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Predicted habitat shifts of Pacific top predators in

a changing climate
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To manage marine ecosystems proactively, it is important to
identify species at risk and habitats critical for conservation.
Climate change scenarios have predicted an average sea
surface temperature (SST) rise of 1-6°C by 2100 (refs 1,
2), which could affect the distribution and habitat of many
marine species. Here we examine top predator distribution
and diversity in the light of climate change using a database
of 4,300 electronic tags deployed on 23 marine species from
the Tagging of Pacific Predators project, and output from a
global climate model to 2100. On the basis of models of
observed species distribution as a function of SST, chlorophyll a
and bathymetry, we project changes in species-specific core
habitat and basin-scale patterns of biodiversity. We predict
up to a 35% change in core habitat for some species,
significant differences in rates and patterns of habitat change
across guilds, and a substantial northward displacement of
biodiversity across the North Pacific. For already stressed
species, increased migration times and loss of pelagic habitat
could exacerbate population declines or inhibit recovery. The
impending effects of climate change stress the urgency of
adaptively managing ecosystems facing multiple threats.

Many top predators in marine ecosystems are in decline
globally owing to overfishing, bycatch and other indirect an-
thropogenic threats including habitat loss and changes in prey
availability’. Large ocean predators can provide top-down con-
trol of food webs and when these species are removed or dis-
placed, resulting trophic cascades can alter the stability of ma-
rine ecosystems®”. Furthermore, changes in habitat may have
multiple economic effects on coastal communities through re-
duced availability of ecosystem services such as fisheries land-
ings and ecotourism.

Climate change has resulted in shifts in species distributions in
both terrestrial and marine systems®’. Climate change ranks as one
of the greatest anthropogenic threats to terrestrial biodiversity®,
although less is known in marine systems. Models assessed by the
Intergovernmental Panel on Climate Change estimate that global
ocean surface temperatures will rise between 1 and 6°C by 2100
(refs 1,2). Both acute and long-term exposure to warmer waters
could impact species distributions through direct physiological and
indirect ecological pathways™'°. However, the rates and intensity of
climate impacts will not be uniform across the world’s oceans; thus,
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Figure 1| Density of top predators within the eastern North Pacific.
Densities of the time-weighted and species-normalized position estimates
of all tagged individuals were summed within 1° x 1° grid cells. The two
densest biological hotspots are labelled; the white contour represents the
top 25% of density values from 2001 to 2009. Modified from Fig. 4

of ref. 11.

understanding spatial patterns of change is critical for identifying
ecosystems most at risk.

Comprehensive analyses of the effects of climate change
inherently require an interdisciplinary approach. Remotely sensed
environmental and animal distribution data can be combined in a
habitat-modelling framework to both assess and predict how ani-
mals interact with their environment. The Tagging of Pacific Preda-
tors (TOPP) programme resulted in an unprecedented biologging
data set by deploying over 4,300 electronic tags on 23 species from
2000 to 2009 in the North Pacific (Fig. 1). Pelagic predator hotspots
in the northeast Pacific have been identified by quantifying the links
between predator distribution and environmental features!!. Here
we combine species-specific habitat models from the TOPP data
set with climate change projections'>!'* of SST and chlorophyll a to
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Figure 2 | Modelled SST and chlorophyll-a values and predicted changes. a-d, Yearly climatological maps of modelled SST and chlorophyll-a (Chl-a)
patterns from 2001 to 2010 (a,c) and changes in SST and chlorophyll a from the first and last 20 years of 2001 to 2100 (b,d) in the North Pacific.
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Figure 3 | Modelled species richness values and predicted changes. a-h, Quarterly modelled species richness for 2001-2010 from 15 top predator species
(a-d) and predicted changes in species richness over the next century (2001-2020 compared with 2081-2100) (e-h).

predict rates and spatial patterns of change in top predator diversity,
and species most at risk of losing pelagic habitat under climate
change. This scenario-driven approach can be used to identify areas
of stability as well as change in biodiversity across management
boundaries, providing data essential to strategically and proactively
manage dynamic marine ecosystems.

