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ABSTRACT

Arctic sea ice reemergence is a phenomenon in which spring sea ice anomalies are positively correlatedwith

fall anomalies, despite a loss of correlation over the intervening summer months. This work employs a novel

data analysis algorithm for high-dimensional multivariate datasets, coupled nonlinear Laplacian spectral

analysis (NLSA), to investigate the regional and temporal aspects of this reemergence phenomenon. Coupled

NLSA modes of variability of sea ice concentration (SIC), sea surface temperature (SST), and sea level

pressure (SLP) are studied in the Arctic sector of a comprehensive climate model and in observations. It is

found that low-dimensional families of NLSA modes are able to efficiently reproduce the prominent lagged

correlation features of the raw sea ice data. In both the model and observations, these families provide an

SST–sea ice reemergence mechanism, in which melt season (spring) sea ice anomalies are imprinted as SST

anomalies and stored over the summer months, allowing for sea ice anomalies of the same sign to reappear in

the growth season (fall). The ice anomalies of each family exhibit clear phase relationships between the

Barents–Kara Seas, the Labrador Sea, and the Bering Sea, three regions that compose the majority of Arctic

sea ice variability. These regional phase relationships in sea ice have a natural explanation via the SLP

patterns of each family, which closely resemble the Arctic Oscillation and the Arctic dipole anomaly. These

SLP patterns, along with their associated geostrophic winds and surface air temperature advection, provide

a large-scale teleconnection between different regions of sea ice variability. Moreover, the SLP patterns

suggest another plausible ice reemergence mechanism, via their winter-to-winter regime persistence.

1. Introduction

Arctic sea ice is a sensitive component of the climate

system, with dynamics and variability that are strongly

coupled to the atmosphere and ocean. This sensitivity is

evident in the recent precipitous decline in September

sea ice extent, of roughly 9% per decade since 1979

(Stroeve et al. 2007; Serreze et al. 2007). Trends in sea

ice extent are negative for all months of the year and all

Arctic regions except for the Bering Sea (Cavalieri and

Parkinson 2012). In addition to these strong trends,

Arctic sea ice also exhibits large internal variability.

Studies using comprehensive climate models have esti-

mated that 50%–60% of recent Arctic sea ice changes

can be attributed to externally forced trends, with the

remainder resulting from internal variability in the cli-

mate system (Kay et al. 2011; Stroeve et al. 2012).

Therefore, the challenge of making accurate projections

of future Arctic sea ice conditions crucially hinges on

1) quantifying the sea ice response to changes in external

forcing (i.e., greenhouse gas forcing) and 2) un-

derstanding the nature and magnitude of internal var-

iability in the coupled ice–ocean–atmosphere system.

This study will focus on the latter.

The Arctic regions of interest in this study are shown

in Fig. 1. The leading empirical orthogonal function

(EOF) of observational Arctic sea ice concentration

(SIC) exhibits strong out-of-phase anomalies between

the Labrador and Greenland–Barents Seas and weaker

out-of-phase anomalies between the Bering Sea and Sea

of Okhotsk (Deser et al. 2000). Regression of sea level
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pressure (SLP) onto the corresponding principal

component (PC) yields a spatial pattern that closely

resembles the Arctic Oscillation (AO; Thompson and

Wallace 1998), the leading pattern of SLP variability

north of 208N. Deser et al. (2000) observe a connection

between the low-frequency (interannual to decadal)

variability of the atmosphere and the low-frequency

variability of sea ice. In particular, they find that the AO

and its associated geostrophic winds are physically

consistent with the ice anomalies of the leading SIC

mode, suggesting that atmospheric circulation anoma-

lies force sea ice anomalies. These winds have thermo-

dynamic and dynamic effects on sea ice via advection of

surface air temperature and ice advection. Many other

studies have analyzed sea ice variability in the context of

the AO, finding that the AO affects sea ice on a wide

range of time scales ranging from seasonal (Serreze et al.

2003) to decadal (Rigor et al. 2002; Rigor and Wallace

2004; Zhang et al. 2004). These studies suggest that

a ‘‘high index’’ AO produces an Ekman divergence,

leading to reductions in sea ice thickness and concentra-

tion. This process has been proposed as a mechanism for

the recent decline in Arctic sea ice.

