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Early research on air-sea interaction
with the GFDL hurricane model
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- Bender M. A, I. Ginis and Y. Kurihara, 1993: Numerical simulations of the tropical cyclone-ocean
interaction with a high-resolution coupled model. J. Geophys. Res., 98, 23 245-23 263.
- Ginis, I., M. A. Bender, and Y. Kurihara, 1994: A numerical study of the tropical cyclone-ocean

interaction. In "Tropical Cyclone Disasters" (J. Lighthill and K. A. Emanuel, Eds), Peking University
Press, Beijing, 342-355.



Developing a version of the Princeton Ocean
Model for tropical cyclones, POM-TC, and its
coupling to the GFDL hurricane model

1996-1999 A coupled air-sea numerical model for improving
operational prediction of Gulf of Mexico and Western Atlantic
hurricanes.




First simulations of the ocean response to
idealized hurricanes using POM-TC

Cross-section of temperature anomalies normal to the storm track
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Figure 7: As in Fig. 5, showing the cross-section of temperature anomalies
normal to the storm track and 300 km behind the hurricane center.

Negative anomalies are shaded. The dashed line is drawn through the
hurricane center.

- Ginis 1., 1995: Interaction of tropical cyclones with the ocean. Global Perspectives on Tropical
Cyclones, Ch. 5, R. L. Elsberry, Ed., WMO/TD No. 693, World Meteorological Organization, Geneva,

Switzerland, 198-260.
- Ginis I., and G. G. Sutyrin, 1995: Hurricane-generated depth-averaged currents and sea surface

elevation. J. Phys. Oceanogr., 25, 1218-1242



First simulations of the ocean response
to real hurricanes using POM-TC

Hurricane Gilbert
08:00 Sot September 10, 1988 to 12:00 Sat September 17, 1988 EDT

Hurricane Gilbert, September 12, 1988
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Developing a multi-nested ocean model based on
the GFDL hurricane model numerics
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Ginis ., R. A. Richardson, and L. M. Rothstein, 1998: Design of a multiply nested primitive equation
ocean model. Mon. Wea. Rev., 126, 1054-1079.



Developing a multi-nested ocean model based on
the GFDL hurricane model numerics

Typhoon Roy (1988)
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Rowley, C., and I. Ginis, 1999: Implementation of a mesh movement scheme in a multiply nested ocean
model and its application to air-sea interaction studies. Mon. Wea. Rev., 127, 1879-1896.



First GFDL-POM coupled simulations
of real hurricanes
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FI1G. 4. SST distribution from the coupled experiment (solid line)
along section AB in Fig. 3, compared with objectively analyzed
AXBT data (dashed-dotted line) from Shay et al. (1992) on 17 Sep
1987. Initial prestorm surface temperature (dashed line) from the
NCEP SST global analysis is shown as well.

VERIFYING TIME

FiG. 5. Time series of minimum sea level pressure for the opera-
tional forecast (solid line) and coupled experiment (dotted-dashed
line) compared to observed values (thin dotted line, circles indicating
values every 6 h) for the forecast of Hurricane Gilbert.

Bender, M.A. and I. Ginis, 2000: Real case simulations of hurricane-ocean interaction using a high
resolution coupled model: Effects on hurricane intensity. Mon. Wea. Rev., 128, 917-946.



First intensity error analysis of multiple storm
simulations with GFDL-POM coupled model

135 Cases in 1998
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FiG. 24. Comparison between the operational and coupled GFDL
model, for the average forecast error of minimum central pressure
(hPa) at all forecast time periods, for 135 forecasts run during the
1998 Atlantic hurricane season. The comparison is made for seven
categories of storm intensity.

Bender, M.A., and I. Ginis, 2000: Real case simulations of hurricane-ocean interaction using a high
resolution coupled model: Effects on hurricane intensity. Mon. Wea. Rev., 128, 917-946.



Further research on hurricane-ocean interaction
and transition of GFDL-POM coupled model to
operations

2000-2003 Air-sea fluxes at high wind speeds with application to
tropical cyclone intensity prediction.

2001-2003, Transition of a coupled hurricane-ocean model to
operational forecasting at the National Centers for Environmental
Prediction.

Collaborative Science Technology, and Applied Research
(CSTAR) Program

The CSTAR Program mpr&sunts a NOAA/NWS effort to create a cost-effective transition from basic and applmd
research to operations and services through collaborative research between operational forecasters and academic
institutions which have expertise in the environmental sciences. These activities engage researchers and students
in applied research of interest to the operational meteorological community and improve the accuracy of forecasts
and warnings of environmental hazards by applying scientific knowledge and information to operational products
and services.




URI Students and Post-docs who contributed to
the development and transition to operations the
coupled GFDL-POM system
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Clark Rowley Biju Thomas

“That was my first taste of operational modeling, and I've made a career of developing,
transitioning, and maintaining ocean and coupled forecast systems.” Clark Rowley (NRL)



First operational POM-TC Atlantic domains
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« 23 vertical sigma levels, 18 km grid spacing
« POM-TC was runon 1 (one) CPU!



Improving ocean model initialization:
feature-based modeling approach
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Falkovich, A., I. Ginis, and S. Lord, 2005: Ocean data assimilation and initialization procedure for the
Coupled GFDL/URI Hurricane Prediction System. J. Atmos. Oceanic Technol., 22, 1918-1932.



Feature-based initialization
of the Loop Current and eddies in the Gulf of Mexico
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Yablonsky, R. M., and I. Ginis, 2008: Improving the ocean initialization of coupled hurricane-ocean
models using feature-based data assimilation. Mon. Wea. Rev., 136, 2592-2607.



