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How is this ‘Carbon Cycle’ work? 
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How is this ‘Carbon Cycle’ work? 

1. The focus is climate sensitivity to changing CO2 

 

2. Reasonable so long as the experimental design 

approximates the net carbon cycle response to 

plausible fossil fuel projections. 

… but is it? 
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Basin in Carbon Cycle Box Models 
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∆Air-Sea CO2 Flux due to physics 
(PgC -1 yr-1) 

∆Air-Sea CO2 Flux due to biology 
(PgC -1 yr-1) 

Sarmiento, J. L., T. Hughes, R. J. Stouffer, and S. Manabe (Nature, 1998)  
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…Meanwhile, other groups were building coupled 
carbon-climate models, e.g.: 
 
Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A., & Totterdell, I. 
J. (2000). Acceleration of global warming due to carbon-cycle 
feedbacks in a coupled climate model. Nature, 408(6809), 
184-187. 

 
… and GFDL struggled to define how to 
contribute. 
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 Source: Friedlingstein et al. (2006; J. Climate) 

Coupled Carbon Cycle Climate Model Inter-comparison (C4MIP) Project 
showed large uncertainties in land and ocean uptake under SRES-A2 

•200-400 PgC (100-200 ppm CO2) feedbacks in both land and ocean 
•Coarse/simple climate models 
•Rudimentary ecosystem models 
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 Source: Friedlingstein et al. (2006; J. Climate) 

Coupled Carbon Cycle Climate Model Inter-comparison (C4MIP) Project 
showed large uncertainties in land and ocean uptake under SRES-A2 

•200-400 PgC (100-200 ppm CO2) feedbacks in both land and ocean 
•Coarse/simple climate models 
•Rudimentary ecosystem models 

GFDL was not able to 
participate 
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Creation of GFDL’s ESMDT (04/22/2004) 
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GFDL ESMs for Coupled Carbon-Climate and 
Chemistry 

Land physics and hydrology 

Ocean ecology and 

Biogeochemistry  

Atmospheric circulation and radiation 

Allows Interactive CO2 and/or Chemistry 

Ocean circulation 

Plant ecology and land use 

Sea Ice 

• Comprehensive land and ocean carbon dynamics 
• Interactive/prognostic CO2 

• Forced by either concentrations or anthropogenic fluxes 
• Allows investigation of feedbacks 
• Amenable to inter-disciplinary impacts studies 

Self-consistent Physical and Biogeochemical Fluxes 
Land Ice 
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Land use and surface heterogeneity 

 

 

 

 
 

• CMIP5 scenarios of land use change (Hurtt et al 2011)  
• Unique features of GFDL land model: 

– wood harvesting of primary and secondary forests 
– secondary forests re-growth and shifting cultivation 
– explicit treatment of above and below ground physical and 

biogeochemical states for LU categories 
– vegetation and soil fluxes as well as harvests for all land use types 
–  for LM4: improving croplands phenology and diversity 
– Management: fertilizer seasonality, products management 

Managed lands In each grid cell 
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Removal 

Unparalleled Biogeochemical Comprehensiveness in GFDLs CMIP5 
ESMs (Tracers of Phytoplankton with Allometric Zooplankton; TOPAZ) 

Small phyto. 

Large phyto. 

Protist 
Filter 
feeder 

semilabile 
semirefract. 
DOM 

Detritus New 
nutrients 

Recycled 
nutrients 

N2-fixer 

DOM cycling 

Particle sinking 

Gas exchange 

Atm. Deposition 

River Input 

Sediment Input 

Scavenging 

Carbon Oxygen Phosphorus 

CaCO3 

Nitrogen Iron Alkalinity Lithogenic Silicon 

Biogeochemistry Phytoplankton ecology 

Diatoms and Other Large Phytoplankton 
Flexible N:P:Si:Fe:Chl 
Aragonite and Calcite 

Heterotrophs 

30 Tracers 

Dunne et al. (2005;2013) 
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NOAA’s First Earth System Models reduce uncertainty in heat 
and carbon uptake under climate warming 
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Dunne et al. (2012, 2013); Winton et al. (2013); Hallberg et al. (2013) 
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z ρ 

z* (MOM4.1): 
 
 
 
- Depth-based vertical coordinate 
- Over 40 years of experience 

 

 (GOLD): 
 
 
 
- Density-based vertical coordinate 
- Easy to preserve water masses 
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2013 

Scenario 
Uncertainty 
Dominance 

Structural 
Uncertainty 
Dominance 
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2013 

Overall good agreement 
between IAMs and ESMs 
in Compatible CO2 
Emissions for each 
Scenario 
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GFDL ESMs Key CMIP5 Contribution 
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Hoffman et al., 2014 

• Land competitive even including both dynamic 
vegetation and land use with secondary forests 

• Ocean-atmospheric partitioning among the best 
• While overestimating contemporary CO2 (not 

enough land uptake), they give median uptake 
at 2100. 
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GFDL ESMs key CMIP5 Contribution 
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Frölicher, T., J. Sarmiento, J. Dunne, D. Paynter, M. Winton, 2015: Heat and carbon uptake in the CMIP5 
models: The dominance of the Southern Ocean, J. Climate, DOI:10.1175/JCLI-D-14-00353.1.. 

