch, 1998, cited as MW; Döös and Webb,
1994; Döös and Coward, 1997; Toggweiler and Samuels, 1998;
Webb and Suginohara, 2001a,b).

Since our mixing scheme includes DD processes and since we
were unable to find an expression of w* that includes different heat
and salt diffusivities, we present such formula with some compar-
ison with previous expression and some qualitative implications.
Multiplying the mean temperature and salinity equations by aT,S,
respectively, and subtracting the two equations, one obtains the
following expression for the diapycnal diffusivity w*:

N2w� ¼ g aT
o

oz
Kh

oT
oz

� �
� aS

o

oz
KS

oS
oz

� �� 	

¼ o

oz
ðKqN2Þ � N2 1� Rq

� ��1Kh
aT;z

aT
� r�1 as;z

as

� �
ð78Þ

where a,z = oa/oz and where the spatial variation of the coefficients
aT,S is due to the non-linearity of the seawater equation of state. In
(78) we have not included cabbeling and thermobaricity which can
be added, as shown in Klocker and McDougall (submitted for pub-
lication). From the second form in (78), it is easy to check that if
one takes:

aT;S : z-independent ð79Þ

Eq. (78) reduces to the first term only which is the form of the
advective–diffusive balance used by MW:

w� ¼ N�2 o

oz
ðKqN2Þ ð80Þ

Since MW further considered only positive Kq > 0, it means that
they did not include DD processes: thus, the MM model for w* does
not include non-linearities in the seawater EOS nor does it include
DD. On the other hand, if one consider the case:

No DD : Kh ¼ Ks ¼ Kq ! D

Non-linearities in the seawater EOS : aT;S : z-dependent
ð81Þ

Eq. (78) reduces to

N2w� ¼ o

oz
ðDN2Þ � DN2

h
aT;z

aT
� r�1 as;z

as

� �
ð82Þ

which is Eq. (23) of Klocker and McDougall (submitted for
publication).

Even without numerical computations, one can use the previ-
ous relations to derive some interesting results concerning the ef-
fects of DD and tides. Clearly, what follows has an illustrative value
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only. We first employ a constant diffusivity and a profile of N2 of
the type N2ðzÞ ¼ N2

0eðz�HÞ=h (Zang and Wunch, 2001), which gives,
using relation (80):

w� ¼ h�1Kq QðSvÞ ¼ Aw� ¼ Ah�1Kq ð83Þ

where A is the surface of the ocean, z = 0 corresponds to the ocean’s
bottom and z = H is the surface value and N�2oN2/o z = h�1. In the
MW paper, the integral of N2(z) between 1 and 4 km was taken to
be gDq/q = g10�3; in our notation this corresponds to h = 1.3 km
and thus we obtain:

Kq ¼ 1 cm2 s�1 : Q ¼ 28 Sv; Kq ¼ 0:1 cm2 s�1 : Q ¼ 2:8 Sv ð84Þ

the first of which coincides with the case studied by MW. Next, we
consider the contribution of tides. Using Eq. (70), the previous mod-
el for N2, and the MW model, we obtain:

w� ¼ N�2 oKqN2

oz
¼ Kq

1
h
� 1

f

� �
ð85Þ

Depending on the relative sizes of the two scale heights, h, f, there
may be an upwelling or a downwelling. For example, using
f = 500 m, as discussed previously, Eq. (85) implies that tides cause
downwelling:

QðtidesÞ < 0 ð86Þ

Next, we consider the effect of Double Diffusion. Using Eqs. (1b) and
(27), the P = e relation given by Eq. (26) becomes:

Ri�1Cm � Cq ¼ 1 ð87Þ

Since a necessary condition for DD processes to exist is the absence
of strong shear, we take Ri� 1 and thus Cq = �1 which means that
the diffusivity becomes:

Kq ¼ Cq
e

N2 ¼ �
e

N2 ð88Þ

and thus:

w� ¼ N�2 oeCq

oz
¼ �N�2 oe

oz
ð89Þ

Depending on whether, in the DD dominated regime, e(z) increases
or decreases with depth, we may have either upwelling or down-
welling due to DD processes. The data in Figs. 13–16 of Kunze
et al. (2006) do not allow us to draw a firm conclusion.

