Processes controlling U.S. background ozone extremes and trends over 1980-2015

MEIYUN LIN (Princeton University & NOAA GFDL)

Major challenges for western U.S. air quality management

MAJOR CHALLENGES: (1) Deep stratospheric intrusion events in spring

- (2) Rising Asian emissions and global CH₄
- (3) More frequent wildfires in summer
- (4) Warming climate

Today's presentation

 How does interannual variability of meteorology modulate transport pathways of Asian pollution and stratospheric intrusions?

- Long-term trends of ozone in US surface air and aloft
 - → Reconciling observations and models
 - → Roles of rising Asian emissions versus US domestic controls

- To what extent wildfire emissions contribute to WUS summertime O₃ variability?
- Summary of policy-relevant messages

Asian and stratospheric influences on springtime high-O₃ events at IMW sites

Why does ozone measured at Lassen California show a leveling-off trend in the 2000s?

A poleward shift in transport pathways of Asian pollution in the 2000s plays a role

Following a La Niña Winter, more frequent stratospheric intrusions reaching IMW sites in Spring

→ Potential for developing seasonal prediction [Lin et al., Nature Commun., 2015]

Year-to-year variability in springtime high-O₃ events over WUS tied to stratospheric influence

 Large IAV due to STT can confound attribution of observed O₃ trends calculated over short record length

Changes in anthropogenic emissions of NO_x

Figure 1 of Lin et al. (ACP, 2017): Emission data from Lamarque et al. (2010, 2012); Satellite (GOME/SCIAMACHY) data from KNMI (www.temis.nl)

Baseline O₃ trends derived from observations and free-running chemistry-climate models differ by a factor of 2 (Parrish et al., 2014)

These discrepancies reflect a combination of factors:

- (1) Internal climate variability (Lin et al., 2014; 2015a; Barnes et al., 2016)
- (2) Measurement sampling biases (Lin et al., 2015b)
- (3) Model difficulty resolving observed remote baseline conditions (Lin et al., 2017)

Influence of measurement sampling biases

- 1984
- 2005 60 80 FIXEMIS 500hPa O₃
- → 15-year trends driven by internal climate variability can be as large as emission-driven trends.
- → Even with co-sampling, free-running CCMs are not expected to reproduce the trends.

Model baseline sampling approach for evaluating O₃ trends at IMW sites

Within a ~200x200 km² model grid

Median springtime MDA8 O₃ trends at Great Basin NP

- → Most of the observed variability reflect changes in the background
- \rightarrow The effects of US NO_x controls (BASE minus NAB) are < 0.1 ppb yr⁻¹

SPRING US surface MDA8 O₃ trends over 1988-2014

Figure 7 from Lin et al. [ACP, 2017]

SPRING US surface MDA8 O₃ trends over 1988-2014

Figure 10 from Lin et al. [ACP, 2017]

SUMMER US surface MDA8 O₃ trends over 1988-2014

Summarizing drivers of decadal mean O₃ changes from 1981-1990 to 2003-2012 over WUS

Wildfires: NOT the primary driver of summer O₃ IAV over WUS?

Interannual correlations (YEL O₃, T_{max})

Hot and dry summers:

- → deeper PBLH allowing more O₃ to mix down to the surface (see also Zhang et al., 2014)
- → The buildup of O₃ produced from regional anthropogenic emissions (e.g., Denver / Rocky Mountain NP)

Summertime O₃ in Denver correlates with temperature

- Role of VOCs from fires + urban NO_x (Jaffe & Wigder, 2012; Baker et al., 2016)?
- The 2017 Fires, Asian and Stratospheric Transport Las Vegas Ozone Study
- → Funded by Clark County (Zheng Li)
- → NOAA ESRL measurement team (A.O. Langford) + NASA AJAX?
- → GFDL-AM4 and GEOS-Chem modeling (PI: Meiyun Lin; now hiring post-doc)

Some final policy-relevant messages

Stratospheric intrusions	 can episodically increase surface MDA8 O₃ by 20-40 ppb above the baseline level (~20 ppb) The key driver of observed year-to-year variability in springtime high-O₃ events >70 ppb
Asian pollution	 contributes ~5 ppb to mean WUS O₃ background in spring The key driver of multi-decadal WUS background O₃ increases (~65%; 0.2 ppb/yr)
Rising global methane	 contributes 15% of the WUS background O₃ increase
Wildfires	 can enhance monthly mean MDA8 O₃ at individual sites by 2-8 ppb in some summers but not the primary driver of observed O₃ year-to-year variability at rural sites
More frequent hot extremes & rising BVOC emissions	 contribute to raising background O₃ over EUS would have worsened the highest O₃ events over EUS if NO_x emissions had not declined

Additional Slides for Q & A Discussions

Springtime ozone observed in Denver has increased at a rate similar to remote rural sites

Projections of near-term changes in WUS lower trop. ozone in spring (March-April-May)

Figure 14 from Lin et al. [ACP, 2017]

SUMMER US surface O₃ trends over 1988-2014

Figures 4 and 8 from Lin et al. [ACP, 2017]

Why does AM3 in Lin et al. (2012, 2015) show smaller biases than in Fiore et al. (2014)?

- → Lin et al. focus on late spring (April to early June) when the model has better skills in representing deep mixed layers
- → Higher resolution (Lin et al. 2012a,b), greater skills in representing observations at high end
- → FIXEMIS simulation in Lin et al. (2015a) applies the 1970-2010 climatological mean emissions
- → Differences in wildfire emissions may also contribute

Geophysical Fluid Dynamics Laboratory 25

Simulations of deep SI events in GFDL-AM3 (May 28, 2010 example)

- 0.5° model better captures vertical structure
- 2° model reproduces the large-scale view

GFDL-AM3 model captures observed deep stratospheric intrusions over WUS

Lin M.Y. et al (JGR, 2012b), Springtime high surface ozone events over the WUS: Quantifying the role of stratospheric intrusions

Observed changes in surface O₃ distribution, particularly in the upper tail

Little change in WUS surface air during El Niño despite increased UTLS O₃
 burdens reported previously [e.g. Langford1998; Bronnimann2004; Neu2014].

Surface O₃ distribution in high vs low background springs

GFDL-AM3 captures interannual variability of O₃ anomalies associated with high temperatures

→ But O₃ deposition sink to vegetation must be reduced by 35% to match the observed anomaly during the severe drought of 1988

Influence of droughts on ozone removal

- → Reduced stomatal uptake under drought stress
- → Influence the highest ozone events
- → Model challenges in simulating such land-biosphere couplings (not represented in the Wesley scheme)

If NOx emissions had not declined, more frequent hot extremes since 1990 would have worsened the highest O₃ events over EUS

1990-2012 trend in the frequency of warm days (above the 90th percentile for 1961-1990 base)

1990-2012 trend in biogenic isoprene emissions

95th percentile MDA8 O₃ trend in AM3_FIXEMIS

Larger circles indicate significant trends (p<0.05)