ESM2M 

ESM2G 

ESM2M 

ESM2G 
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LULCC affects atmospheric CO2 and thus climate  

  

22 

• Land-use (in blue) emissions contributed ~30 

ppm to the 2005 atmospheric CO2 increase ;  

• Without land use over historical period 
– global surface temperature would be 

0.16±0.06°C lower (similar to other ESMs) ; 
– Land would be a sink of C; 

• Larger LU source requires a larger enhanced 

sink 

 

 

 

 

 

 

Simulations with NOAA/GFDL FF-emissions forced ESM2G model, Shevliakova et al. 2013 
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Difference in summer climate from LU 

Malyshev et al 2015 1986-2005, surface air temperature 
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Global reversibility of Community Composition 

(John et al., GRL, 2015) 

Ocean Sciences 2016 ·  21-26 February 2016  ·  New Orleans, Louisiana, USA 

Surface large diatoms Surface large non-diatoms 

Scenario:  

Ramp-up/Ramp-down 

RCP8.5 2006-2100 (Riahi et al., 

2007), followed by reversal of 

RCP8.5 from 2101-2195.  
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Amplification of ocean productivity changes 
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+50% 

-50% 

• Projected percent changes in mesozooplankton productivity are 
2X primary productivity changes 

• Large regional changes 
• Quantitative attribution to the same planktonic food web 

characteristics that drive spatial gradients 

% change, primary prod % change, mesozoo prod 

Stock, C.A., J. P. Dunne, and J.G. John, submitted: Understanding trophic amplification of ocean 
productivity trends in a changing climate. 
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Perfect Plasticity Approximation (PPA) Vegetation Dynamics 
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Weng et al. , 2015 
Strigul et al. 2008 

•Challenges for global PPA 
• capturing plant diversity  
• phenology and mortality 
• evaluating succession 
 

Willow Creek, WI 

Z* 

Tree cohorts with multiple individuals (stems) 



Geophysical Fluid Dynamics Laboratory  
 

Nitrogen Biogeochemistry 
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• Fixed C:N vegetation pools 

• Prognostic biological N fixation 

• 4 competing sinks of mineral N 

– plant uptake, immobilization, 
sorption to particles, 
denitrification 

• Organic removal of N 

– leaching, ecosystem losses 
through fire 

• Riverine N Biogeochemistry 

- 

 

Gerber et al. 2010, 2013; Lee 2014 



Geophysical Fluid Dynamics Laboratory  
 

Fire - Land Use Interactions 

28 

Land-use specific fire models => 
LU-specific   datasets to estimate these 
parameters ,  Magi et al 2011 

Estimated area burned, 2003-2008 

Observed area burned, 2003-2008 

Rabin et al. in prep 

New daily fire model to enable prognostic biomass burning aerosols in CM4/ESM4 
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Soil Microbial Dynamics: BGC LM3-CORPSE 
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Carbon, Organisms, Respiration, and 

Protection in the Soil Environment 

(LM3-CORPSE) model 

• Vertical structure 

• Explicit above and below ground litter 

• DOC leaching 

• Dynamic microbial activity 

• Protected carbon pools 

• Root exudates 

• Implemented in water-tiled version 

(LM3-TiHy) 

• Currently adding N  

•  P is next 

 Key uncertainty: the sensitivity of soil Carbon to changing climate 

Sulman et al., 2015 
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Carbon Cycle Research After IPCC AR6 
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2022 
IPCC AR6 
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Partitioning Climate Change Uncertainty into its 
Structural, Scenario and Internal Components 
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Hawkins and 
Sutton, 2009, 
BAMS 
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Carbon Cycle Research After IPCC AR6 
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If the COP21 momentum continues to drive policy, the climate modeling community will shift 
projections from change under future warming to ongoing equilibrium to current climate. 
 
With the 1.5C threshold met and 2C threshold approaching, the focus on scenarios should 
narrow towards net emissions near zero – “Climate Change” research will become “Climate 
sustainability” research” 
 
Carbon Cycle research should transition from rudimentary structural description focused on 
scenario uncertainty towards Structural and Internal variability Uncertainty 
 
Under ‘sustainable’ (net zero) emissions, climate services provided by land and ocean carbon 
cycles re-equilibrating to changed climate will largely determine allowable energy trajectories. 
 
These challenges requiring more comprehensive Earth System Modeling include: 
• Blue Carbon – Identification of climate services of carbon storage in marine environments 
• Comprehensive Biofuels and other land use 
• Tipping Points like  AMOC, biodiversity change, permafrost CO2 and CH4 

• Detection and attribution of carbon change 
• Climate carbon feedbacks and trajectories like the Southern Ocean, Soils, biogeochemistry 
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• Application: Multi-member ensembles for detection and attribution, 
centennial-millennial scales, idealized sensitivity, diverse impacts 

• Comprehensiveness: Comprehensive and robust ecosystem, 
biogeochemistry and human interaction models and self consistent 
representation of aerosol, Fe, CH4 and N cycles 

• Resolution: Regional atmosphere-land interactions, the ocean 
mesoscale and boundaries, and the human and marine applications 

• Prediction: Integration with seasonal-decadal climate effort, 
exploring opportunities for biogeochemistry predictability 


