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ABSTRACT

The impact of future anthropogenic forcing on the frequency of tropical storms in the North Atlantic basin

has been the subject of intensive investigation. However, whether the number of North Atlantic tropical storms

will increase or decrease in a warmer climate is still heavily debated and a consensus has yet to be reached. To

shed light on this issue, the authors use a recently developed statistical model, in which the frequency of North

Atlantic tropical storms is modeled by a conditional Poisson distribution with rate of occurrence parameter

that is a function of tropical Atlantic and mean tropical sea surface temperatures (SSTs). It is shown how the

disagreement among dynamical modeling projections of late-twenty-first-century tropical storm frequency can

be largely explained by differences in large-scale SST patterns from the different climate model projections

used in these studies. The results do not support the notion of large (;200%) increases in tropical storm

frequency in the North Atlantic basin over the twenty-first century in response to increasing greenhouse gases

(GHGs). Because the statistical model is computationally inexpensive, it is used to examine the impact of

different climate models and climate change scenarios on the frequency of North Atlantic tropical storms. The

authors estimate that the dominant drivers of uncertainty in projections of tropical storm frequency over the

twenty-first century are internal climate variations and systematic intermodel differences in the response of

SST patterns to increasing GHGs. Relative to them, uncertainties in total GHG emissions or other climate

forcings, within the scenarios explored here, represent a minor source of uncertainty in tropical storm fre-

quency projections. These results suggest that reducing uncertainty in future projections of North Atlantic

tropical storm frequency may depend as critically on reducing the uncertainty in the sensitivity of tropical

Atlantic warming relative to the tropical mean, in response to GHG increase, as on improving dynamical or

statistical downscaling techniques. Moreover, the large uncertainties on century-scale trends that are due to

internal climate variability are likely to remain irreducible for the foreseeable future.

As a further illustration of the statistical model’s utility, the authors model projected changes in U.S. land-

falling tropical storm activity under a variety of different climate change scenarios and climate models. These

results are similar to those for the overall number of North Atlantic tropical storms, and do not point to a large

increase in U.S. landfalling tropical storms over the twenty-first century in response to increasing GHGs.

1. Introduction

The investigation of the effects of greenhouse gas–

dominated warming on tropical storm activity in the

North Atlantic basin has been the topic of a number of

studies with contradicting results and conclusions. Some

studies point to an increase in tropical storm frequency

(Henderson-Sellers et al. 1998; Emanuel 2005; Mann

and Emanuel 2006; Oouchi et al. 2006; Holland and

Webster 2007), others to a decrease (Bengtsson et al.

2007; Knutson et al. 2008; Gualdi et al. 2008; Bender

et al. 2010), while others suggest a possibility for either

an increase or decrease (Emanuel et al. 2008; Sugi et al.
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2009; Zhao et al. 2009). The interested reader is pointed

to Knutson et al. (2010) for a recent review. These re-

sults are based on both statistical and dynamical models

with the dynamical models having structural differences

(grid resolutions, parameterizations, etc.), using differ-

ent control and perturbation periods, and in some cases

specifying different forcing scenarios (particularly for

nongreenhouse gas forcings, such as aerosols).

As outlined in Vecchi et al. (2008), the main argument

in support of projecting a large (;200%) twenty-first-

century increase in tropical storm activity is related to the

projected substantial increase of Atlantic sea surface

temperature (SST) in climate model scenarios, assuming

a causal relation from local SST to tropical storm count.

The underlying idea is that a warmer Atlantic SST (local

effect) is the primary factor influencing the tropical storm

genesis and development. Even though in the present

climate a warm Atlantic SST is a necessary condition for

the genesis and development of tropical storms, recent

studies have suggested that the remote influence of

tropical SST outside of the Atlantic also plays a key role

in providing the atmospheric conditions necessary for

the tropical storm formation (e.g., Swanson 2008; Vecchi

et al. 2008). In this case, the relative (rather than abso-

lute) increase in Atlantic SST with respect to the tropical

mean SST represents a better indicator of North Atlantic

tropical storm activity.

The disagreement among the different dynamical

modeling studies is both in terms of magnitude and sign

of the change in tropical storm frequency under projected

human-induced climate warming (e.g., Trenberth 2005;

Shepherd and Knutson 2007; Vecchi et al. 2008; Knutson

et al. 2010). One natural question is the following: could

it be that existing dynamical downscaling model studies

actually agree, within a certain context, about the effects

of climate change on the tropical storm activity in the

North Atlantic basin? In this article, we argue that this is

the case, and we further outline dominant sources of the

large disagreement in the projections.