9. Conclusions

The complete mixing model which is composed of the RSM re-
sults and different models for the dissipation e, is summarized in
Appendix B. In the local limit, which is a justifiable approximation
in a stably stratified regime, the RSM is fully algebraic and it only
requires the solution of the cubic Eq. (41). The reason why it is pre-
sented in a nested form is twofold: the physics of the various terms
is easier to follow and from the numerical-computational view-
point, nested relations are more advantageous. The physical aspect
of the RSM is exhibited in relations (1) which show the key role
played by the mixing efficiencies Ca or by the structure functions
Sa which depend on Ri, Rq and on the dynamical time scale which,
in units of the mean shear, forms the dimensionless combination
(sR)2 whose dependence on Ri, Rq is obtained by solving the cubic
equation (41) which yields (28). These functions Sa and Ca are dif-
ferent for heat, salt and momentum, as shown in Figs. 1 and 2. We
have assessed the validity of the RSM results based on produc-
tion = dissipation by comparing predictions vs. measured data.
The tests without an OGCM are as follows.

Turbulent Prandtl number vs. Ri, Fig. 3c. There are abundant data
that yield the ratio of the momentum to heat diffusivity vs. Ri
: New GISS vertical mixing scheme. Ocean Modell. (2010), doi:10.1016/

http://dx.doi.org/10.1016/j.ocemod.2010.04.006
http://dx.doi.org/10.1016/j.ocemod.2010.04.006


T

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530Q4

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541
1542

15441544

1545
1546

15481548

1549
1550

15521552

1553
1554

15561556

1557
1558

15601560

1561
1562

15641564

1565
1566

15681568

1569

1570
1571

15731573

1574

1575

1576

1577
1578

15801580

18 V.M. Canuto et al. / Ocean Modelling xxx (2010) xxx–xxx

OCEMOD 544 No. of Pages 22, Model 5G

19 May 2010
ARTICLE IN PRESS
U
N

C
O

R
R

E
C

though only in the absence of DD processes. The data are repro-
duced satisfactorily.

Flux Richardson number, Rf vs. Ri, Fig. 3d. The RSM predictions
reproduce the data without DD satisfactorily.

DD processes. Past work by several authors showed how difficult
it has been to construct a mixing model with DD + background tur-
bulence. Our predictions provide a reasonable fit to the oceanic
data, specifically:

Mixing efficiency Ch(Ri,Rq), Fig. 4. The data exhibit a clear depen-
dence on Ri and Rq and, as discussed in Section V.8, previous mod-
els based on linear analysis and laboratory data were not
successful in constructing a DD model in a mildly turbulent back-
ground. Laboratory data correspond to regimes with no shear that
is, Ri ?1, and their use in an ocean context is of doubtful validity.

Bimodal e-distribution, Fig. 5a. The finding by SS99 of a bimodal
kinetic energy dissipation e, namely that in the SF regime Ri > 1, e is
an order of magnitude smaller than in the case of turbulence Ri < 1,
is reproduced rather closely.

Heat to salt flux ratio r(Ri,Rq), Fig. 5b. In the regime of vanishing
shear, the RSM predictions of the heat to salt flux ratio reproduce
satisfactorily the data presented in Fig. 10a of SS99.

NATRE mass diffusivity, Fig. 9 (St. Laurent and Schmitt, 1999).
The model error range (obtained using data ranges for Rq), in most
cases lies inside the data error range and in all cases intersects it.

Tides. To describe the effect of tides, one must account for three
distinct features: internal tides, tidal drag and the unresolved bot-
tom shear. Internal tides were modeled in the same way as previ-
ous authors via Eqs. (69)–(71) but the mixing efficiencies were not
taken to be the same for heat, salt and momentum, rather, they
were computed from within the model using relations (5) and
the function E(x,y) was taken from an updated model by one of
the authors (Jayne, 2009). Tidal drag, which is most relevant in
shallow seas, was only approximately accounted for in previous
studies whereas we employ the results of the tidal model to com-
pute the bottom drag rather than assuming a constant tidal veloc-
ity, as done previously. As for the unresolved bottom shear, we
have now included the tidal velocities not aligned with the mean
velocities since they increase the shear, decrease Ri and enhance
mixing. To model the unresolved shear, we adopted a procedure
that has been successfully used in PBL studies.