Example of feature- based of Initialization
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Examples of improved initial vertical temperature
structure in LC and warm-core eddy

Loop Current Warm-Core Eddy
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Effect of the Loop Current on
Hurricane Katrina Intensity

Central Pressure
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GFDL Hurricane Model Forecast
of Hurricane Katrina (2005)

Hurricane Katrina Coupled Model Forecast
Aug 27 02:30 UTC




Warm-core ring Is not just
high ocean heat content

WCR-3D-4.8-C0 Simulation: 22.4 N Temperature Cross-Section
0 | | | | | | | | |

WCR is athermocline feature and
has anticyclonic circulation

Can a WCR’ s circulation modify
hurricane-core SST cooling?
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Yablonsky, R. M., and I. Ginis, 2013: Impact of a warm ocean eddy's circulation on hurricane-induced
sea surface cooling with implications for hurricane intensity. Mon. Wea. Rev., 141, 997-1021.
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Effect of WCR location on SST and Currents In an
Idealized hurricane

WCR-3D-2.4-C0 Simulation: Sea Surface Temperature and Current Vectors WCR-3D-2.4-N0 Simulation: Sea Surface Temperature and Current Vectors
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Yablonsky, R. M., and I. Ginis, 2013: Impact of a warm ocean eddy's circulation on hurricane-induced
sea surface cooling with implications for hurricane intensity. Mon. Wea. Rev., 141, 997-1021.



Effect 3D vs 1D ocean model on SST cooling
within hurricane inner-core
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Yablonsky, R. M., and I. Ginis, 2009: Limitation of one-dimensional ocean models for coupled hurricane-
ocean model forecasts. Mon. Wea. Rev., 137, 4410-4419



Developing parallel version of POM-TC (MPIPOM-TC)

POM community code development
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URI-based code development

Yablonsky, R. M., I. Ginis, B. Thomas, 2015: Ocean modeling with flexible initialization for improved
coupled tropical cyclone-ocean prediction, Environmental Modelling & Software, 67, 26-30.



MPIPOM domains worldwide
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« MPIPOM-TC uses MPI software to run efficiently on multiple
processors, allowing for both higher grid resolution and a larger
ocean domain than POM-TC

« MPIPOM-TC accepts flexible initialization options (currently runs off
RTOFS operationally in HWRF)



Research on air-sea fluxes in hurricanes
with explicit wave coupling

Motivation: air-sea fluxes and turbulent mixing above/below
sea surface are significantly modified by surface waves in high

wind conditions.
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hurricane conditions
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Ginis, and T. Hara, 2004: Effect of surface waves on air-sea momentum exchange. Part

of drag coefficient under tropical cyclones, J. Atmos. Sci., 61, 2334-2348

Ginis, and T. Hara
Geophys. Res. Lett., 31, L20302.

[.-J., I.
Behavior
- Moon, I.-J., I.

20

- Moon, 1.-J., I. Ginis, T. Hara, and B. Thomas, 2007: A physics-based parameterization of air-sea

momentum flux at high wind speeds and its impact on hurricane intensity predictions. Mon. Wea. Rev.,

135, 2869-2878.
- Moon, 1.-J., I. Ginis, and T. Hara, 2008: Impact of the reduced drag coefficient on ocean wave modeling

under hurricane conditions. Mon. Wea. Rev., 136, 1217-1223.
- Reichl, B. G., T. Hara, and I. Ginis, 2014: Sea state dependence of the wind stress over the ocean

under hurricane winds. J. Geophys. Res., 119, 30

- Moon,
cyclones



Wind-Wave-Current Interaction in hurricanes
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- Fan, Y., I. Ginis, and T. Hara, 2010: Momentum flux budget across air-sea interface under uniform and
tropical cyclones winds. J. Phys. Oceanogr., 40, 2221-2242.

- Fan, Y., I. Ginis, and T. Hara, 2009: The effect of wind-wave-current interaction on air-sea momentum
fluxes and ocean response in tropical cyclones. J. Phys. Oceanogr., 39, 1019-1034.



Wave-driven Langmuir turbulence
INn hurricane conditions
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- Reichl, B. G., I. Ginis, T. Hara, B. Thomas, T. Kukulka and D. Wang 2016: Impact of Sea-State-
Dependent Langmuir Turbulence on the Ocean Response to a Tropical Cyclone. Mon. Wea. Rev., 144,
4569-4590.

- Reichl, B. G., D. Wang, T. Hara, I. Ginis and T. Kukulka 2016: Langmuir Turbulence Parameterization

in Tropical Cyclone Conditions. Langmuir Turbulence Parameterization in Tropical Cyclone Conditions.
J. Phys. Oceanogr., 46, 863-886.



3-way atmosphere-wave-ocean
framework for hurricane models

Atmosphere
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» Atmospheric model: air-sea fluxes depend on sea state
» Wave model: forced by sea state dependent wind forcing
» Ocean model: forced by sea state dependent wind stress modified by growing or

decaying wave fields and Coriolis-Stokes effect. Turbulent mixing is modified
by the Stokes drift (Langmiur turbulence).
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Examples of sea state dependent C,

with explicit wave coupling
RMS= 70 km, U,g,.= 65 M/s
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Summary

Close collaboration between GFDL and URI has been
iInstrumental in the success of the GFDL coupled
hurricane model.

Support by NOAA Joint Hurricane Testbed and HFIP
provided to URI was critical for transitioning the
hurricane research at URI to operations.

The MPIPOM-TC has been successfully transitioned
from the GFDL hurricane model to the operational
HWRF coupled system.