Results

The Geophysical Fluid Dynamics Laboratory coupled model for
scenario A2 predicted SST changes as high as 5 °C and chlorophyll-a
changes up to £0.2 mg1~! between 2001 and 2100 in the northeast
Pacific Ocean (Fig. 2). The largest temperature changes occurred in
the North Pacific Transition Zone (NPTZ) whereas the upwelling-
driven California Current Large Marine Ecosystem (CCLME)
showed minimal change (< 1°C). These trends were accompanied
by a decrease in chlorophyll a in the central North Pacific and an
increase in chlorophyll 4 along the coastal margins. Spatial patterns
were similar under scenario A1B but had a lower magnitude of
change (not shown).

We found varied relationships among core habitat and oceano-
graphic variables across species. The mean deviance explained
by the reduced generalized additive models was 20% for all
species (minimum = 9% and maximum = 44%; Supplementary
Table S1). The seabird guild targeted high-chlorophyll-a waters
(>0.2mgl™"), the tuna guild targeted moderate SSTs (~15-25°C),
whereas the shark guild targeted both higher chlorophyll a and
moderate SST, highlighting the diversity of habitats used by top
predators (Supplementary Fig. S1).

Predictive models of core habitat showed primary biodiversity
hotspots in the CCLME and in the NPTZ (~43° N latitude) with
these regions serving as core habitat area for seven of the fifteen
species during all seasons. These predicted results from 2001 to
2010 were similar to the previously published TOPP observations,
validating our approach!! (Fig. 1). Patterns in biodiversity showed a
northward shift in core habitat as the NPTZ moved north in all sea-
sons but the summer (Fig. 3). Richness decreased by up to 20% in
the NPTZ and the warmer subtropical gyre as temperatures warmed
in the winter, spring and autumn. Diversity patterns remained near
constant in the California Current with the core habitat area of all
species increasing 2% over the course of the twenty-first century.

There was high variability in predicted changes in core habitat
area, £35% across all species (Fig. 4 and Supplementary Fig. S3).
Seabirds and tuna guilds had the greatest gains in potential core
habitat, whereas the shark guild showed the greatest decline, and
the marine mammal and turtle guilds had slight decreases. Rates
of change were often nonlinear, with some species losing habitat
quicker than others (Supplementary Fig. S3). Of all species, sooty
shearwaters were predicted to have the greatest gain in habitat
whereas mako sharks were predicted to lose the most habitat
(Fig. 4f). Sooty shearwaters, blackfooted albatross and loggerhead
turtles had the greatest variance in predicted habitat change.

Discussion

We used spatial models of top predator species distributions in
concert with global climate models to project changes in North
Pacific biodiversity hotspots and to identify functional groups
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Figure 4 | Predicted changes in top predator core habitat by guild. a-e, Top predator core habitat area by guild from 2000 to 2100 shown as monthly
(grey), yearly (red) and 5-year filtered (blue) time series with 1 standard deviation marked by dashed lines. f, Total predicted mean habitat change from
2001 to 2100 for each of the 15 top predator species with 1 standard deviation error bars.

most at risk. The climate model output showed a northward
migration of up to 1,000km of the NPTZ, contraction of the
subarctic gyre and expansion of the oligotrophic subtropical gyre'*
(Fig. 2). These physical changes will drive a substantial northward
shift in biodiversity across the North Pacific for species with
both commercial and conservation value. Modelled ecosystem
changes predict increased species overlap and a potential for
niche compression under the Intergovernmental Panel on Climate
Change A2 scenario (Fig. 3).

We found significant differences in habitat change across guilds
resulting in species-specific winners and losers. The shark guild
showed the greatest risk of pelagic habitat loss with 3 out of 4 species
showing declines (Fig. 4 and Supplementary Fig. S3). Tuna species

gained core habitat, potentially owing to their higher use of the
CCLME. Marine mammals declined in potential habitat, largely
driven by blue whales, whereas seabirds had the greatest increase in
potential habitat. Species with specialized diets (for example, blue
whales and leatherbacks) may have less capacity for adaptation and
therefore will be more susceptible to environmental changes than
prey-switching generalists (for example, tuna and seabirds)'®".
Similarly, species with broader thermal tolerances may be more
successful than those with limited thermal tolerances®. In addition,
increases in fisheries catch may exacerbate climate change effects on
both fished species and predator populations'>"7.