Apart from information about changes in tropical

storm activity in a warmer climate for the entire North

Atlantic basin, changing frequency of U.S. landfalling

tropical storms is of greater societal relevance (e.g.,

Pielke and Landsea 1998; Rappaport 2000; Pielke et al.

2008; Villarini and Smith 2010). Pielke (2005) focused

on hurricane destruction and did not find increasing

or decreasing trends over the historical period. How-

ever, to the best of our knowledge only Knutson et al.

(2008) has examined projections of increasing green-

house gases on the frequency of U.S. landfalling tropical

storms over the twenty-first century, finding a 30% re-

duction in U.S. landfalling hurricanes compared to an

18% reduction in the basinwide hurricanes. Therefore,

the effects of different climate models for a given sce-

nario, as well as the impact of different climate change

scenarios for a given model on projected activity of

U.S. landfalling tropical storms still remains an open

question.

Using the recently proposed statistical model by Villarini

et al. (2010), the main points addressed in this study re-

volve around the following:

1) reconciling differing model projections of changes

in the frequency of North Atlantic tropical storms in

a warmer climate, and

2) examination of the impact of different climate models

and climate change scenarios on North Atlantic and

U.S. landfalling tropical storm activity.

The paper is organized in the following way. In the

next section we briefly describe the statistical model

used to assess changes in tropical storm activity, fol-

lowed by section 3 in which we discuss the results. The

main points of the study are summarized in section 4.

2. Statistical model

In a recent study, Villarini et al. (2010) developed

a Poisson regression model in which the count of trop-

ical storms Ni has a conditional Poisson distribution of

the following form:

P(N
i
5 kjL

i
) 5

e�L
i Lk

i

k
[k 5 0, 1, 2, . . . ], (1)

where Li is a nonnegative random variable and repre-

sents the rate of occurrence for the ith year in the record.

Different covariates related to the tropical storm gene-

sis, development, and tracking (tropical Atlantic and

tropical mean SSTs, North Atlantic Oscillation, and

Southern Oscillation index) were considered to describe

the variability over time of Li.

Villarini et al. (2010) modeled the rate of occurrence

of U.S. landfalling tropical storms, together with the

tropical storm frequency for the entire North Atlantic

basin. They used different penalty criteria for variable

and model selection, two different SST datasets [the

National Oceanic and Atmospheric Administration

(NOAA) Extended Reconstructed (ERSSTv3b; Smith

et al. 2008) and the Met Office Hadley Centre Sea Ice

and SST model version 1 (HadISSTv1; Rayner et al.

2003) data], as well as two different time series of counts

for the North Atlantic basin lasting longer than two days

[the original (uncorrected) tropical storm record main-

tained by the National Hurricane Center (Jarvinen et al.

1984; Neumann et al. 1993), and one with a correction
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for the estimated undercount associated with a changing

observation network (Landsea et al. (2010)].

One of the main findings was that both tropical At-

lantic and tropical mean SSTs are always significant

covariates in explaining the variability exhibited by the

tropical storm counts over the period 1878–2008. It is

interesting to note that the coefficients for the two SST

covariates have similar magnitudes but opposite signs

(positive for tropical Atlantic SST and negative for the

tropical mean SST), suggesting that in terms of tropical

storm counts, an increase in tropical Atlantic SST would

be offset by an increase in the tropical mean SST of the

same magnitude.

In this study we use the parsimonious model recom-

mended in Villarini et al. (2010) for the homogenized

tropical storm count with the correction by Landsea

et al. (2010). In our approach, the logarithm of the rate

of occurrence of tropical storms can be statistically

modeled as a linear function of only tropical Atlantic

and tropical mean SSTs:

L
i
5 exp[b

0
1 b

1
SST

Atl
1 b

2
SST

Trop
], (2)

where SSTAtl represents tropical Atlantic SST, while

SSTTrop represents the tropical mean SST. For the

overall tropical storm activity for the North Atlantic

basin, based on ERSSTv3b (HadISSTv1) SST dataset

b0 is estimated as 2.11 (2.10), b1 as 1.05 (1.02), and b2

as 21.12 (21.05). For U.S. landfalling tropical storms,

b0 is estimated as 1.24 (independently of the SST da-

taset), b1 as 0.89 and 0.86, and b2 as 20.89 and 20.86

based on ERSSTv3b and HadISSTv1 SST datasets,

respectively. The coefficients of these two SST pre-

dictors point to the importance of the differences be-

tween tropical Atlantic SST and tropical mean SST in

describing the frequency of North Atlantic and U.S.

landfalling tropical storms. Consult Villarini et al. (2010)

for more details.