Others have questioned the efficacy of the AO as

a predictor for sea ice changes (Maslanik et al. 2007),

suggesting that other patterns of large-scale atmospheric

variability may play amore important role. In particular,

an SLP pattern known as the Arctic dipole anomaly

(DA) has drawn considerable recent attention (Wu et al.

2006; Wang et al. 2009; Tsukernik et al. 2010; Overland

and Wang 2005, 2010; Watanabe et al. 2006). The DA

exhibits opposite-signed SLP anomalies between the

eastern and western Arctic, which drive strong meridi-

onal winds. These winds act to enhance (reduce) sea ice

export from the Arctic basin through Fram Strait when

the DA is in positive (negative) phase. Recent record

lows in summer sea ice extent generally correspond to

years in which the DA index was positive (Wang et al.

2009). DA-like SLP patterns have also been associated

with the large internal variability observed in the sea ice

component of the Community Climate System Model,

version 3 (CCSM3; Collins et al. 2006; Wettstein and

Deser 2014). Other studies have suggested that the lo-

cation and frequency of storms (Screen et al. 2011), and

the phase of the Pacific–North America (PNA) pattern

(L’Heureux et al. 2008) also play an important role in

setting the summer sea ice minimum.

The PCs corresponding to large-scale atmospheric

patterns, such as the AO and DA, are quite noisy and

contain significant spectral power at time scales ranging

frommonthly to decadal. A typical approach has been to

initially low-pass filter the atmospheric component (by

forming annual or winter means), as a way of smoothing

out these PCs and emphasizing interannual to decadal

variability. Besides the studies already cited, a large

number of works have analyzed the impact of this low-

frequency atmospheric variability on Arctic sea ice

(Walsh et al. 1996; Proshutinsky and Johnson 1997;

Mysak and Venegas 1998; Yi et al. 1999; Johnson et al.

1999; Deser et al. 2000; Polyakov and Johnson 2000;

Moritz et al. 2002). These studies emphasize that sea ice

regimes are modulated by low-frequency atmospheric

circulation regimes.

The variability of Arctic sea ice is also strongly cou-

pled to sea surface temperature (SST) variability (e.g.,

Francis and Hunter 2007). Blanchard-Wrigglesworth

et al. (2011) proposed a mechanism for sea ice–SST

covariability, in which sea ice and SST anomalies trade

off, allowing for unexpected ‘‘memory’’ effects in sea

ice. These memory effects were termed ‘‘sea ice re-

emergence,’’ inspired by the similar North Pacific and

North Atlantic SST phenomena (Alexander et al. 1999;

Timlin et al. 2002; de Coëtlogon and Frankignoul 2003).
Sea ice reemergence is a lagged correlation phenome-

non, in which spring sea ice anomalies are positively

correlated with fall sea ice anomalies, despite a loss of

correlation over the intervening summer months. There

is also a similar, but weaker, reemergence between fall

sea ice anomalies and anomalies the following spring.

The spring–fall mechanism of Blanchard-Wrigglesworth

et al. (2011) suggests that spring sea ice anomalies im-

print SST anomalies of opposite sign, which persist

FIG. 1. The regions of interest in this study: the Barents–Kara

Seas (BK), the Labrador Sea (LS), the Greenland Sea (GS), the

Bering Sea (BER), and the Sea of Okhotsk (OK). The Arctic do-

main is defined as all grid points north of 458N.
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over the summer months. During the fall, ice grows

southward and interacts with these SST anomalies, re-

producing ice anomalies of the same sign as the spring.

This reemergence mechanism has been observed in the

North Pacific sector in the CCSM3 model output and

observations (Bushuk et al. 2014).Deser et al. (2002) note

a similar winter-to-winter persistence of sea ice anomalies

in the Labrador Sea and propose an atmospheric mech-

anism in which sea ice anomalies persist because of per-

sistent large-scale atmospheric circulation regimes.