Our predicted climate change impacts on threatened or
endangered species could have varied effects on population recovery
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efforts. Marine top predators can have high phenotypic plasticity
and adaptive capability that may reduce climate change impacts,
whereas mismatches between predators and prey due to climatic
shifts could enhance climate change impacts. Among turtles,
loggerheads showed a decline in core habitat, whereas leatherbacks
foraging in the California Current had a slight increase in potential
habitat projected. However, nesting beach development and skewed
sex ratios from warmer nesting temperatures may negate projected
foraging habitat gains for endangered leatherbacks'®. Seabirds had
the greatest predicted gains in pelagic habitat, but changes in wind
regimes and resultant migration corridors may mean potential
habitat is inaccessible'”. Furthermore, loss of seabird nesting habitat
on low-lying atolls due to sea-level rise may lead to population
extinctions®. Blue whales showed a decrease in predicted core
habitat, which could limit their post-whaling recovery®!, whereas
elephant seals were predicted to have an increase in available habitat
in the North Pacific. Central place foragers such as pinnipeds and
seabirds have additional constraints when compared with migratory
fish, sharks and whales, as hotspots such as the NPTZ may move
further from existing colonies, adding increased energetic cost
and decreasing reproductive success, particularly during sensitive
life-history stages'® (Fig. 3).

Waters within the west coast US exclusive economic zone
were predicted to increase in chlorophyll a and also remain high
biodiversity hotspots in the future (Figs2 and 3). As offshore
habitat decreases or becomes less accessible, there may be increased
use in the CCLME leading to greater competition among top
predators, but also a higher risk of anthropogenic impacts such
as shipping traffic and fisheries bycatch®. In the Pacific, oxygen
minimum zones are both expanding and shoaling”. A shallower
oxygen minimum zone could reduce vertical habitat for fishes with
high oxygen demand while concentrating prey for air-breathing
mammals, turtles and seabirds. In a spatially explicit framework,
maps of changes in ecosystem services, habitat preferences and
trophic interactions could serve as the foundation for reserve design
and marine spatial planning in a changing ocean®.

The complexity and broad-scale effects of climate change
make it difficult to determine changes or distributional shifts
a priori. Marine organisms, particularly pelagic predators, offer
added difficulty in prediction because they are highly migratory,
spend a large portion of their lives below the surface of the
ocean and have complex physiological specializations''. However,
the marine realm is predicted to face marked changes by 2040
(ref. 25), so we must use our best science to identify individual
species and biodiversity hotspots most at risk and to implement
management and intervention methods using a precautionary
approach?. Habitat models based on animal movement data and
real-time oceanography open the possibility of dynamic marine
protected areas that are oriented to transient oceanic features (for
example, fronts, eddies and upwelling zones) rather than those fixed
on stationary habitats (for example, reefs and seamounts). Policy
prescriptions for pelagic marine reserves are being actively debated
now both inside exclusive economic zones of nations and in the
open sea®’. Management strategies and reserves need to be based not
only on present biodiversity distributions and migration corridors
but also on their persistence in the future.

To truly understand the multiple stressors faced by a species,
an ecosystem-based approached is needed. Integrated ecosystem
models of trophic dynamics and energy flow could be used to
look at changes in forage species and the effects on predators®
in addition to predicted changes in fisheries landings'’. These
modelling approaches are not without limitation, as a 1° grid-size
model does not resolve fine-scale oceanic or ecological processes
that interact on the scale of individuals'®. Results of this and similar
approaches® are critical to initially assess risk and vulnerability
of species to climate change so that managers can proactively target

those species most at risk. Climate change is a broad-scale and
directional process and we must plan accordingly to ensure our
healthy and functioning ecosystems remain intact, and recovery
efforts are appropriately targeted and successful.

Methods

Fifteen of the twenty-three TOPP species had sample sizes sufficient to use in our
analysis (resulting in 1791 individual tracks, see Supplementary Information). We
used a Bayesian state-space model to account for variable levels of observation error
among tag types and to produce regular daily location positions including estimates
of uncertainty'!. Tracks were normalized by deployment duration to account for
tag biases''. We modelled the density of each predator species in 1° x 1° grid cells
as additive, non-parametric functions of oceanographic variables, bathymetry and
season. Satellite-derived fields of chlorophyll a, SST, sea surface height anomaly
and variance, wind stress curl and bathymetry were used to create time series of
monthly values within each grid cell from 2000 to 2009. We fitted generalized
additive models for species densities within each grid cell in a full model (all
environmental variables) and subsequently in a reduced model for chlorophyll g,
SST, latitude, longitude and bathymetry.