Even though none of the results in Villarini et al. (2010)

point to tropical Atlantic SST as the only predictor nec-

essary to describe variability of tropical storm frequency

in the North Atlantic basin, in this study we also include

the results for a Poisson regression model, in which the

rate of occurrence Li is a linear function (via a logarithmic

link function) of only tropical Atlantic SST:

L
i
5 exp[b

0
1 b

1
SST

Atl
]. (3)

We have summarized the modeling results in Fig. 1

and Table 1. For the North Atlantic tropical storm fre-

quency, b0 is estimated as 2.12 (for both ERSSTv3b and

HadISSTv1), while b1 is estimated as 0.42 for ERSSTv3b

and 0.47 for HadISSTv1. As far as U.S. landfalling

tropical storm frequency is concerned, b0 is estimated

as 1.25 (for both ERSSTv3b and HadISSTv1), while

b1 is estimated as 0.37 for ERSSTv3b and 0.43 for

HadISSTv1.

3. Results

a. Comparison between statistical and dynamical
model projections

We compare the results that we would obtain from the

statistical model in Eq. (2) with published results from

dynamical and hybrid statistical dynamical models

(Oouchi et al. 2006; Bengtsson et al. 2007; Knutson et al.

2008; Gualdi et al. 2008; Emanuel et al. 2008; Sugi et al.

2009; Zhao et al. 2009; Bender et al. 2010). All of these

works explored the impact of climate changes as projected

by the climate models used for the Intergovernmental

Panel on Climate Change (IPCC) Fourth Assessment

Report (AR4). However, different climate models, dif-

ferent control and perturbation periods, and often dif-

ferent implementations of the ‘‘benchmark’’ forcing

scenarios were used in each study. As input for the sta-

tistical model we use tropical Atlantic and tropical mean

SST time series from the corresponding scenario using

the same climate models, and control and perturbation

periods as each of these 8 studies, for a total of 26 dif-

ferent cases.

We have summarized our results in Fig. 2. For illus-

tration, we have also included the results obtained from

a statistical model in which the rate of occurrence of

tropical storms depends only on tropical Atlantic SST

(Fig. 1). Since all the dynamical and statistical/dynamical

studies to which we are comparing the statistical model

have an explicit duration threshold in their definition

of tropical cyclone (Oouchi et al. 2006; Bengtsson et al.

2007; Knutson et al. 2008; Gualdi et al. 2008; Emanuel

et al. 2008; Sugi et al. 2009; Zhao et al. 2009; Bender et al.

2010), it is appropriate that we use the statistical model

of Villarini et al. (2010) built on the homogenized data

of Landsea et al. (2010), which excludes storms lasting

two days or less. When comparing our results (using the

median as reference, and both tropical Atlantic and

tropical mean SSTs as predictors for the statistical

model) against those from the dynamical models, we

observe a very good agreement, with the vast majority of

the dynamical models’ points within the 90% predic-

tion intervals of our statistical model (Fig. 2, top panels).

We obtain a correlation coefficient of 0.67 and 0.68

(based on ERSSTv3b and HadISSTv1 SST datasets,

respectively), indicating that we explain with a very
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simple observationally derived model close to half of

the variance exhibited across the various modeling stud-

ies, with a root-mean-squared error (RMSE) of 27.6%

and 24.6%, and a mean absolute error (MAE) of 23.4%

and 20.3%. We have also computed the correlation

coefficients for the subsets of modeling results from

Emanuel et al. (2008), Sugi et al. (2009), and Zhao et al.

(2009). Using the statistical model based on ERSSTv3b

(HadISSTv1) data, for the subset of Emanuel et al. re-

sults, we obtain a correlation coefficient of 0.66 (0.60),

explaining 43% (36%) of the variance among these

results. For the subset of Sugi et al. results, the corre-

lation coefficient is equal to 0.85 (0.86) and the ex-

plained variance among the results is 72% (73%). For

the subset of results from Zhao et al., the correlation

coefficient is equal to 0.94 (0.95), explaining 88% (90%)

of the variance among the results. Despite the high

correlation values, the results derived for the individual

studies should be interpreted with caution because of

the small sample size. Nonetheless, they suggest that the

statistical model is able to reproduce the variability in

tropical storm projections exhibited both across differ-

ent studies and within the same study, increasing our

confidence in the utility of the statistical model.