Sea ice reemergence may also have implications for sea

ice predictability. Day et al. (2014) found that sea ice

forecast skill was strongly dependent on initialization

month, with certain months exhibiting a slower decay of

forecast skill than others. The authors suggested that this

initialization month dependence was attributable to sea

ice reemergence mechanisms. Day et al. (2014) also ex-

amined sea ice reemergence in five global climate models

(GCMs) and observations, finding robust reemergence

signals, of varying strength, across allmodels and aweaker

reemergence signal in the observational record.

In this study, we examine the coupled variability of

Arctic SIC, SST, and SLP using nonlinear Laplacian

spectral analysis (NLSA), a recently developed data

analysis technique for high-dimensional nonlinear time

series (Giannakis and Majda 2012a,b, 2013, 2014). The

NLSA algorithm is a nonlinear manifold generalization

of singular spectrum analysis (SSA; Broomhead and

King 1986; Vautard andGhil 1989; Ghil et al. 2002). SSA

is also commonly referred to as extended empirical or-

thogonal function (EEOF) analysis. Here, we apply the

multivariate version of the NLSA algorithm, coupled

NLSA (Bushuk et al. 2014), which provides a scale-

invariant analysis of multiple variables with different

physical units. Coupled NLSA yields spatiotemporal

modes, analogous to EEOFs, and temporal modes,

analogous to PCs. These modes are constructed using

a set of empirically derived Laplacian eigenfunctions on

the nonlinear datamanifold and, unlike linear approaches,

do not maximize explained variance. Compared to linear

techniques, NLSA (and other related nonlinear methods;

Berry et al. 2013) provides superior time-scale separation

and is able to effectively capture low-variance modes that

may have important dynamical significance. These low-

variance modes are known to be crucial in producing ac-

curate representations of nonlinear dynamical systems

(Aubry et al. 1993; Giannakis and Majda 2012b) and, in

the present context, are efficient in explaining re-

emergence phenomena (Bushuk et al. 2014).

We use coupled NLSA modes to study the basinwide

and regional characteristics of Arctic sea ice ree-

mergence in a comprehensive climate model and ob-

servations. We compute modes using CCSM3 model

output from a 900-yr equilibrated control integration.

Modes are also obtained for the 34-yr observational

record, using SIC and SST data from the Met Office

Hadley Centre Sea Ice and Sea Surface Temperature

dataset (HadISST) and the European Centre for

Medium-Range Weather Forecasts (ECMWF) Interim

Re-Analysis (ERA-Interim) SLP data. No preprocess-

ing of the data is required, enabling simultaneous ex-

traction of interannual, annual, and semiannual patterns

of variability. Using these modes, we identify low-

dimensional families that efficiently describe sea ice

reemergence. These families capture a significant por-

tion of the reemergence signal, and have the surprising

property of being relatively low variance. The families

also reveal time-dependent aspects of reemergence,

which were not accessible in previous studies. The SST

and SIC modes of each family exhibit an SST–sea ice re-

emergence mechanism consistent with that of Blanchard-

Wrigglesworth et al. (2011). Interannual components of

large-scale SLP variability, which emerge objectively from

this analysis, are found to be related to coherent sea ice

reemergence events in geographically distinct regions and

suggest an SLP–sea ice reemergence mechanism.

This paper is organized as follows: In section 2, we

summarize the coupled NLSA algorithm. In section 3,

we describe the CCSM3, HadISST, and ERA-Interim

datasets used in this study. In section 4, we study the SIC,

SST, and SLP spatiotemporal modes obtained via coupled

NLSA. In section 5, we examine the regional and temporal

characteristics of sea ice reemergence, and in section 6 we

investigate oceanic and atmospheric reemergence mech-

anisms. We conclude in section 7. (Movies, illustrating the

spatiotemporal evolution ofNLSAmodes, are available as

supplemental material at the Journals Online website:

http://dx.doi.org/10.1175/JCLI-D-14-00354.s1.)