We used output from a prototype Earth system model (ESM2.1) developed
at the Geophysical Fluid Dynamics Laboratory of the National Oceanic and
Atmospheric Administration (NOAA). ESM2.1 is a dynamic atmosphere—ocean
general circulation model'? coupled to a marine biogeochemistry model that allows
us to project spatial patterns in SST and chlorophyll a (refs 13,14). Whereas most
climate change models use SST alone, we examined monthly changes in both SST
and chlorophyll a from 2001 to 2100, which informed our generalized additive
model predictions for each species. ESM2.1 was not initialized to observations;
thus, decadal variability is represented statistically but the phase of variability will
not match observed phases.

We modelled changes in the 15 species distributions from 2001 to 2100
and used 120 bootstrapped runs to examine process variability. Core habitat was
defined as the upper 25th percentile of habitat use based on SST, chlorophyll a and
bathymetry thresholds from model fits (see Supplementary Information). Spatial
changes in patterns of biodiversity were examined using species richness indices by
summing the number of species with core habitat in each grid cell. Mean richness
from 2001 to 2020 was compared with richness from 2081 to 2100 to examine the
climate change signal independent of decadal variability.
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SUPPLEMENTARY INFORMATION

Predicted habitat shifts of Pacific top predators in a changing climate

In this paper, we use state space modeled tracks from 15 species and previously
identified relative density hotspots to examine predicted changes in habitat and top
predator species richness under future climate scenarios. Detailed methods on
number of animals tagged, weighting applied to tracks to deal with tag bias, and
state space model fitting are included in Block et al. 2011 (supplemental methods
2.0-2.7, Table S3) and Winship et al. 2011. Figure 1 was re-created by integrating
relative use as a function of the diversity of species visiting a cell, essentially a
function of both the number of species that visit a cell and the number of individuals
within a species that visit a cell. The TOPP species were chosen for this analysis
based on a power analysis (1-f = 0.80, « = 0.05) in R (pwr package v. 1.1.1) to ensure
sufficient sample sizes for the habitat modeling and predictions. We also scrutinized
the spatial and temporal coverage of tag data to ensure that we were sampling a
representative portion of the TOPP period in all four seasons (quarters) within the
NE Pacific (10° to 60° N and 110° to 180° W). This resulted in a cutoff of 15
complete individual tracks per species (in line with Block et al. 2011). Species
included are represented in Figure 4, while TOPP species that were not included
were humpback whale (Megaptera novaeangliae), fin whale (Balaenoptera
physalus), sperm whale (Physeter macrocephalus), northern fur seal (Callorhinus
ursinus), thresher Shark (Alopias vulpinus), ocean sunfish (Mola mola), and
Humboldt squid (Dosidicus gigas).

Generalized Additive Models (GAMs) were run iteratively in a model selection
framework, building the models by running the relative use (number of times a grid
cell was visited by a species) against environmental variables in the full model (sea
surface temperature, chlorophyll-a, sea surface height anomaly, sea surface height
root mean square, wind stress curl, latitude, longitude, and bottom depth) and then
removing least significant parameters to get to a reduced model similarly to Block et
al. 2011. Relative use only examined habitat grid cells visited by at least one
individual per quarter allowing low, but non-zero use values. We examined the data
for normality and cross-correlation using histograms, Q-Q plots, and correlation
analyses. From these analyses, three link functions were explored, Gamma, Gaussian
with log-transformed response data, and Poisson, and model fit and residuals were
examined for normality. A Gaussian distribution with log-transformed species
densities was chosen for the predictions as it resulted in the most normally
distributed response variables and homogeneity in variance. Models were
compared using AIC values and normality characteristics to determine the best-fit
model. As SST and Chl were two key predictor variables across many of the species
and were both available in the GFDL climate models, both were used in the species-
specific generalized additive models. We have reported the p-values as part of the
full model for each of these terms and the full and reduced model R? for each species
(Table S1). Deviance explained by SST and Chl for each species was calculated by
subtracting residual deviance from three models as described below:
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(resid. deviance(SST) - resid. deviance(SST+CHL)) / resid. deviance(null model)
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Figure S1 Plots showing generalized additive model fit relationships between
habitat, SST, and Chl by species for all 15 species. The habitat relative likelihood is
on the y-axis with either SST (°C) or Chl (logio mg/L) on the x-axis (indicated on

right of plot).