The agreement between the statistical and dynamical

models is rather remarkable, considering the simplicity

of the statistical model, and the variety of dynamical

modeling frameworks used (e.g., different grid resolu-

tions, parameterizations, different control and pertur-

bation periods, and specification of different forcing

scenarios). Based on these results, it appears that dif-

ferences among the published results can be largely re-

duced to differences in the climate model projections of

tropical Atlantic SST changes relative to the global

tropics used by the studies. Once these differences are

accounted for, these studies tend to provide a much

more consistent picture. That is, uncertainty in projected

patterns of tropical SST changes in the twenty-first

FIG. 1. Modeling of the (top) U.S. landfalling tropical storms and (bottom) tropical storm count data [lasting

longer than 2 days and adjusted based on Landsea et al. (2010) for the entire North Atlantic basin] using a Poisson

regression model in which the rate of occurrence depends linearly (via a logarithmic link function) only on tropical

Atlantic SST. The points represent the observations, the white line represents the median (50th percentile), the

dark gray region represents the area between the 25th and 75th percentiles, and the light gray region represents the

area between the 5th and 95th percentiles. Results by using SST from the (left) ERSSTv3b and (right) HadISSTv1

dataset. Summary statistics for these models are presented in Table 1.
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century is a leading cause of uncertainty in North At-

lantic tropical storm frequency projections. Thus, un-

derstanding the mechanisms that produce patterns of

SST changes should be a primary effort in the quest to

reduce uncertainty in tropical storm projections.

On the other hand, if we hypothesize that Atlantic

SST alone is the primary factor affecting tropical storm

frequency, we arrive at a statistical projection that is

inconsistent with that of the dynamical models (Fig. 2,

bottom panels). The points do not exhibit a systematic

pattern and have a significant bias (the value of the in-

tercept in the regression equation is 186.8% and 238.7%

vs 9.1% and 1.4% obtained when using both tropical

Atlantic and tropical mean SSTs). We obtain a correla-

tion coefficient of 0.14 and we explain 2% of the vari-

ance exhibited by the data. Moreover, the RMSE and

MAE are almost an order of magnitude larger when

compared to the statistical model that focuses on SST

change pattern.

These results, in addition to the skill in reproducing

the historical record of homogenized tropical storm

frequency (Villarini et al. 2010), provide additional ev-

idence in support of the idea that tropical Atlantic SST

relative to tropical mean SST is a very important factor

in the frequency of occurrence of tropical storms in the

North Atlantic basin. That is, none of the dynamical

modeling studies explored here supports the notion that

tropical Atlantic SSTs on their own are the primary

control on North Atlantic tropical storm frequency.

b. Sensitivity of the projections of North Atlantic
tropical storm activity to different climate models
and climate change scenarios

So, why is there such a spread in the projected changes

of SST patterns, and thus in projections of tropical storm

frequency? Since the statistical model is computationally

efficient and provides results that compare reasonably

well with those from the dynamical models, we can use it

to explore the changes in basinwide tropical storm fre-

quency for the entire twenty-first century and for each of

the 24 available climate models (see Vecchi and Soden

2007 for a summary of the different models). In Fig. 3 we

show the modeled time series for the Special Report on

Emissions Scenarios (SRES) A1B scenario and eight

different climate models. The time series exhibit large

variability, with more active periods alternating to less

active ones. We also notice differences across the dif-

ferent climate models. For instance, both the Geo-

physical Fluid Dynamics Laboratory (GFDL) and Met

Office, Hadley Centre models exhibit very large in-

terannual variability, while the Commonwealth Scien-

tific and Industrial Research Organisation (CSIRO) and

the Model for Interdisciplinary Research on Climate

3.2, high-resolution version [MIROC3.2(hires)] exhibit

less variability. Moreover, some models present a more

marked increase over the twenty-first century, while

others show a decrease. Overall, we obtain a substantial

range of results when computing the slopes of the re-

gression lines over the periods 2001–50, 2051–2100, and

2001–2100 (Fig. 4). There is a tendency among the

models toward decreasing trends during the twenty-first

century, with most of the projections within 65 tropical

storms century21. For the period 2001–50 (2051–2100)

we obtain statistically significant (at the 5% level) trends

in 5 (7) cases (all of them decreasing). When considering

the period 2001–2100, in 11 cases we obtain statistically

significant decreasing trends and in 4 cases increasing

trends (significant at the 5% level).