2. Coupled NLSA methodology

In this study, we apply the coupled NLSA approach, as

developed inBushuk et al. (2014), toArctic SIC, SST, and

SLP. This technique is an extension of the recently de-

veloped NLSA algorithm (Giannakis and Majda 2012b,

2013) and provides a scale-invariant approach for multi-

variate time series analysis. Unlike other multivariate

data analysis approaches, coupled NLSA does not re-

quire initial normalization of the input fields to unit var-

iance. Rather, the coupled NLSA algorithm implicitly

selects the variance ratio between different physical

fields, without requiring a choice of normalization by the

user. Here, we briefly summarize the method and refer

the reader to the more thorough description of Bushuk

et al. (2014). Figure 2 is a schematic that summarizes the

flow of data in the coupled NLSA algorithm.
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Let xSICt , xSSTt , and xSLPt be time series for SIC, SST,

and SLP, respectively, each sampled uniformly at time

step dt, with s time samples. The dimensions of xSICt , xSSTt ,

and xSLPt are dSIC, dSST, and dSLP, respectively, which are

the number of spatial grid points for each variable. First,

we choose a time lag window Dt 5 qdt and time-lag

embed our data into the higher-dimensional spaces

R
dSICq, R

dSSTq, and R
dSLPq. Time-lagged embedding is

performed via the delay-coordinate mappings,

xSICt 1XSIC
t 5 (xSICt , xSICt2dt, . . . , x

SIC
t2(q21)dt) ,

xSSTt 1XSST
t 5 (xSSTt , xSSTt2dt, . . . , x

SST
t2(q21)dt), and

xSLPt 1XSLP
t 5 (xSLPt , xSLPt2dt, . . . , x

SLP
t2(q21)dt) .

The coupled NLSA approach uses these time-lagged-

embedded data to construct a set of orthonormal basis

functions on the nonlinear data manifold. These basis

functions are eigenfunctions of a discrete Laplacian

operator and are computed using a kernel (similarity)

function defined through the physical variables of in-

terest, as determined by the user of the algorithm. The

kernel and corresponding Laplacian eigenfunctions can

be thought of as nonlinear analogs of the covariance

matrix and corresponding PCs of SSA, respectively. In

this work, the kernel function values Kij is an exponen-

tially decaying similarity function constructed using SIC,

SST, and SLP: namely,

Kij 5 exp

 
2
kXSIC

i 2XSIC
j k2

�kjSICi kkjSICj k 2
kXSST

i 2XSST
j k2

�kjSSTi kkjSSTj k

2
kXSLP

i 2XSLP
j k2

�kjSLPi kkjSLPj k

!
,

where i, j 2 [q 1 1, q 1 2, . . . , s]. Here, � is a scale pa-

rameter controlling the width of the Gaussian, and

jki 5Xk
i 2Xk

i21 is the phase space velocity of the kth

variable. Note that, because of the division by kjki k,
the argument of the exponential is unit independent,

allowing for a natural comparison of the different vari-

ables in the system. Performing an appropriate nor-

malization, we convert the kernel matrix K to

a Laplacian matrix L and solve the eigenvalue problem

Lfi 5 lifi .

This yields a set of discrete Laplacian eigenfunctions

ff1, f2, . . . , fs2qg: each of which is a temporal pattern

of length s2 q. By virtue of the delay-coordinatemapping

of the data, these patterns are conditioned to reveal in-

trinsic dynamical time scales in the data, such as those

associatedwith quasi-periodic orbits (Berry et al. 2013). In

practice only l � s of these eigenfunctions are used and

need to be computed. The eigenfunctions are used as

a temporal filter for the data, analogous to Fourier modes,

but intrinsic to the dynamical system generating the data.

Let Fl be the matrix whose columns consist of the

leading l eigenfunctions. Let Xk:Rs2q1R
qdk be the lag-

embedded data matrix for the kth variable,

Xk 5
h
Xk

q11 Xk
q12 . . . Xk

s

i
.

Projecting Xk onto the leading l Laplacian ei-

genfunctions, we construct linear maps Ak
l :R

l1R
qdk ,

given by

Ak
l 5XkmFl . (1)

Here mi is the ith entry of the stationary distribution of

the Markov chain corresponding to K, and m is a di-

agonal matrix with mi along the diagonal. Note that the

variables used to construct the eigenfunctions do not

necessarily need to coincide with the variables for which

we compute the Ak
l operators. For example, we can use

FIG. 2. Schematic summarizing the flow of data in the coupled NLSA algorithm.
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the SIC–SST–SLP eigenfunctions to filter any other

variable of interest in our system.