To assess the effect of the physical processes described above on
the ocean’s global properties, one needs to employ an OGCM with a
relatively high vertical resolution. For example, tidal drag which is
expected to be the strongest in shallow seas, cannot be well repre-
sented in OGCMs in which some shallow regions are converted to
land or deepened due to the coarse horizontal gridding and
requirements of numerical stability. Moreover, the OGCM treat-
ment of deep regions using very thick layers near the bottom
may not be able to resolve the bottom boundary layer so that the
new effects, which are highly localized to the bottom, as opposed
to the tidal energy which radiates upward with scale height �1/
2 km, may not be allowed to act in full. Furthermore, the fact that
often OGCM assign only one depth to each gridcell, whereas in re-
gions of rough topography the true depth of the ocean bottom var-
ies greatly over a gridcell’s area, degrades the performance of the
tidal model. OGCMs with both high horizontal resolution and finer
spacing in the vertical near the bottom and/or a parameterization
which accounts for the actual distribution of bottom depths within
each gridcell, are needed to fully assess the new mixing scheme.

Future studies should also include into the mixing scheme the
effect of mesoscales (30–100 km) and sub-mesoscales O(1 km). It
is well documented that they both re-stratify the mixed layer thus
producing a reduction in the mixed layer depth (Oschlies, 2002;
Mahadevan et al., in press). No OGCM that we know of has in-
cluded such mixed layer effects since there is still no satisfactory
parameterization of such processes. In addition, suggestions have
Please cite this article in press as: Canuto, V.M., et al. Ocean turbulence, III
j.ocemod.2010.04.006
been made that even in the deep ocean mesoscales may not move
strictly along isopycnal surfaces, as assumed thus far: if they do
not, there is a further contribution to the diapycnal diffusivity in
addition to the small scale one discussed here. Recent studies (Tan-
don and Garrett, 1996; Eden and Greatbatch, 2008a,b) have con-
cluded that the effect may not be negligible especially at the
ocean bottom.
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Appendix A. 1D form of the Reynolds stress equations

Vertical heat flux, Jh ¼ wh

DJh

Dt
¼ �w2T ;z þ g aTh

2 � ashs
� �

� s�1p�1
4 Jh ðA:1Þ

Vertical salt flux, Js ¼ ws:

DJs

Dt
¼ �w2S;z þ g aThs� ass2

� �
� s�1p�1

1 Js ðA:2Þ

Temperature variance, h2:

Dh2

Dt
¼ �2JhT ;z � 2s�1p�1

5 h2 ðA:3Þ

Salinity variance, s2:

Ds2

Dt
¼ �2JsS;z � 2s�1p�1

3 s2 ðA:4Þ

Temperature-salinity correlation, hs:

Dhs
Dt
¼ �JhS;z � JsT ;z � s�1p�1

2 hs ðA:5Þ

Traceless Reynolds stress tensor bij = sij � 2dijK/3 (i, j = 1,2,3):

Dbij

Dt
¼ �8K

15
Sij �

1
2

Zij þ
1
2

Bij �
5
s

bij ðA:6Þ

with:

Zij ¼ bikVjk þ bjkVik; Bij ¼ g kiJ
q
j þ kjJ

q
i �

2
3

dijkkJqk

� �
ðA:7Þ

where Sij = 1/2(Ui,j + Uj,i) and Vij = 1/2(Ui,j � Uj,i) are the (mean) shear
and vorticity tensors and Jqi is defined as follows:

Jqi ¼ aT Jh
i � asJ

s
i ; ki � �ðg�qÞ�1p;i ðA:8Þ

Since Eqs. (A.6) involve also the horizontal heat and salinity fluxes
via the buoyancy tensor Bij, one needs to account for their presence.
The corresponding equations are:

Horizontal heat flux, Jh
i ¼ uih; i ¼ 1;2

DJh
i

Dt
¼ �uiwT ;z � Jh

ozUi � s�1p�1
4 Jh

i ðA:9Þ
: New GISS vertical mixing scheme. Ocean Modell. (2010), doi:10.1016/

http://dx.doi.org/10.1016/j.ocemod.2010.04.006
http://dx.doi.org/10.1016/j.ocemod.2010.04.006


1581
1582

15841584

1585

1586
1587

15891589

1590

1591

15931593

1594

1595

1596

1597
1598

16001600

1601

16031603

1604

16061606

1607

16091609

1610

16121612

1613

16151615

1616

16181618

1619

1620

16221622

1623

16251625

1626

16281628

1629

16311631

16331633

V.M. Canuto et al. / Ocean Modelling xxx (2010) xxx–xxx 19

OCEMOD 544 No. of Pages 22, Model 5G

19 May 2010
ARTICLE IN PRESS
Horizontal salt flux, Js
i ¼ uis; i ¼ 1;2:

DJs
i

Dt
¼ �uiwS;z � Js

ozUi � s�1p�1
1 Js

i ðA:10Þ

Dissipation-relaxation times scales:
For Rq > 0 and Ri > 0,

p1 ¼ p0
1 1þ RiRq

aþ Rq

� ��1

; p4 ¼ p0
4 1þ Ri

1þ aRq

� ��1

p2 ¼ p0
2ð1þ RiÞ�1 1þ 2RiRqð1þ R2

qÞ
�1

h i
; p5 ¼ p0

5;

p0
1 ¼ p0

4 ¼ ð27Ko3=5Þ�1=2ð1þ r�1
t Þ

�1
;

p0
2 ¼ 1=3; p3 ¼ p0

3 ¼ p0
5 ¼ rt ;

ðA:11Þ

where a = 10, Ko = 1.66 and rt was defined in Eqs. (10). For
Rq < 0and Ri > 0, we further have the relations:

p1;4 ¼ p0
1;4ð1þ RiÞ�1

; p2;3;5 ¼ p0
2;3;5 ðA:12Þ

On the other hand, for Ri < 0; pk ¼ p0
k for any k.
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Appendix B. Complete mixing model

Here, we summarize the complete form of the mixing model.
Diffusivities (a = heat, salt, momentum, density)

General form : Ka ¼ Sa
2K2

e
¼ Ca

e
N2 ; Ca �

1
2

RiðsRÞ2Sa ðB:1Þ

Structure functions : Sa ¼ Aa
w2

K
ðB:2Þ

Heat and salt:

Ah ¼ p4 1þ pxþ p4p2xð1� r�1Þ
� ��1

; As ¼ AhðrRqÞ�1 ðB:3Þ

Heat-to-salt flux ratio:

r � aT wh
asws

¼ p4

p1

1
Rq

1þ qx
1þ px

ðB:4Þ

Momentum:

Sm ¼ Am
w2

K
; Am ¼

Am1

Am2
ðB:5Þ

where:

Am1 ¼
4
5
� p4 � p1 þ p1 �

1
150

� �
ð1� r�1Þ

� 	
xAh ðB:6Þ

Am2 ¼ 10þ p4 � p1Rq
� �

xþ 1
50
ðsRÞ2 ðB:7Þ

Ratio w2

K :

w2

K
¼ 2

3
1þ 2

15
X þ 1

10
AmðsRÞ2

� 	�1

; X � ð1� r�1ÞxAh ðB:8Þ

Dimensionless variables x, p and q:

x ¼ RiðsRÞ2 1� Rq
� ��1

; p ¼ p4p5 � p4p2 1þ Rq
� �

;

q ¼ p1p2 1þ Rq
� �

� p1p3Rq ðB:9Þ

Dynamical time scale Gm � (sR)2 in the P = e model:
Cubic equation valid throughout the water column:

c3G3
m þ c2G2

m þ c1Gm þ 1 ¼ 0 ðB:10Þ

with:

c3 ¼ A1Ri3 þ A2Ri2
; c2 ¼ A3Ri2 þ A4Ri; c1 ¼ A5Riþ A6 ðB:11Þ
Please cite this article in press as: Canuto, V.M., et al. Ocean turbulence, III
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where:

150 1� Rq
� �3A1 ¼ p1p4 p4 � p1Rq

� �
p2ð15p3 þ 7Þ R2

q þ 1
� �n

þ 14ðp2 � p3Þ � 15p2
3

� �
Rq

o

9000 1� Rq
� �2A2 ¼ p1p4 p2ð210p1 � 150p3 þ 7Þ R2

q þ 1
� �n

þ 14ðp2 � p3Þð1þ 15p1 þ 15p4Þ þ 150p2
3

� �
Rq

þ210p2ðp4 � p1Þ
o

150 1� Rq
� �2A3 ¼ p1½5p2p4ð30p3 þ 17Þ þ p1ð15p3 þ 7Þ
 R2

q þ 1
� �

� ð15p3 þ 7Þðp2
1 � p2

4Þ � ½10p1p3p4ð15p3 þ 17Þ
þ 15p2ðp2

1 þ p2
4Þ þ 14p1p4ð1� 10p2Þ
Rq

9000 1� Rq
� �

A4 ¼ ½150ðp1p3 þ p2p4Þ � 7p1ð1þ 30p1Þ
Rq

� 150ðp1p2 þ p3p4Þ þ 7p4ð1þ 30p4Þ

30 1� Rq
� �

A5 ¼ ½�30ðp1p3 þ p2p4Þ � 17p1
Rq

þ 30ðp1p2 þ p3p4Þ þ 17p4;

A6 ¼ �1=60 ðB:12Þ

The p’s are given by Eq. (A.11).
Dissipation
Mixed layer:

e ¼ B2
1ðsRÞ

�3
‘2R3; ‘ ¼ ‘B 1� Rf

Rf1

� �4=3

;

‘B ¼ jz‘0ð‘0 þ jzÞ�1 ðB:13—B:15Þ

where ‘0 = 0.17H, j = 0.4 is the von Karman constant and H is the
ML depth computed as the point where the potential density and
the surface value differ by jr(H) � r(0)j > 3 	 10�5 g cm�3; Rf is de-
fined in Eq. (42) and B1 = 21.6.

Thermocline:

e ¼ eigwLðh;NÞ ðB:16Þ

the dimensionless function L(h,N) is given by Eq. (65b), the expres-
sion for eigwN�2 is taken from the Gregg–Henyey–Polzin model, Eq.
(66).

Tides

qetides ¼ qEðx; yÞFðzÞ; Eðx; yÞ ¼ 1
2

�qNjh2u2
t ðB:17Þ

where the wavenumberj = 2p/10 km and h is the roughness scale
obtained from Smith and Sandwell (1997). The scale function F(z)
has an exponential shape with a spatial decay scale of f = 500 m:

FðzÞ ¼ Af�1 exp�ðH þ zÞ=f; A�1 � 1� exp�H=f ðB:18Þ

Bottom drag

sb ¼ CD �u �u2 þ u2
t

� �1=2
; CD ¼ 0:003 ðB:19Þ

Unresolved bottom shear
In the BBL, the Ri that appears in Eq. (B.1) must be taken to be:

Ri ¼ N2

R2 ; R2 ¼ R2
res þ R2

unr; Runr ¼
u�
jz

Um;

u2
� ¼ CD u2

t

� �1=2
�u2 þ u2

t

� �1=2
ðB:20Þ

where the function Um is given by Eq. (36) of Cheng et al. (2002).
: New GISS vertical mixing scheme. Ocean Modell. (2010), doi:10.1016/

http://dx.doi.org/10.1016/j.ocemod.2010.04.006
http://dx.doi.org/10.1016/j.ocemod.2010.04.006


C
O

R
R

E
C

T
E
D

P
R

O
O

F

1671

1672

1673
1674
16761676

1677

1678

1679

1680

1681

1682
1683

16851685

1686

1687

1688
1689

16911691

1692

1693

1694

1695

1696

Fig. 11a. Area weighted histogram of the ratio of the rhs to the lhs of the relation for the mean magnitude of the unresolved stress, Eq. (C.8). For details, see text.