Apart from the SRES A1B scenario, we have also in-

vestigated the sensitivity of the modeling results to dif-

ferent IPCC SRES climate change scenarios [using 12

climate models, and also focusing on the GFDL Climate

Model version 2.1 (CM2.1)]. The scenarios and the ap-

proximate CO2 equivalent concentrations to which they

correspond (in terms of radiative forcing by both anthro-

pogenic greenhouse gases and aerosols by 2100) in-

clude: SRES A1FI: 1550 ppm; SRES A2: 1250 ppm; SRES

A1B: 850 ppm; and SRES B1: 600 ppm. We also consider

Stable_2000, which maintains CO2, aerosols, etc. at 2000

levels for 100 yr. As shown in Fig. 5, these projection time

TABLE 1. Summary statistics for the Poisson modeling of North

Atlantic tropical storm counts using tropical Atlantic SST as co-

variate. In the ‘‘Intercept’’ and ‘‘SSTAtl ’’ cells, the first value is the

point estimate, while the one in bracket is the standard error. In

each cell, the values in the first (second) row refer to the model

using the HadISSTv1 (ERSSTv3b).

Landfall Corrected

Intercept 1.25 (0.05) 2.12 (0.03)

1.25 (0.05) 2.12 (0.03)

SSTAtl 0.43 (0.16) 0.47 (0.10)

0.37 (0.14) 0.42 (0.09)

Degrees of freedom

for the fit

2 2

2 2

Mean (residuals) 20.00 20.01

0.00 20.04

Variance (residuals) 0.98 1.23

0.93 1.23

Skewness (residuals) 0.29 0.33

0.30 0.34

Kurtosis (residuals) 2.61 3.34

2.52 3.36

Filliben (residuals) 0.992 0.995

0.991 0.993

AIC 521.75 676.4

522.09 675.3

SBC 527.50 682.1

527.84 681.1

3228 J O U R N A L O F C L I M A T E VOLUME 24



series from GFDL CM2.1 exhibit little or no increasing

trend (only the trend for the SRES A1B scenario for the

period 2001–2100 is significant at the 5% level), ranging

from 0 to 2 storms century21 (based on 2001–2100 trends;

black dots), but are not ordered according to the degree

of global temperature increase or equivalent CO2 forcing.

Nonetheless, in these model scenarios one would still

experience years and decades with higher activity alter-

nating to years and decades of reduced activity, as have

been experienced over the past 150 yr.

FIG. 2. Comparison of fractional tropical storm count changes between dynamical and statistical models. The

statistical model uses (top) both tropical Atlantic and tropical mean SSTs and (bottom) only tropical Atlantic SST as

covariates. Results are based on the models constructed using (left) NOAA’s ERSSTv3b dataset and (right) the Met

Office’s HadISSTv1 dataset. The gray lines represent the 90% prediction intervals for the linear regression model.
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FIG. 3. Projections for the twenty-first century of the tropical storm counts for the North Atlantic basin under the

SRES A1B scenario for eight different climate models using both tropical Atlantic and tropical mean SSTs as co-

variates in the statistical model (based on the model constructed using NOAA’s ERSSTv3b dataset). The white line

represents the median (50th percentile), the dark gray region represents the area between the 25th and 75th per-

centiles, and the light gray region represents the area between the 5th and 95th percentiles.
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When we consider the linear trend over two different

periods (2001–50 and 2001–2100) from the entire 12-

model suite, we do not find an obvious pattern across the

different radiative forcing scenarios. The large inter-

model spread in the various projections masks the ten-

dency for the multimodel average to show a slight

increasingly negative trend with increasing greenhouse

gas forcing. There are three main reasons that could

explain the very different outcomes from the different

models in these scenarios: internal (unforced) climate

variability within each model, differences in the pre-

scription and model response to nongreenhouse gas

forcings (e.g., aerosol, ozone, and changes in land use–

land cover), and differences in model description and

parameterization of the physical processes that lead to

different sensitivity to greenhouse gas increases. We

distinguish between the greenhouse gas and nongreen-

house gas forcings here in particular because the

greenhouse gas forcing is relatively consistent across the

different models, whereas the nongreenhouse gas forc-

ings are specified, and responded to, in substantially

different ways among the different models. Therefore,

similar patterns of response across the models would

suggest a dominant influence of the (common) green-

house gas forcing.

We attempt to provide a first quantitative description

of the relative contribution of each of these three com-

ponents. The relative impact of internal climate vari-

ability versus total response to climate forcing agents

was examined by computing the correlation coefficient

between the 12-model response vectors for three dif-

ferent scenarios (SRES A2, A1B, and B1). In other

words, we ask to what extent do the models that tend to

show relatively smaller/larger changes in one scenario

also show it in the other scenarios? If the pattern of

ordering of the trends across scenarios is inconsistent,

then we can infer that the spread is largely driven by

either unforced climate variations or by differences in

forcings and responses to nongreenhouse gas forcings.

