GFDL - Geophysical Fluid Dynamics Laboratory

Heather M. Archambault, Ph.D.

Associate Director
NOAA/OAR Geophysical Fluid Dynamics Laboratory

email: Heather.Archambault <at> noaa.gov
phone: +1-609-452-6646
University at Albany Dept. of Atmospheric & Environmental Sciences alumnus homepage

 


Biography

   Heather Archambault is the Associate Director of GFDL. In this role, she helps coordinate research across the lab and acts as a science liaison between the lab and OAR, NOAA, and national and international modeling centers and programs. Dr. Archambault’s expertise is synoptic–dynamic meteorology. Her speciality is in the dynamics and predictability of multi-scale interactions between tropical cyclones and the midlatitude circulation. In addition to her Associate Director duties, she conducts research at GFDL to explore the prediction skill of GFDL’s Finite-Volume Cubed Sphere (FV3)-based real-time weather prediction system, fvGFS, for western North Pacific tropical cyclones undergoing extratropical transition.

   Prior to arriving at GFDL in 2017, Dr. Archambault worked for three years at the NOAA/OAR Climate Program Office. There, she helped manage the Modeling, Analysis, Predictions, and Projections (MAPP) Program, a grants program supporting the development, analysis, and application of climate models. Dr. Archambault received her undergraduate degree from the Pennsylvania State University in Meteorology with a minor in Global Business Strategies in the Earth, Energy, and Materials Industries, and a masters and Ph.D. in Atmospheric Science from the University of Albany/SUNY. She was a National Research Council Postdoctoral Fellow at the Naval Postgraduate School in Monterey, California. She currently serves as an Associate Editor of the American Meteorological Society (AMS) journal Monthly Weather Review.


Evolution of the North American 700-hPa Q-vector and Q-vector forcing fields over the last 72 hours (dataset: GFS operational analysis; source: http://www.atmos.albany.edu/student/heathera).


Publications (updated August 2018):

Riboldi, J., C. M Grams, M. Riemer, and H. M. Archambault: A phase-locking perspective on Rossby wave amplification and atmospheric blocking downstream of recurving western North Pacific tropical cyclones. Mon. Wea. Rev., submitted.

Keller, J. H., C. M. Grams, M. Riemer, H. M. Archambault, L. F. Bosart, J. D. Doyle, J. L. Evans, T. J. Galarneau, K. S. Griffin, P. A. Harr, N. Kitabatake; R. McTaggart-Cowan, F. Pantillon; J. F. Quinting, C. A. Reynolds, E. A. Ritchie, R. D. Torn, and F. Zhang: The extratropical transition of tropical cyclones. Part II: Interaction with the midlatitude flow, downstream impacts and implications in predictability. Mon. Wea. Rev., in revision.

Evans, C., K. M. Wood, S. D. Aberson, H. M. Archambault, S. M. Milrad, L. F. Bosart, K. L. Corbosiero, C. A. Davis, J. R. Dias Pinto, J. Doyle, C. Fogarty, T. J. Galarneau, C. M. Grams, K. S. Griffin, J. Gyakum, R. E. Hart, N. Kitabatake, H. S. Lentink, R. McTaggart-Cowan, W. Perrie, J. F. Quinting, C. A. Reynolds, M. Riemer, E. A. Ritchie, Y. Sun, and F. Zhang, 2017: The extratropical transition of tropical cyclones. Part I: Cyclone evolution and direct impacts. Mon. Wea. Rev., 145, 4317–4344.

Bosart, L. F., B. J. Moore, J. M. Cordeira, and H. M. Archambault, 2016: The interactions of North Pacific tropical, midlatitude, and polar disturbances resulting in linked extreme weather events over North America in October 2007. Mon. Wea. Rev., 145, 1245–1273.

Grams, C. M., and H. M. Archambault, 2016: The key role of diabatic outflow in amplifying the midlatitude flow: A representative case study of weather systems surrounding western North Pacific extratropical transition. Mon. Wea. Rev., 144, 3847–3869.

Archambault, H. M., D. Keyser, L. F. Bosart, C. A. Davis, and J. M. Cordeira, 2015: A composite perspective of the extratropical flow response to recurving western North Pacific tropical cyclones. Mon. Wea. Rev., 143, 1122–1141.

Harr, P. A., and H. M. Archambault, 2015: Dynamics, predictability, and high-impact weather associated with the extratropical transition of tropical cyclones. Dynamics and Predictability of Large-Scale, High-Impact Weather and Climate Events, J. Li, R. Swinbank, H. Volkert, and R. Grotjahn, Eds., Special Publications of the International Union of Geodesy and Geophysics, Cambridge University Press, 153–167.

Archambault, H. M., L. F. Bosart, D. Keyser, and J. M. Cordeira, 2013: A climatological analysis of the extratropical flow response to recurving western North Pacific tropical cyclones. Mon. Wea. Rev., 141, 2325–2346.

Metz, N. D., H. M. Archambault, A. F. Srock, T. J. Galarneau, Jr., and L. F. Bosart, 2013: A comparison of South American and African preferential pathways for extreme cold events. Mon. Wea. Rev., 141, 2066–2086.

Bosart, L. F., J. M. Cordeira, T. J. Galarneau, Jr., B. J. Moore, and H. M. Archambault, 2012: An analysis of multiple predecessor rain events ahead of tropical cyclones Ike and Lowell (10–15 September 2008). Mon. Wea. Rev., 140, 1081–1107.

Evans, C., H. M. Archambault, and Coauthors, 2012: The Pre-Depression Investigation of Cloud-systems in the Tropics (PREDICT) field campaign: Perspectives of early career scientists. Bull. Amer. Meteor. Soc., 93, 173–187.

Archambault, H. M., D. Keyser, and L. F. Bosart, 2010: Relationships between large-scale regime transitions and major cool-season precipitation events in the northeastern United States. Mon. Wea. Rev., 138, 3454–3473.

Archambault, H. M., L. F. Bosart, D. Keyser, and A. Aiyyer, 2008: Influence of large-scale flow regimes on cool-season precipitation in the northeastern United States. Mon. Wea. Rev., 136, 2945–2963.