-2

Individual GAM plots for SST and Chl from the reduced model were used to examine
species-specific responses for discussion in the manuscript (Figure S1). Core habitat
was calculated by taking the top 25% of predicted habitat values from the GAM fits
and then only including values above that threshold in future scenarios. The top
25% of habitat was chosen to ensure that we were focusing on the key habitat for
each species and not modeling simply shortest-path migration corridors that may be
less influenced by environmental features (similar to Kappes et al. 2010). We
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recognize that finer scale analyses such as area-restricted search delineation to
examine actual behavioral characteristics (e.g. Bailey et al. 2010) could better
inform behavioral states (e.g. foraging versus migration), but this approach is better
suited for species-specific approaches to ensure we are not adding bias to the
biodiversity data. We lack data on prey resources and measures of foraging effort at
the appropriate scale for most of the species, and adding a proxy for foraging would
still remain a proxy and may confound inter-specific comparisons rather than
improve them. The numbers of species with core habitat in a cell for the quarter
were summed to calculate the metric of species richness.

|

Figure S2. Quarterly plots grouped by column of (a-d) SST (°C) and (e-h)
chlorophyll-a (mg/L) from 2001 to 2010 and changes in (i-1) SST and (m-p)
chlorophyll-a from the first and last two decades in the 215t century (2001 to 2020 &
2081 to 2100).
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Climate predictions were calculated using a prototype earth system model (ESM
2.1) developed at NOAA's Geophysical Fluid Dynamics Laboratory (GFDL). ESM 2.1
is a dynamic atmosphere-ocean general circulation model (Delworth et al. 2006)
coupled to a marine biogeochemistry model and has been used in a variety of recent
ecological studies of climate change in the North Pacific (e.g., Rykaczewski and
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Dunne 2010, Polovina et al. 2011). Most of the global climate models do not include
predictions of chlorophyll-a, which was critical to our analysis. We chose the A1B
and A2 scenarios as these predicted more extreme greenhouse gas emissions over
the next century of 720 ppm and 840 ppm respectively (IPCC 2007). The A1B
scenario assumes rapid growth through 2050 with an ultimate switch to cleaner
technologies, while the A2 scenario is termed “business as usual” and assumes a
near constant increase in greenhouse gas emissions. Quarterly predictions were
made from 2001 to 2100, and the predictions from 2001 to 2020 were subtracted
from 2081 to 2100 to examine spatial patterns of change (Figure S2).

Both sea surface temperature (from 0 to 10 meters) and chlorophyll-a (integrated
from 0 to 100 meters) from the GFDL model output were averaged into a) monthly
means from 2001 to 2100 and b) quarterly (seasonal) averages over 20-year
windows to integrate across decadal variability and maximize the climate signal.
Integrated chlorophyll-a matched the observed patterns in the north Pacific gyre
better when compared to only surface Chl. Quarterly mean SST and Chl from 2001
to 2020 were subtracted from the quarterly means from 2081 to 2100 to examine
areas of greatest change over the next century. Monthly predictions of SST and Chl
were used in mgcv’s predict.gam to create the time series of species’ core habitat
(Wood 2010).
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Figure S3. Time series plots of core habitat changes (top 25% of all habitat) from
2001 to 2100 as monthly (grey), yearly (red) and 5-year (blue) predictions. 1 SD is
shown in dashed blue lines.

The total numbers of cells in the species’ potential habitat were averaged across
year and by quarter from 2001 to 2020. The quarterly climatology of core habitat
was subtracted from the mean number of cells from 2081 to 2100 for each species
and divided by the baseline period (2001 to 2010) to get a measure of change in
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species richness (Figure 3). This process was repeated from 2001 to 2100 using
monthly, yearly, and 5-year running mean values to examine how each species
gained or lost habitat relative to the baseline period (Figure 4). The last year (2100)
average minus the first year (2001) average was used to identify which species
gained or lost habitat over the course of the simulation. Species-specific time series
of habitat change are shown in Figure S3. The yearly average over the last 10 years
and first 10 years from the modeled % core habitat were used to designate the
predicted magnitude over the next century given that 2000-2010 was the “baseline”
period of tagging effort (Figure 4F).