Singular value decomposition (SVD) of the operator

for the kth variable Ak
l yields a set of spatiotemporal

modes fukng of dimension qdk, analogous to EEOFs, and

a corresponding set of length l vectors fVk
ng. These fVk

ng
are the expansion coefficients in eigenfunction basis.

Expanding using the first l eigenfunctions, we recover

a set of temporal modes fykng of length s 2 q, where

ykn 5FlV
k
n . These modes, indexed by n, are ordered by

decreasing singular value sk
n. Forming products

ukns
k
n (y

k
n)

T and projecting from lagged-embedding space

to physical space using the standard approach (Ghil

et al. 2002), we obtain reconstructed fields ~ukn(t).

3. Dataset description

a. CCSM3 model output

This study analyzes model output from a 900-yr

equilibrated control integration (model run b30.004) of

CCSM3 (Collins et al. 2006). These data were down-

loaded from the Earth System Grid website. We use

monthly averaged data for SIC, SST, and SLP, which

come from the Community Sea Ice Model (CSIM;

Holland et al. 2006); the Parallel Ocean Program (POP;

Smith andGent 2004); and the Community Atmosphere

Model, version 3 (CAM3; Collins et al. 2004), re-

spectively. The model uses a T42 spectral truncation for

the atmospheric grid (roughly 2.88 3 2.88), and the ocean
and sea ice variables are defined on the same grid, of 18
nominal resolution. This study focuses on a pan-Arctic

domain, which we define as all grid points north of 458N.

Note that the seasonal cycle has not been removed from

this dataset. This is crucial for capturing intermittent

patterns associated with reemergence. In particular, in-

termittent modes, described in section 4, are not re-

coverable in datasets that have been deseasonalized

(Giannakis andMajda 2013).Aswill be shown in section 5,

these modes are essential in low-dimensional descriptions

of sea ice reemergence.

The spatial dimensions (number of spatial grid points)

of these datasets are dSIC 5 dSST 5 13 202 and dSLP 5
2048. Using a 2-yr embedding window with q 5 24

(Giannakis and Majda 2012b; Bushuk et al. 2014), this

yields lagged-embedding dimensions (the product of the

number of spatial grid points and the embedding win-

dow) of qdSIC 5 qdSST 5 316 848 and qdSLP 5 49 152.

These data are monthly averaged and consist of s 5
10 800 time samples for the 900-yr simulation period.

The value Dt 5 24 months was used as the time lag be-

cause this embeddingwindow is longer than the seasonal

cycle, which is a primary source of non-Markovianity in

this dataset. A number of different embedding windows

were tested, yielding qualitatively similar results for

Dt $ 12 months and qualitatively different results for

Dt , 12 months.

b. HadISST observations

We also analyze HadISST (Rayner et al. 2003), which

consists of monthly averaged SIC and SST data on

a 18 latitude–longitude grid. The spatial dimension of the

Arctic domain is dSIC5 dSST5 9453. As with the CCSM3

data, we use an embedding window of Dt 5 24 months,

which yields lagged-embedding dimensions of qdSIC 5
qdSST5 226 872. In this study we use the satellite era data

from January 1979 to August 2013. Note that all ice-

covered grid points in HadISST were assigned an SST

value of 21.88C, the freezing point of saltwater at a sa-

linity of 35 parts per thousand. Also, the trend in the

dataset was removed by computing a long-term linear

trend for each month of the year and removing the re-

spective linear trend from each month. The seasonal cy-

cle has not been removed from this dataset.

c. ERA-Interim data

Finally, we also study monthly averaged SLP data

from ERA-Interim (Dee et al. 2011). These data are

defined on a 0.758 latitude–longitude grid, of consider-

ably higher resolution than the CCSM3 SLP data. The

spatial dimension of the Arctic domain is dSLP 5 29 280,

corresponding to a lagged-embedding dimension of

qdSLP 5 702 720. These data have been detrended by

subtracting the monthly trend from each month, but the

seasonal cycle has not been subtracted.

