

The Future of Climate Modelling

with a lot of help from others including Paul Selwood, Jonathan Gregory, Mike Cullen, Helene Hewitt, Michael Vellinga, Roger Saunders, Chris Folland, Chris Jones, Malcolm Roberts, Mike Rezner....

John Mitchell, MetOffice Hadley Centre

www.metoffice.gov.uk

Ron Stouffer Symposium, 6 th June 2016

© Crown copyrigh

Setting the scene- whats Met Office changed over Ron's career? Then (late 1970's to present?) **Climate sensitivity** 1.5 - 4.5 (NAS 1979)

Setting the scene- whats Met Office changed over Ron's career? Then (late 1970's to present?) **Climate sensitivity** 1.5 - 4.5 (NAS 1979)

Setting the scene- whats Met Office changed over Ron's career? Then (late 1970's to present?) **Climate sensitivity** 1.5 - 4.5 (NAS 1979)

Drivers

Drivers

Science largely curiosity driven Now More user pull(especially IPCC)

Then

Simple idealised experiments (2xCO₂) Now

Idealised and complex experiments "realistic" past,140 years, palaeo, IPCC scenarios....

Then- 10MFlops (peak) Now PFlops

Computers Used for Weather and Climate Prediction (MetOffice)

© Crown copyright Me

Whence Computer Architecture from 1970s?

If you were ploughing a field, which would you prefer? Two strong oxen or 1024 chickens?

Whence Computer Architecture from 1970s?

If you were ploughing a field, which would you prefer? Two strong oxen or 1024 chickens?

Froms 70s to present the chickens won

© Crown copyright Met Office From Paul Selwood

Number of Centres/Models

Then

GFDL,NCAR,GISS,OSU, MetOff, (MPI, BMRC)

Now 60 models in 26 institutes (CMIP5)

Met Office

Then Atmosphere ~500km, 9 layers

Now

Atmosphere ~ 200–100km, 40-50 layers

Ocean ~ 1° , ~40 layers

Then

Single simulations with a single model

Then Single simulations with a single model

Now

Multiple simulations, with multiple models

17

~2000

Stainforth et al, 2005

Complexity Then

Met Office

Then

Centres worked largely in isolation, held on to data No standardization of expts, diagnostics, formats (Evaluating models for the first IPCC assessment was a nightmare)

Met Office

Then

Centres worked largely in isolation, held on to data No standardization of expts, diagnostics, formats (Evaluating models for the first IPCC assessment was a nightmare)

Now Co-ordination, sharing of data by CMIP etc Standardized expts, diagnostics, formats

(26 groups 2323 papers 330Kyrs 2Pb data)

Stats from Karl Taylor)

Observations

Then

Met Office

Sparse surface temperature record Only 20 years of radio sonde data, CO2 data Start of sateillite record CLIMAP 1976, CoHMAP started 1970s

Observations

Then

Sparse surface temperature record Only 20 years of radio sonde data, CO2 data Start of sateillite record CLIMAP 1976, CoHMAP started 1970s

Now

140 years of record with uncertainty estimates 60 years RS data, 40 years sat data Hemispheric Temperature Change Sateillite derived quantities Northern H. Annual Mean 5-yr Running Mean Southern H. Annual Mean 5-yr Running Mean Data assimilation, reanalyses **ARGO** floats

> 1980 2000

1960

1940

(Some things don't change...)

(Some things don't change...) Ron Me

(and some do!)

Drivers- Scientific Curiosity

Met Office

Understanding natural variability

The recent "pause" - and earlier ones Seasonal+ forecasting-Why is mid-latitude predictability underestimated in models?

Drivers- Scientific Curiosity

Met Office

Understanding natural variability

The recent "pause" - and earlier ones Seasonal+ forecasting-Why is mid-latitude predictability underestimated in models?

& Dynamical aspects of climate change

Underpins regional climate, extreme events

Drivers- Scientific Curiosity

Met Office

Understanding natural variability

The recent "pause" - and earlier ones Seasonal+ forecasting-Why is mid-latitude predictability underestimated in models?

& Dynamical aspects of climate change

Underpins regional climate, extreme events

Drivers – IPCC How will it continue to evolve?

Dangers

More not always better

Author fatigue- loss of interest

6 year cycle- short circuits model development

Drivers – IPCC How will it continue to evolve?

Dangers

- More not always better
- Author fatigue- loss of interest
- 6 year cycle- short circuits model development

and possible responses?

-Concentrate on a few specific questions set in the synthesis report (rather than ape a textbook?)

