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Atmospheric Chemistry plays a key role in the Climate System 
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IPCC-AR5 

Lifetime ~days to months 

Lifetime ~hours to days 

? Radiative Forcing 
(aerosols, O3) 
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Seamless Atmospheric Chemistry in CM3 
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Donner et al. [2011] 
Austin et al. [2013] 
Naik et al. [2013a] 

No Climate Feedback 

Delworth et al. [2006] 
Ginoux et al. [2006] 
Horowitz [2006] 
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AM3 (observed SST and Sea Ice) Captures Observations 
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Naik et al. JGR [2013a] 

AM3 – TES Tropospheric O3 (ppbv)  
(2005-2007) 

Global Mean Oceanic Aerosol Optical Depth 
(AOD) @ 550 nm  

AM3 captures the observed zonal mean O3 to 
within ± 4 ppbv in much of the troposphere 

AM3 reproduces the observed evolution of 
total AOD  over the ocean from 1982-2006 
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Net Negative Radiative Forcing (RF) due to Preindustrial  
to Present-day Increases in Tropospheric O3 and Aerosols  
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Naik et al. JGR [2013a] 

Multi-model Mean [Shindell et al., 2013] 
O3 RF =  0.33±0.18 

Aerosol ERF* = −1.17±0.4 
NET RF =  −0.84 ± 0.50 W m−2 

ΔAerosol Optical Depth (2000-1860) 

*NET EffectiveRF: Change in TOA net radiative 
flux with fixed sea surface temperature  

(2000-1860) NET ERF*                       -1.05 Wm-2 
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Contribution to the Atmospheric Chemistry Climate Model 
Intercomparison Project (ACCMIP) 
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IPCC – AR5 
WG I 

ACCMIP CMIP5 

Tropospheric 
O3 

Radiative 
Forcing 
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Black 
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Deposition 

• Dominant atmospheric oxidizing agent  abundance and lifetime of 
radiatively active species (e.g. CH4, ozone depleting substances) 

• Extremely short-lived (~1s)  global measurements are hard to make, 
rely on proxy methods (e.g. CH3CCl3 lifetime) or forward models to estimate 
global mean OH 
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Global Chemistry Climate Models (CCMs) overestimate 
mean OH relative to observational constraints 
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OH North/South Ratio 

Naik et al. ACP [2013b] 

Years 
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How has global mean OH changed in response to historical 
(1850-2000) emission increases and climate change?  
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No consensus amongst prior modeling 
studies (1991-2012)  
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Large intermodel diversity in the sign of OH change over 
the historical period with no clear trend 

Naik et al. ACP [2013b] 
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Global mean OH is well-buffered against perturbations  
[Lelieveld et al. 2004, Montzka et al. 2011] 
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Future Directions: Realistic CH4 Simulation 

• Realistic simulation of CH4 will 
allow us to investigate: 
– drivers of past and future 

changes in atmospheric CH4 
– impact on other chemical species, 

e.g., tropospheric O3 and its RF 
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2000 
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Future Directions: Atmospheric Chemistry in the Earth System 
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Summary 

• A comprehensive treatment of atmospheric chemistry 
within GFDL’s global climate model (CM3) allows us to 
advance the scientific understanding of the effect of short-
lived pollutants on climate 

• GFDL helped lead a multi-model investigation of the global 
mean OH historical trend  

– Models do not give clear indication of global OH trend; multi-model 
mean change is consistent with recent observational inference    

• Integrating atmospheric chemistry within the Earth 
System Model opens up the possibility of addressing whole 
new sets of questions within the broader Earth System 
Science 
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