4. Coupled SIC–SST–SLP spatiotemporal modes
of Arctic variability

We utilize the coupled NLSA algorithm outlined in

section 2 to study the spatiotemporal evolution of

(i) SIC, SST, and SLP in CCSM3 and (ii) SIC and SST

from HadISST and SLP from ERA-Interim. Hereafter,

we refer to the joint HadISST and ERA-Interim data-

sets as observations. For both the model and observa-

tional data, we use a lagged-embedding window of Dt5
24 months.

a. CCSM3 modes

We choose �, the Gaussian locality parameter, as � 5
0.90. Using the spectral entropy criterion of Giannakis

and Majda (2012a, 2013), we select a truncation level of

l5 27 eigenfunctions and express the datamatricesXSIC,

XSST, and XSLP in this basis. SVD of the resulting oper-

ators [see Eq. (1)] yields a set of spatiotemporal pat-

terns, fuSICn g, fuSSTn g, and fuSLPn g, and a set of temporal
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patterns, fySICn g, fySSTn g, and fySLPn g, for each variable.

The modes are ordered by decreasing singular value. In

general, the temporal patterns for different variables

need not be related. However, by virtue of the relatively

low dimensionality of the eigenfunction basis relative to

the original temporal dimension (l 5 27 � s 5 10800)

and, because the eigenfunctions incorporate information

from all three variables, we find strong correlations be-

tween the temporal patterns of different variables.

1) TEMPORAL MODES

Figures 3–5 show selected temporal patterns for SIC,

SST, and SLP, respectively. For each variable, we ob-

serve three distinct types of temporal modes: periodic,

low-frequency, and intermittent modes, indicated by P,

L, and I in the figures.

The periodic temporal modes closely resemble sinu-

soids, with frequencies given by integer multiples of

1 yr21. These modes appear as doubly degenerate pairs,

with a phase offset of p/2. The leading periodic modes,

representing the annual and semiannual cycles, capture

more variance than the low-frequency and intermittent

modes of the system. Higher harmonic periodic modes

are found later in the mode spectrum. The low-

frequency modes are characterized by significant in-

terannual variability and have a typical decorrelation

time of approximately 3 years. These modes carry sig-

nificant spectral power at frequencies below 1 yr21 and

exhibit a sharp decline in spectral power at frequencies

above this.

The intermittent modes are characterized by periods

of intense activity followed by periods of quiescence.

Each intermittent mode has a base frequency of oscil-

lation and a broadband peak in spectral power centered

upon this frequency. These modes carry lower variance

than their periodic and low-frequency counterparts, yet

they have potentially high dynamical significance. For

example, annual and semiannual intermittent modes are

crucial components in low-dimensional descriptions of

sea ice reemergence phenomena (Bushuk et al. 2014).

Note that the leading low-frequency and intermittent

modes are insensitive to truncation level, whereas in-

creasing l will eventually disrupt the temporal character

of some intermittent modes.

Intermittent modes closely resemble a periodic signal

modulated by a low-frequency envelope. We find that

nearly all intermittent modes can be directly associated

with a particular low-frequency mode, which provides

this modulating envelope (Bushuk et al. 2014). To de-

termine this association, we compare the envelope

function of the intermittent modes to the low-frequency

modes. We find the envelope function via the Hilbert

transform (von Storch and Zwiers 1999). Let I(t) be

a given intermittent mode and letH(I)(t) be the Hilbert

transform of I. Then the envelope function e(t) is given

by e(t)5 [I(t)2 1H(I)(t)2]1/2. Next, we determine which

low-frequency mode provides this modulating envelope

by performing a correlation between e(t) and jL(t)j,
where L(t) is a low-frequency mode. Figure 6 shows

these correlation values for intermittent and low-

frequency modes of each variable, for both the model

and observations. Note that the low-frequency–

intermittent mode association is quite clear for most

variables, except for the observational SLP, whose in-

termittent envelopes generally correlate weakly with the

low-frequency modes.