Focusing on the 2001–2100 trends in SRES A2, SRES

A1B, and SRES B1 (Fig. 6 and Table 2), we obtain

correlation coefficients of the model response across

scenarios between 0.68 and 0.74, indicating that differ-

ences in the model response to total forcing in those

scenarios explain about half of the variance in the

tropical storm response, and with the remaining half

originating from the unforced climate variability and the

nongreenhouse gas forcing/response.

The importance of the internal variability is under-

scored by examining the variability in the slopes from an

ensemble of 10 different GFDL CM2.1 model runs for

the SRES A1B scenario that differ only in their initial

conditions (Fig. 5, middle panel): over the period 2001–

50, the variance for the 10 slopes is equal to 6.2, which is

about 42% of the variance exhibited by the 12 climate

models for the same scenario. Even though each model

has a different internal variability and the results for the

GFDL CM2.1 model cannot be generalized to all of the

other ones, from these estimates we speculate that close

to half of the variability in the results can be attributed to

internal variability. As a third more direct way to esti-

mate the impact of the internal climate variability of the

models on the linear trends, we have examined the

preindustrial control runs for all 12 models, resampling

the data, creating 1000 12-member sets of 100-yr linear

trends and comparing the spread of these to the spread

of the 3 scenarios. In this case, we estimate the internal

climate variability in the models as responsible for close

to 50% of the spread in the projections. Based on these

auxiliary calculations, we conclude that about half of the

variability exhibited by the different models in these

scenarios comes from internal climate variability, with

the rest due to differences in the specification of or the

response to radiative forcing.

To attempt to isolate the role of differences in non-

greenhouse gas forcings in these models on the spread

FIG. 4. Slopes of the regression lines for three periods (2001–

50, 2051–2100, and 2001–2100) for all the 24 available climate

models. These results are based on the projections for the twenty-

first century of the tropical storm counts for the North Atlantic

basin under the SRES A1B scenario, using both tropical Atlantic

and tropical mean SSTs as covariates in the statistical model

(based on the model constructed using NOAA’s ERSSTv3b da-

taset). The solid black curves represent the probability density

function for a Gaussian distribution fitted to the 24 climate

models (gray dots; the mean m and the standard deviation s are

included). In the box plots, the limits of the whiskers repre-

sent the 5th and 95th percentiles, the limits of the boxes repre-

sent the 25th and 75th percentiles, and the horizontal lines and

the squares inside the boxes are the median and the mean,

respectively.
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FIG. 5. (left) Projections for the twenty-first century of the tropical storm counts in the North Atlantic basin for five

different climate change scenarios using the GFDL CM2.1 climate model, and tropical Atlantic and tropical mean

SSTs as covariates in the statistical model (based on the model constructed using NOAA’s ERSSTv3b dataset). The

white line represents the median (50th percentile), the dark gray region represents the area between the 25th and

75th percentiles, and the light gray region represents the area between the 5th and 95th percentiles. Results are shown

for the different scenarios and two time periods (middle) 2001–50 and (right) 2001–2100. The black points represent

the results for the GFDL CM2.1, while the white points (for the SRES A1B scenario) are for 10 GFDL CM2.1 runs

available for this scenario through 2050; the gray points represent the results for the 12 different climate models (the

mean m and the standard deviation s are included).
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of tropical storm projections, we have also computed

correlations based on model runs with only CO2 changes

(doubling or quadrupling with respect to preindustrial

levels). Comparing the slopes from the 12 different

models and including the 2 additional sets of CO2-only

runs, we obtain (Fig. 6 and Table 2) correlation co-

efficients of 0.61–0.74 (with the exception of 0.42 for

A1B vs 4 3 CO2), which indicates that about 45% of

the variance in the trend results can be described as a

response to greenhouse gas changes in these models.

To summarize, based on these analyses, we find that

almost half of the variability among the projections

of tropical storm frequency from different climate

models results from internal (unforced) climate vari-

ability, almost another half results from differences in

the models’ responses to greenhouse gases, and thus,

by process of elimination, a relatively smaller portion

results from differences in the specification of and re-

sponse to nongreenhouse gas–forcing agents in this set

of experiments.

c. Sensitivity of the projections of U.S. landfalling
tropical storm activity to different climate models
and climate change scenarios

Most of the studies in the literature focus on changes

in North Atlantic tropical storm frequency in a warmer

climate, and there is still very limited information about

possible changes in U.S. landfalling tropical storms. To

shed light on the possible effects of increasing temper-

atures on U.S. landfalling tropical storms, we use the

statistical model developed by Villarini et al. (2010), and

use as input the projected time series of tropical Atlantic

and tropical mean SSTs for different climate change

forcing scenarios and climate models.

