Sea Level Rise along the East Coast of the United States

Jianjun Yin

Department of Geosciences University of Arizona

And many GFDL collaborators

The Ronald J. Stouffer Symposium, Princeton, June, 2016

Outline

Introduction

U.S. east coast – a hotspot of sea level rise

- Observations
 - 20th century
 - Past two decades (satellite era)
 - Recent years (2009-10 northeast coast extreme event)
- Model simulations and projections
 - CMIP3 models (GFDL CM2.1)
 - CMIP5 models (GFDL ESM2M, ESM2G and CM3)
 - More recent GFDL models (CM2.6, CM2.5, ...)
- Summary

Long-Term Sea Level Rise

Goddard et al., Nat. Comm., 2015

Yin and Goddard, GRL, 2013

Global and basin mean sea level

2009-10 Extreme Event

- Yearly sea level change SLR(t) = [SL(t+1)-SL(t-1)] / 2;t=1921, 1922,, 2011
- Northeast regime Yearly rate in 2009 > 3σ Probability (1-in-850 year) On average, sea level jumped by about 100 mm during 2008-10.
- Southeast regime Extreme event in 1949 \sim 3 σ

Interannual

- 2010-11 North Atlantic sea level fall
- Reduced northward heat transport and cooling of the subtropical gyre due to a 30% downturn of AMOC during 2009-10.

Role of AMOC

- The AMOC and Northeast sea level composite are well correlated during 2004-2012.
- The regression coefficient suggest a 13-17 mm Sv⁻¹ relationship.

Correlation of AMOC and Dynamic Sea Level

- Dynamic sea level shows an instantaneous correlation with AMOC along the east coast of North America, especially near the northeast coast.
- SST signals in the northern North Atlantic usually emerge a few years latter.

Impact of AMOC on Coastal Sea Level

- The altimetry and tide gauge data are generally consistent in the 2009-10 extreme event, but the magnitude differs.
- Ocean temperature and salinity data indicate positive anomalies of steric seal level east of the shelf break in 2009.

6

18

OBP anomaly [mm-H_O] -18

-30

Landerer et al., GRL, 2015

bottom

pressure

Role of NAO

- An extreme negative NAO occurred in 2009-10.
- The northeasterly wind anomalies during 2009-10 could generate onshore Ekman transport.
- The lower atmospheric pressure can further enhance the magnitude through the inverse barometer effect.

Goddard et al., Nat. Comm., 2015

Outline

Introduction

Sea level rise along the U.S. east coast – a hotspot

- Observations
 - 20th century
 - Past two decades (satellite era)
 - Recent years (2009-10 northeast coast extreme event)
- Model simulations and projections
 - CMIP3 models (GFDL CM2.1)
 - CMIP5 models (GFDL ESM2M, ESM2G and CM3)
 - Latest GFDL model suite (CM2.6, CM2.5, ...)
- Summary

21st Century Projection

(a) AVISO

- GFDL CM2.1
- A1B scenario
- Dynamic sea level change during 2091-2100 relative to 1981-2000
- Global mean sea level rise is subtracted.
- ~20 cm dynamic sea level rise at NYC

(b) Simulation (1992~2002)

(d) A1B

Yin et al., Nat. Geo., 2009

Contribution of Steric Effect

- A1B; 2091-2100 relative to 1981-2000; global steric sea level rise subtracted
- Additional steric sea level rise east of the shelf break mainly induced by an ocean warming in both the upper and deep oceans

Ocean Mass Redistribution

- The global mean value is subtracted.
- Mass moves from ocean interior to the shelf region.
- Ocean bottom pressure increases on the shelf, especially east of the U.S.
- Ocean bottom pressure decreases in ocean interior.

CMIP5 Models

- 34 models
- Three RCP scenarios
- Left panels mean dynamic sea level change by 2100
- Right panels model spread

RCP4.5 Y2100

RCP2.6 Y2100

RCP4.5 Y2100

CM2.6

CM2.5

CM2.5 FLOR a6

ESM2M

ESM2preG

CM3

Yin et al.,

2016, in

preparation

- 0.2 0.16 0.12 0.08 0.04 З 0 -0.04 -0.08 -0.12 -0.16 -0.2
- Ten GFDL models ٠
- 1% yr⁻¹ 2xCO₂ experiments ٠
- Dynamic sea level change relative to the ٠ global mean at CO₂ doubling

AMOC-DSL Correlation

 Good correlation between AMOC weakening and dynamic sea level rise at NYC

Yin et al., 2016, in preparation

Summary

- The densely populated U.S. East Coast is a hotspot of sea level rise with the rise rate faster than the global and basin mean.
- The AMOC is an important factor in explaining this regional deviation of sea level rise and its temporal behavior.
- In the 21st century model projections, the magnitude of dynamic sea level rise at NYC is proportional to the absolute weakening of AMOC.
- A better understanding of the AMOC and its future evolution is therefore critical for sea level projections along the U.S. East Coast.