Figure S4. Plot of =
predicted relative

habitat (from 1 =

high to -1 = low)

for test (25% of S
total) and training

(75% of total) o
datasets. A linear &
model resultedin = & o |
an R? value of B °
0.81. e

Test data

To address the issue of model precision, we used a bootstrap approach randomly
withholding 25% of the movement data from the entire modeling procedure: 1)
final GAM fitting to 2) GAM predictions to 3) habitat change calculations. This
approach allowed us both to a) test the models predicted relative use versus actual
relative use values (Figure S4) and b) add standard deviation to our time series
predictions to illustrate process variability (Figure 4, Figure S3). The 120 runs of
test data (25%) were plotted against the training data (75%) and resulted in an R?
of 0.81 indicating our models were successful in predicting relative use habitat from
the predictor variables in the final model. The slope differed from 1 (1:1 line in
dashed grey) suggesting that we over-predicted high values of relative use habitat.
Given that we are using modeled values throughout the process and were focused
only on the top 25% of habitat, this bias should not influence our percent-change
calculations. The standard deviations were greatest for seabirds that had the

© 2012 Macmillan Publishers Limited. All rights reserved.



broadest distribution of habitat, and for turtles that had the fewest data points
(Figure 4). Both of these guilds contained species with low GAM R2 values (Table
S1). All of the species trends save California sea lions were significantly different
from zero using a 95% confidence level (1.96 * SD-n"1/2).

This approach is not without caveats and the authors recognize that this is not
intended to be a prediction of specific years with good or bad habitat nor a
prediction of specific grid cells that a particular species will occupy in the future.
Instead, this approach is a scenario-driven exercise to understand which species are
most at risk of losing pelagic habitat in the future. Many tagged top predators use
habitat beyond our study area but the study area had the greatest density of use for
all 15 species (Block et al. 2011). Understanding ontogenetic shifts in habitat will be
important given the relationship between body size to thermal physiology and
migratory efficiency. Ultimately, we are modeling the realized niche rather than the
actual niche such that climatic tolerances of species may be higher than they
actually appear. In addition, we only used a single climate model realization for our
predictions but it was the only model available with both SST and Chlorophyll-a
data at the appropriate resolution (1°x1°). Broader analyses as more tag data are
collected and additional climate simulations are available could refine our results in
future modeling endeavors. Studies have examined the effects of sea surface
temperature rise alone on marine species (e.g., Macleod 2009), however many top
predators can easily move to avoid detrimental habitat and generalists can even
switch prey if previous resources become inaccessible. Even given these caveats,
these results are critical in understanding broad scale changes in top predator
biodiversity, and identifying species that are at risk of losing pelagic habitat. Ideally,
these results should be interpreted in the context of additional environmental and
anthropogenic pressures in a cumulative framework to assess and adaptively
manage these species at risk.
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Table S1. SST and Chl deviance explained for each species from the reduced
model. The full GAM and reduced GAM used for prediction R2 values are included.

Species name SSTdev CHLdev FULL GAM R? GAM R2
Albacore tuna 5.26% 13.03% 34.30% 29.70%
Blackfoot albatross 4.25% 4.87% 9.64% 9.51%
Bluefin tuna 18.43% | 16.70% 51.20% 43.80%
Blue shark 2.07% 1.80% 23.40% 13.60%
Blue whale 2.87% 6.05% 24% 11%

California sea lion 4.23% 14.53% 33.00% 22.70%
Elephant seal 3.36% 2.18% 13.50% 8.60%
Laysan albatross 1.53% 2.69% 11.40% 9.30%
Leatherback turtle 1.29% 0.85% 23.10% 9.53%
Loggerhead turtle 12.25% 9.47% 50.30% 35.30%
Mako shark 3.81% 6.77% 24.40% 24.20%
Salmon shark 2.25% 11.45% 20.40% 13.80%
Sooty shearwater 3.87% 16.76% 42% 34%

White shark 3.83% 13.66% 32.80% 16.70%
Yellowfin tuna 3.63% 8.67% 19.70% 17.10%
Mean values 27.50% 19.92%
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