As a comparison, we also performed SSA on the con-

catenated and unit-variance normalized SIC–SST–SLP

dataset. Similar to the findings of Bushuk et al. (2014),

SSA produces periodic modes, many low-frequency

modes, and some modes that loosely resemble the in-

termittent modes of NLSA, with a spectral maximum at

a certain base frequency. We find that the SSAmodes do

not share the same intermittent–low-frequency mode

relationships as the NLSA modes. These relationships

will be important for explaining reemergence, as they

reflect the interaction of large-scale low-frequencymodes

of variability with the familiar annual and semiannual

cycles in the climate system.

2) SIC SPATIOTEMPORAL PATTERNS

Figure 7 shows spatial patterns of selected modes at

a snapshot in time. Movies 1 and 2 in the online sup-

plementary material show the spatiotemporal evolution

of these modes and others. Below, we describe the

prominent features of the spatiotemporal modes re-

covered for SIC, SST, and SLP.

The annual periodic SIC modes fPSIC
1 , PSIC

2 g (Fig. 7a)

have spatially uniform anomalies throughout most of the

Arctic, except at high-latitude grid points, where there is

year-round ice coverage, and in the marginal ice zones,

where the anomalies are slightly weaker. These anoma-

lies reach their maximum and minimum values in March

and September, respectively. The higher-frequency pe-

riodic modes have increasingly finer spatial structure and

capture a decreasing portion of the variance.

The low-frequency modes closely resemble the lead-

ing EOFs of Arctic SIC in the CCSM3 model. Mode

LSIC
1 (Fig. 7d) exhibits anomalies in the Bering, Beau-

fort, and Labrador Seas, which are out of phase with the

anomalies of the Barents, Kara, and Greenland Seas.

Computing pattern correlations between the q spatial

patterns of LSIC
1 and the different EOFs of deseasonal-

ized Arctic SIC, we find a maximum pattern correlation

of 0.97 with EOF1. Mode LSIC
2 (Fig. 7g) has strong

anomalies in the Bering and Labrador Seas, which are
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FIG. 3. Snapshots of the time series, power spectral density, and autocorrelation functions for the CCSM3 SIC PCs (yk) from coupled

NLSA. Shown here for 50-yr portions of the 900-yr time series are the annual periodic (PSIC
1 ) and semiannual periodic (PSIC

3 ) modes, low-

frequency modes (LSIC
1 and LSIC

2 ), annual intermittent modes (ISIC1 and ISIC3 ), and semiannual intermittent modes (ISIC7 and ISIC9 ). The

autocorrelation vertical scale is [21, 1]. The power spectral densities (fk) were estimated via the multitaper method with time–bandwidth

product p 5 6 and K 5 2p 2 1 5 11 Slepian tapers. The effective half-bandwidth resolution for the s monthly samples is Dn 5 p/(sdt) 5
1/150 yr21, where dt 5 1/12 yr is the sampling interval.
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FIG. 4. Snapshots of the time series, power spectral density, and autocorrelation functions for the CCSM3 SST PCs from coupledNLSA.

Shown here are the annual periodic (PSST
1 ) and semiannual periodic (PSST

3 ) modes, low-frequency modes (LSST
1 , LSST

2 , and LSST
3 ), annual

intermittent modes (ISST1 and ISST3 ), and semiannual intermittent modes (ISST7 ). The autocorrelation vertical scale is [21, 1].
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FIG. 5. Snapshots of the time series, power spectral density, and autocorrelation functions for the CCSM3SLP PCs from coupledNLSA.

Shown here are the annual periodic (PSLP
1 ) and semiannual periodic (PSLP

3 ) modes, low-frequency modes (LSLP
1 , LSLP

2 , and LSLP
3 ), and

intermittent modes (ISLP1 , ISLP3 , and ISLP7 ). The autocorrelation vertical scale is [21, 1].

15 JULY 2015 BU SHUK ET AL . 5485



out of phase with one another. It also has weaker

anomalies in the Sea of Okhotsk, Barents Sea, and Kara

Sea, which are in phase with the Bering Sea anomalies.

This mode has a maximum pattern correlation of 0.77

with EOF3.