In Fig. 7 we show the projected U.S. landfalling trop-

ical storm frequency for 8 different climate models under

the SRES A1B scenario. The consensus estimate is

not for a marked increase in U.S. landfalling tropical

storms projected for the twenty-first century; however,

individual models project the possibility of trends be-

tween 22.64 to 11.32 tropical storms century21 over the

twenty-first century. Moreover, depending on the climate

model, we observe a more or less marked interannual

variability, associated with different spatiotemporal SST

variability patterns. When looking at the 24 climate

models together (Fig. 8), there is not a strong tendency

toward either increasing or decreasing trends, with most

of the models having a slope between 61.5 tropical storm

(100 yr)21. The impact of internal climate variability

on the estimate of trends in U.S. landfalling numbers

can be seen in the decrease in spread from the 50- to the

100-yr trends.

When focusing on the impact of different climate

change forcing scenarios on the U.S. landfalling tropical

storm frequency, the picture does not change significantly

from either basinwide or the multimodel exploration. As

shown in Fig. 9 focusing on GFDL CM2.1, and similar to

what was observed in Fig. 5, there are no marked in-

creasing trends in these time series, with slopes between

0 and 11 storm century21 for the period 2001–2100.

FIG. 6. Slopes from the linear fitting of the North Atlantic

tropical storm counts over the period 2001–2100 for 12 climate

models under 3 different SRES scenarios and for model runs for

CO2 doubling (2 3 CO2) and quadrupling (4 3 CO2) with respect

to the preindustrial runs. These results are used to assess the extent

to which the different slope responses among the models are due to

deterministic (forcing/response related) differences vs internal

climate variability (noise).

TABLE 2. Summary of the correlation between the slope values

for the period 2001–2100 for 12 climate models under 3 different

SRES scenarios and model runs for CO2 doubling (2 3 CO2) and

quadrupling (4 3 CO2) with respect to the preindustrial runs.

Notice that the correlation coefficients between the 4 3 CO2 model

run and the others are based on 11 models (the data for the CSIRO

Mk3.0 is not available).

Correlation

coef

R B1 A1B A2 2 3 CO2 4 3 CO2

B1 1 — — — —

A1B 0.681 1 — — —

A2 0.690 0.738 1 — —

2 3 CO2 0.723 0.720 0.711 1 —

4 3 CO2 0.699 0.421 0.694 0.610 1

R2 B1 A1B A2 2 3 CO2 4 3 CO2

B1 1 — — — —

A1B 0.464 1 — — —

A2 0.477 0.544 1 — —

2 3 CO2 0.523 0.518 0.506 1 —

4 3 CO2 0.489 0.177 0.482 0.370 1
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FIG. 7. Projections for the twenty-first century of the U.S. landfalling tropical storm counts under the SRES A1B

scenario for 8 different climate models using tropical Atlantic and tropical mean SSTs as covariates in the statistical

model (based on the model constructed using NOAA’s ERSSTv3b dataset). The white line represents the median

(50th percentile), the dark gray region represents the area between the 25th and 75th percentiles, and the light gray

region represents the area between the 5th and 95th percentiles.
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4. Discussion and conclusions

The main results of this study are as follows:

1) The disagreement among published results con-

cerning increasing or decreasing North Atlantic

tropical storm trends in a warmer climate can be

largely explained (close to half of the variance) in

terms of the different sea surface temperature pro-

jections (Atlantic minus tropical mean) of the dif-

ferent climate model projections used. Our results

suggest that reducing the uncertainty in future pro-

jections of North Atlantic tropical storm frequency

(for a given emission scenario) may depend as criti-

cally on reducing the uncertainty in projections of the

tropical Atlantic warming relative to the tropical

mean as than on improving dynamical or statistical

downscaling techniques.

2) For the SRES A1B scenario and 24 climate models,

over the twenty-first century there is a large spread

among projected trends in tropical storm activity in

the North Atlantic basin, with a mean of 20.83

tropical storm century21 and a standard deviation of

2.48 tropical storms century21. As far as U.S. land-

falling tropical storms are concerned, results based

on 7 climate models point to a statistically significant

increasing trend, while 6 point to a decreasing trend.