Fig. 11b. Same as in Fig. 11a but the histogram is weighted by the product of the area and the lhs of Eq. (C.8).
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NAppendix C. Relations (72) and (76)

The total velocity field is contributed by mean and tidal
velocities:

sbðtotalÞ ¼ CDujuj; u ¼ �uþ ut ðC:1Þ

We use an overbar to denote the averages used in OGCMs,
�ut ¼ 0 and utj�uþ ut j ¼ 0 since by symmetry the latter vector can
only point along the direction of �u and, to the extent that the mean
and tidal fields are uncorrelated (because they represent low and
high frequency fields), we expect such a term to vanish. We then
obtain:
1697

1698

Please cite this article in press as: Canuto, V.M., et al. Ocean turbulence, III
j.ocemod.2010.04.006
sbðtotalÞ ¼ CD �u �u2 þ 2�u � ut þ u2
t

� �1=2 ðC:2Þ

Next, we neglect the second term in the parenthesis since it is the
product of high and low frequency variables with little overlap thus
giving a zero mean. Eq. (C.2) then becomes:

sbðtotalÞ ¼ CD �u �u2 þ u2
t

� �1=2 ðC:3Þ

If one exchanges the square root with the averaging process, one
obtains Eq. (72). Numerical experiments by Saunders (1977) sug-
gest that even in the worst case the error in making this approxima-
tion is no more than 50%. By contrast ignoring the tidal contribution
to the drag altogether, as done in most OGCMs to date, can lead to
an error of an order of magnitude. As for Eq. (76), we begin with Eq.
(C.1). Writing �u2 for �u � �u, we have:
: New GISS vertical mixing scheme. Ocean Modell. (2010), doi:10.1016/
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sbðtotalÞ ¼ CD �uþ utð Þ �u2 þ 2�u � ut þ u2
t

� �1=2 ðC:4Þ

In order to exhibit the contribution of the unresolved scales, we
subtract from (C.4) its average yielding the unresolved part:

sbðunrÞ ¼ sbðtotalÞ � sbðtotalÞ ðC:5Þ

from which we derive u* as follows:

u2
� � s2

bðunrÞ
� �1=2 ðC:6Þ

Thus, the procedure consists of taking the modulus of (C.5) and
averaging it over the OGCM scale. Even adopting the approxima-
tions used in (C.3), the expression for s2

bðunrÞ turns out to be still
rather complex:

C�2
D s2

bðunrÞ ¼ �u2 þ u2
t

� �2 þ �u2D2 � 2�u2 �u2 þ u2
t

� �1=2
D;

D � �u2 þ u2
t

� �1=2 ðC:7Þ

A similar approximation to the one that led from (C.2) to (70),
yields:

u2
� ¼ s2

bðunrÞ
h i1=2

¼ CD u4
t þ �u2u2

t

� �1=2

) CDu2
t

1=2 u2
t þ �u2

� �1=2
ðC:8Þ

where the last approximation was necessary because we lack data
on u4

t . The last relation is (76).
Lacking access to fine time and space scales ocean velocities

field data including mean and tidal components, we tested the
above approximation using simulated data. The latter were created
by interpolating the velocities from our 3 	 3� NCAR OGCM similar
to that used in Canuto et al. (2004b) to the 1/2 	 1/2� grid of the
tidal model and then adding at each tidal gridbox a linearly polar-
ized sinusoidal in time velocity field with rms magnitude equal to
that of the time-averaged tidal velocity square of the tidal model’s
output. Four polarizations, east, northeast, north and northwest
were used and 12 time steps were taken. We then computed the
left- and right-hand sides of (C.8) from the simulated data for each
of the polarizations, where the overbar was taken to be an average
over time and the 3 	 3� gridcell. The rhs of (C.4) was substituted
into (C.5) to compute sb(unr) which was then substituted into
the lhs of (C.7). Finally, the ratio of the rhs to the lhs of (C.8) was
computed for each polarization for each gridbox. The average
weighted either by gridbox area or gridbox area times the lhs of
(C.8) was 0.99. Histograms of this ratio with the former and latter
weighting are presented in Fig. 11, respectively. We consider the
results adequate empirical evidence of the validity of (76) in the
context in which we are applying it.
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