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Theory:!
!
      The vector-invariant shallow water equations: 
 
 
 
 
 
 
 
 
 
 
 
 
 
u1,u2 are the covariant components of the velocity. u1, u2 are the contravariant components of 
the velocity. A map space (x1, x2) represents a general curvilinear coordinate system. 
 
Our finite volume method maintains the mass conservation, but does not maintain the 
momentum conservation. Each control volume uses a centered 1D 5-points stencil to 
calculate h and v at the volume interfaces. The velocity at control volume interface is 
converted to components that are perpendicular and parallel to the volume interfaces. h and v 
are mismatched between neighbor volumes at the interfaces, thus creates a “Riemann 
problem”. A fast Riemann solver is created based on Chen et al. 2013 to calculate the volume 
interface values of h and v using the mismatched values at the volume interfaces: 
 
 
 
 
 
 
 
 
 
 
Values of h and v at “mid-state” of the Riemann problem are simplified to constant as long as 
the speed of the gravity wave can be treated as constant at the volume interface. This 
approximation is valid because the speed of the gravity wave only appears in terms, which 
are used as implicit diffusion for the numerical scheme. 
 
Equal-angular gnomonic cubed-sphere grid is used in our model, and the sphere is divided 
into six patches. Ghost cells is added to extend the patch boundaries for our finite volume 
approach. Since the grid center points of ghost cells and the corresponding cells in the 
neighbor patch lie on the same lines that parallel to the path interfaces, only 1D polynomial 
interpolation is necessary to remap the values of h and v for the ghost cells. 

Numerical Results!
!
The Williamson et al. (1992) test cases for shallow water models (W92) are used to benchmark 
our model. 
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a.   Steady Geostrophically Balanced Flow!
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b. Zonal flow over an isolated mountain!
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c. Rossby-Haurwitz wave!
!
The Rossby-Haurwitz wave is an solution of the barotropic vorticity equation on the sphere. 
We performed the wave number 4 test because it is sensitive to instability due to the model’s 
truncation error, and will eventually collapse into a unstructured turbulent flow. The time of 
the breakdown varies based on the numerical scheme employed. We used a c40 grid and the 
breakdown time is around day 100.  
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Conclusions!
!
This shallow water model is designed for both accuracy and computational performance. 
We use the finite volume method with unstaggered grids on a cubed-sphere grid. A 
computationally efficient shallow water Riemann solver is created based on a fully 
compressible fluid Riemann solver developed by Chen et al. (2013). Our test shows that 
our model is 2nd order accurate with low diffusivity, and it handles nonlinear flow with 
good performance. 
"
Next Step!
!
This model shares the same set of prognostic variables with the current GFDL dynamical 
core, except the velocity is defined in A-grid. The governing equations are identical in 
both models. Chen et al 2013 demonstrated a a-grid Riemann solver based multi-layer 
fully compressible model using a vertical Lagrangian coordinate, which is similar to Lin 
2004 approach. The numerical treatment in the vertical direction is isolated from the 
horizontal advection in such a vertical coordinate. Thus, this model is potentially possible 
to be extended to full 3D version by inheriting the vertical numerical treatment 
implemented in the current GFDL dynamical core. 

Abstract:!
!
A cubed-sphere grid system provides much better uniform grid point distribution 
compared to the conventional lat-lon grid system. A finite volume method could be 
used to solve the flux form shallow water equations. However, due to the non-
orthogonal cubed-sphere grid, extra metric terms are necessary in the momentum 
equations, which requires more computational steps compared to their counterpart on 
an orthogonal grid. In this model, the vector-invariant shallow water equations are 
implemented, which has fewer non-orthogonal terms. A fast Riemann solver is created 
to calculate the values of the prognostic variables at control volume interfaces for the 
momentum equations and to compute the fluxes for the continuity equation. 
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center points of the mesh cells in the neighboring patch. So only a one-dimensional
interpolation is needed. In the paper, we use a linear interpolation to obtain the ghost
values, as illustrated in Figure 3.1. It should be noted that for a vector-valued field one
should first transform the values into the spherical coordinates form or the Cartesian
coordinates form before performing the interpolation and then transform them back
into the cubed-sphere coordinates form, because the coordinate bases are not the same
from one patch to another on the cubed-sphere.

Patch 2
Patch 1

Fig. 3.1. Patch interface treatment for the cubed-sphere. Patch 1 is a neighbor patch of patch 2.
All interior mesh points together with one layer of ghost points located in patch 2 are drawn in red.
Several layers of interior mesh points of patch 1 are drawn in green. One can see that the ghost points
lie on the same line as the nearest layer of mesh points in the neighboring patch.

Whether for scalar-valued or vector-valued functions, e.g., for Q = (h, hu, hv)T in
the SWEs, the patch interface interpolation depends only on the cubed-sphere geom-
etry. For example, see Figure 3.1. If we want to obtain one layer of the ghost values
defined at points {P̄j}Nj=1 belonging to patch 2 interpolated from the values defined at

points {Pj}Nj=1 in patch 1, the interpolation takes the form
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Here for simplicity, we denote f(Pj) by fj and f(P j) by f j for any function f . In (3.8)–

(3.9), j̃ is the neighboring index of j (along the first layer of ghost points) and can be
obtained by

j̃ =

{
j + 1, j < "N

2 #+ 1,

j − 1, otherwise,

αj is the linear interpolation coefficient determined by αj = dist(P̄j , Pj̃)/dist(Pj , Pj̃),

and Jk serves as the Jacobian that maps a point on patch k from its cubed-sphere coor-
dinates to the corresponding latitude-longitude coordinates. For example, J1 is given
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W92 case 2 is a balanced geostrophic flow 
which should remain steady; deviations from 
steady state are errors. The results show a 
2nd order convergence in our model. 
Although the 3rd order model developed by 
Ullrich et al. (2010) had a better 
convergence rate, our model shows lower L2 
error at lower resolution and is more 
efficient. Our errors are also lower than 
those of  the implicit method of Yang et al 
(2010), which allows larger time step than 
our explicit model but much more diffusive. 
Both Ullrich et al. and Yang et al. use  the 
conservative momentum equations, which 
introduces more metric terms and thus more 
expense than our vector-invariant equations. "
	
  

Height field of Rossby-Haurwitz wave with c40 grid resolution and wavenumber 4."
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This test is the test case 5 in W92. The initial 
status of winds and height is identical to the 
steady state geostrophically balanced flow in 
previous section, with zonal direction. 
However, the zonal flow impinges on a conical 
mountain. Our result shows good agreement 
with literatures. Note that with the low-
diffusive Riemann solver, our results keeps 
good intensity of the flow height field 
perturbation. Our results are no more diffusive 
than other 3rd or 4th order numerical schemes 
including both FVM and SEM. The 
performance with the stretched grid is also 
good. 
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Height field of W92 case 5 with c40 
stretched grid, c100, and difference"

Between the two results"
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