3) Exploring several climate change forcing scenarios

(SRES A1FI, SRES A2, SRES A1B, SRES B1, and

Stable_2000) and based on a set of different climate

models, the response of tropical storms in the twenty-

first century does not exhibit a clear monotonic re-

lationship to increasing ‘‘equivalent’’ greenhouse gas

forcing. This statement is valid for both the overall

activity in the North Atlantic basin, as well as for the

frequency of U.S. landfalling tropical storms. This

lack of a systematic response to changes in green-

house gas forcing reflects both the large internal cli-

mate variability that impacts even 100-yr projected

trends, as well as disagreement among climate

models as to whether the tropical Atlantic should

warm more or less than the rest of the tropics from

increasing greenhouse gases.

Based on the results from 12 climate models, we

estimate that close to 50% of the variance in the

trend results over the period 2001–2100 can be as-

sociated with internal climate variability in the

models, with another 50% due to models’ differences

in response to greenhouse gas forcings, leaving only

a much smaller percentage to be associated with the

models’ response to nongreenhouse gas forcings in

this suite of experiments. For the upcoming IPCC

Fifth Assessment Report, the influence of non-

greenhouse forcings should be reexamined in the

newer models, which may in a number of cases in-

clude larger influences (e.g., enhanced aerosol in-

fluence due to indirect effects). Our results to date

suggest that, to the extent that the SRES forcing

scenarios are relevant, there is a possibility of nar-

rowing the range of uncertainty in the projections of

Atlantic tropical storm frequency if we can better

understand the mechanisms that control patterns

of tropical SST changes in nature and the models

(Xie et al. 2010). However, if our model-based es-

timates of internal (unforced) climate variability are

robust, there is a considerable level of uncertainty

in climate change projections that will remain ef-

fectively ‘‘irreducible,’’ as no current prospects exist

for skillful century-scale predictions of unforced

climate variability.

For century-scale projections of tropical storm

frequency, the sources of uncertainty that emerge as

dominant (internal variability and structural model

uncertainty) are quite dissimilar to those of global and

regional temperature projections, which tend to be

dominated by greenhouse gas emissions and structural

model uncertainties (Hawkins and Sutton 2009).

FIG. 8. Slopes of the regression lines for three periods (2001–50,

2051–2100, and 2001–2100) for all the 24 available climate models.

These results are based on the projections for the twenty-first

century of U.S. landfalling tropical storms under the SRES A1B

scenario, using both tropical Atlantic and tropical mean SSTs as

covariates in the statistical model (based on the model constructed

using NOAA’s ERSSTv3b dataset). The solid black curves repre-

sent the probability density function for a Gaussian distribution

fitted to the 24 climate models (gray dots; the mean m and the

standard deviation s are included). In the box plots, the limits of

the whiskers represent the 5th and 95th percentiles, the limits of the

boxes represent the 25th and 75th percentiles, and the horizontal

lines and the squares inside the boxes are the median and the mean,

respectively.
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FIG. 9. (left) Projections for the twenty-first century of the U.S. landfalling tropical storm count for 5 different

climate change scenarios using the GFDL CM2.1 climate model, and tropical Atlantic and tropical mean SSTs as

covariates in the statistical model. The white line represents the median (50th percentile), the dark gray region

represents the area between the 25th and 75th percentiles, and the light gray region represents the area between the

5th and 95th percentiles. (right) For the same five climate change scenarios, the slopes of the linear regression line for

three periods (2001–50, 2051–2100, and 2001–2100) are shown. The results are based on the statistical model con-

structed using NOAA’s ERSSTv3b dataset.
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4) The statistical model used in this study was trained

on a 131-yr record of North Atlantic tropical storms

(Villarini et al. 2010). It is parsimonious and requires

only tropical Atlantic and tropical mean SSTs as in-

put to project the distribution of North Atlantic

tropical storm counts for any given year. Because it is

observationally based, reflects our current under-

standing of the main physical processes responsible

for the formation of tropical storms in the North

Atlantic, and because of its agreement with the dy-

namical results, we propose that the use of this model

for prediction of tropical storms under different

scenarios is justified.

5) These results provide further supporting evidence for

the importance of both Atlantic and tropical SSTs in

describing variations in tropical storm activity in the

North Atlantic basin.

6) The projections from the various dynamical models

are consistent with observational behavior as captured

through the statistical model using tropical Atlantic

and tropical mean SSTs. Moreover, a 640% change by

the late-twenty-first century is consistent with both the

observed record and with the range of projections of

SST patterns. Unfortunately, we are not able to use

observations to falsify projected trends of magnitude

640% at this point owing to the high levels of esti-

mated internal variability. However, improved un-

derstanding of the physical mechanisms that control

patterns of SST changes, in response to climate forcing

agents, should result in better constraints on the range

of uncertainties (Xie et al. 2010).
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