- -Enforce page limits (and not cite everything?)
- -Assess, not review?

Met Office

Can Moore's "law" be sustained?

1.E+17 Cray XC40 Cray XC40+ 1.E+16 IBM Power 7 1.E+15 (SHO) IBM Power 6 1.E+14 1.E+13 NEC SX-8 Cray T3E 1.E+12 료 NEC SX-6 1.E+11 Cray C-90 ě 1.E+10 ETA-10 Cray Y-MP 1.E+09 performa Cyber 205 1.E+08 1.E+07 IBM 360/195 Best Fit 1.E+06 Moore's Law x 1.E+05 a 1.E+04 KDF-9 1.E+03 Mercury 1.E+02 1.E+01 Leo 1950 1960 1970 1980 1990 2000 2010 2020 2030 Year of First Use

Computers Used for Weather and Climate Prediction

Computer Architecture

Met Office

Memory-3D cross point

Silicon photonics

Carbon nanotubes

Quantum computing

Biological /analogue

From Paul Selwood

Other computing related aspects

Met Office

Earth System Modelling Standards

Need to bridge the gap between

Science Compilers and hardware

Adapted from Mike Rezner

Other computing related aspects

Met Office

Earth System Modelling Standards

Need to bridge the gap between

Science 🗢 Compilers and hardware

Adapted from Mike Rezner

•New numerical algorithms

•Maths- Better understanding of equations

Impact of resolution: Systematic errors SST change

(b) Multi Model Mean Bias

AR5, Flato , Marotzke et al

Difference N512-012 - N216-0025 (GC2.1)

25km 1/12⁰ minus 60km 1/4⁰

Enhanced resolution: reduces SST biases & improves northward heat transport via increased AMOC

© Crown copyright Met Office

Hewitt et al., 2016

Impact of resolution- climate changeFuture change in rainfall RATE(RCP8.5)12 km1.5km

Resolution/complexity/ensembles/centres

- A "CERN" to hasten advent of convective scale global models? (eg Palmer,2016)
- A few centres gradually working towards convective scale global models?

Resolution/complexity/ensembles/centres

- A "CERN" to hasten advent of convective scale global models? (eg Palmer,2016)
- A few centres gradually working towards convective scale global models?
- Continued increase in models as more nations can afford climate modelling?

Resolution/complexity/ensembles/centres

- A "CERN" to hasten advent of convective scale global models? (eg Palmer,2016)
- A few centres gradually working towards convective scale global models?
- Continued increase in models as more nations can afford climate modelling?
- Running many (>1000) variants of lower resolution models?

- A "CERN" to hasten advent of convective scale global models? (eg Palmer,2016)
- A few centres gradually working towards convective scale global models?
- Continued increase in models as more nations can afford climate modelling?
- Running many (>1000) variants of lower resolution models?
- Earth system models with full biology, atmospheric chemistry, ice sheets.....?

© Crown copyright Met Office

How will/should CMIP develop? Is expansion sustainable, desirable? If not, what?

• Is more less? (models, data, experiments, papers)

How will/should CMIP develop?

Is expansion sustainable, desirable? If not, what?

- Is more less? (models, data, experiments, papers)
- What is order of priorities
 Standardizing evaluation of models?
 Improving scientific understanding?
 Supporting IPCC through running scenarios?

How will/should CMIP develop?

Is expansion sustainable, desirable? If not, what?

- Is more less? (models, data, experiments, papers)
- What is order of priorities
 Standardizing evaluation of models? (the Deck)
 Improving scientific understanding?
 Supporting IPCC through running scenarios?
- Design choices (will depend on question being asked) Resolution vs number of ensemble members Uniformity of design vs exploring full model spread, Complexity vs understanding

© Crown copyright Met Office

Observations

Met Office

Sateillites etc

- GPS occultation
- Hyper spectral data
- Better error estimates
 Other data
- Extension of reanalyses into past/ increased use to validate models/attribute change
- Deeper Argo floats-

heat content, ocean circulation

Longer observational record- better constraints? – detection/attribution

Observations

Met Office

Sateillites etc

- GPS occultation
- Hyper spectral data
- Better error estimates
 Other data
- Extension of reanalyses into past/ increased use to validate models/attribute change
- Deeper Argo floats-

heat content, ocean circulation

• Longer observational record- better constraints? – detection/attribution

Random remarks

Met Office

• People needed

Those able to understand how models work as they become increasingly complex

Those with wide and deep enough knowledge to build/improve models

Climate sensitivity?

© Crown copyright Met Office

Met Office

Climate sensitivity?

Ron and me?

