1. Introduction

* Methane (CH,) is the 2" most important anthropogenic greenhouse gas,
and a precursor to tropospheric ozone (O;) which adversely affects
human health.

* Concentration of CH, has more than doubled since the preindustrial
period.

 Global source and sink strengths are fairly well known, but uncertainties
exist in their trends, and in the contribution from specific source sectors.

Objective

 |nvestigate the role of climate versus anthropogenic emissions in
determining methane lifetime in a suite of historical and future
simulations.

D2. Model and Simulations

GFDL CM3: Fully coupled climate-chemistry model with interactive
tropospheric and stratospheric chemistry [Donner et al., 2011 ; Naik et al.,
2013].

Summary of forcings used in CM3/IPCC AR5 simulations.

Solar Volcanoes WMGHG WMGHG Aerosol Ozone Precursors LandUse Radiative and
(radiation) (chemistry) emission (emission/conc) Land CO,

CONTROL 1860 none 1860 1860 1860 1860 1860 1860
HIST Historical Historical Historical Historical Historical Historical Historical Historical
(5-member ensemble)
AEROSOL? 1860 none 1860 1860 Historical 1860 1860 1860
(3-member ensemble)
AEROSOL INDIRECT 1860 none 1860 1860 1860 1860 1860 1860
(3 member ensemble) climatology
ANTHRO 1860 none Historical Historical Historical Historical Historical Historical
(3-member ensemble)
NATURALP Historical Historical 1860 1860 1860 1860 1860 1860
(3-member ensemble)
WMGGO3¢ 1860 none Historical Historical 1860 Historical 1860 Historical
(3 member ensemble)
RCP2.6 RCP2.6 none RCP2.6 RCP2.6 RCP2.6 RCP2.6 RCP2.6 RCP2.6
RCP4.5 RCP4.5 none RCP4.5 RCP4.5 RCP4.5 RCP4.5 RCP4.5 RCP4.5
(3-member ensemble)
RCP4.5*d RCP4.5 none RCP4.5 2005 for 2005 2005 RCP4.5 RCP4.5
(3-member ensemble) CH,, N,0, ODS

RCP6.0 none RCP6.0 RCP6.0 RCP6.0 RCP6.0 RCP6.0 RCP6.0
RCP8.5 RCP8.5 none RCP8.5 RCP8.5 RCP8.5 RCP8.5 RCP8.5 RCP8.5

2 AEROSOL: only aerosols, SO,/BC/OC emissions are time-varying

b NATURAL: GHG for radiation and chemistry fixed at 1860 values. CFC s fixed at 1860 values.

¢ WMGGO3: SO, and aerosols held at 1860 values.

4 RCP4.5*: CH,, N,O and ODS for chemistry are fixed at 2005 values. Aerosol and O, precursor emissions also fixed to 2005 values.

3. Methane Lifetime (tcy,)

e Determined mainly from oxidation by hydroxyl (OH) radicals

e 79-90% of CH, loss below 500hPa

e /5-78% in tropics

[Spivakovsky et al., 2000; Lawrence et al., 2001, Fiore et al., 2008]
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Total loss by tropospheric OH:
CM3 HIST ensemble (2000-2005 average): 562.30 + 4.86 Tg CH,
IPCC AR4 [Denman et al., 2007]: 581 + 87 Tg CH,

: i 1
Drivers: Both climate and NO,,H,0,J(0 D)t
emissions control T, ‘
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4. Evolution of lower tropospheric (surface-500hPa) temperature and OH, and methane lifetime

Temperature OH
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5 Relationship between reaction rate 6. Drivers of methane lifetime in CM3 simulations

constant (k), OH and methane lifetime
Globally we expect %A, = -(%Ak + %A0H)

HIST and ANTHRO are primarily emission-driven.

Similar response of

This linear relationship is confirmed in figure below AEROSOL and AEROSOL 'Experiment %DTc, %Dk %DOH %ACH, %ACOEMIS %ANOEMIS %ALNO, %AH,0 %AJ(OD)
2 — i i HIST 5.0 0.8 -6.0 108.7 117.8 329.3 -2.5 2.0 0.74
r<=0.99), by differencing 20-year averages at the start AT
( ), by g 20y 8 INDIRECT implies
and end of model simulation periods. ~erosol-cloud . AEROSOL 73 22 45 0 0 0 69 58  -1.2
interactions (ind irect AEROSOL 6.9 20 -43 0 0 0 -4.7 -5.3 -1.2
. INDIRECT
20 - effect) play a major
. . ANTHRO 4.6 1.4 -6.6 108.7 117.8 329.3 -1.8 4.0 -1.9
R? = 0.99455 role in CM3 climate
15 ¢ RCP4.5 res pO nse NATURAL 1.4 -0.3 -1.1 0 0 0 -1.4 -0.8 -0.8
WMGGO3 -4.3 4.6 -1.2 108.9 117.8 329.3 4.6 12.9 -0.8
10 ¢ RCP2.6
T
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N RCP4.5* 1SC| l
s RCP6.0 Emission changes in RCP2.6 91 25 73 271 -31.1 -46.5 4.4 6.8 0.4
& WMek03 RCP4.5 reinforce
) ) - RCP4.5 -13.0 5.4 8.7 -9.1 -42.6 -45.1 8.2 14.8 -0.4
0 —— climate drivers to
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RCPE.S enhance OH and
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-10
-15 -10 -5 o A 0 5 10 Values below 500hPa are used for OH, water vapor and J(O'D). . .
° BTch, Percent changes obtained by differencing 20-year averages. factor increases methane lifetime factor increases OH
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