Each intermittent mode has a natural association with

a certain low-frequency mode, which acts as a modulat-

ing envelope for the intermittent mode. There is also

a clear spatial connection, as the intermittent modes are

active in the same parts of the domain as their low-

frequency counterpart. The annual and semiannual in-

termittent mode pairs fISIC1 , ISIC2 g and fISIC7 , ISIC8 g are

associatedwithLSIC
1 (see Fig. 6). Thesemodes pulse with

annual and semiannual frequency, respectively, and

exhibit finer spatial structure thanLSIC
1 . In regions where

LSIC
1 has monopole anomalies, these intermittent modes

have dipole and tripole anomalies, respectively. The

annual and semiannual intermittent modes fISIC3 , ISIC4 g
and fISIC9 , ISIC10 , ISIC11 g are associated with LSIC

2 and share

similar spatial relationships.

3) SST SPATIOTEMPORAL PATTERNS

Mode LSST
1 (Fig. 7e) has strong anomalies in the Be-

ring Sea that extend southward into the northeastern

Pacific, and anomalies of the opposite sign in theBarents

and Kara Seas. There is also a North Atlantic signal with

anomalies in the subpolar gyre region that are in phase

with the North Pacific anomalies. This mode has

a maximum pattern correlation of 0.98 with EOF1 of

Arctic SST from CCSM3. Mode LSST
2 (Fig. 7h) exhibits

out-of-phase anomalies between the North Pacific and

North Atlantic. The North Atlantic anomalies corre-

spond to variability in the subpolar gyre, and the North

Pacific anomalies are strongest in the Bering Sea, ex-

tending through most of the Pacific portion of the do-

main. This mode is most similar to EOF2, with 0.96

pattern correlation.

The intermittent modes associated withLSST
1 andLSST

2

are fISST1 , ISST2 , ISST8 , ISST9 g and fISST5 , ISST6 , ISST11 g, re-

spectively. As with the SIC modes, these modes are

active in the same parts of the domain as their associated

low-frequency mode and have finer spatial structure. A

primary difference is that these intermittent modes ex-

hibit spatially propagating anomalies, as compared with

their stationary SIC counterparts. This propagation is

most evident in the subpolar gyre region of the North

Atlantic.

4) SLP SPATIOTEMPORAL PATTERNS

Mode LSLP
1 (Fig. 7f) has a similar SLP pattern to the

AO, with an anomaly centered over the pole and

anomalies of opposite sign in the North Atlantic and

North Pacific basins. The AO is defined as the leading

FIG. 6. Correlations between low-frequencymodes and envelope

functions for intermittent modes. Mode pairs with large positive

correlations indicate that the low-frequency mode provides the

modulating envelope for the intermittent mode.
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FIG. 7. Spatial patterns of selected sea ice, SST, and SLP NLSA modes. For each mode, we plot the spatial pattern with

largest variance (of the q spatial patterns that make up the spatiotemporal pattern): (a)–(i) CCSM3 modes and (j)–(l)

observational modes, indicated by anO subscript. The fields have been normalized to have a maximum absolute value of 1.
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EOF of SLP north of 208N. Considering EOFs of

CCSM3 SLP north of 208N, we find a maximum pattern

correlation of 0.98 with EOF1. In light of this strong

correlation, we call LSLP
1 the AO mode. Mode LSLP

2 also

closely resembles the AO, with a maximum pattern

correlation of 0.98 with EOF1. However, LSLP
1 and LSLP

2

have distinct temporal patterns and are nondegenerate

modes.

Mode LSLP
3 (Fig. 7i) has a strong resemblance to the

DA, which consists of opposite-signed SLP anomalies

between the eastern and western Arctic. Following Wu

et al. (2006), we define the dipole anomaly as the second

leading EOF of winter (October–March) SLP north of

708N. Let PC2 be the PC associated with EOF2. To

determine the corresponding spatial pattern over the

Arctic domain (north of 458N), we project winter Arctic

SLP onto PC2 and compare the resulting spatial pattern

to LSLP
3 . We find a maximum pattern correlation of 0.78

and lower correlations when other PCs are used. An-

other possible technique for determining the Arctic SLP

signal of the DA, as performed in Wu et al. (2006), is to

perform a conditional composite, based on the months

in which PC2 is active. This yields a very similar pattern

correlation of 0.77 with LSLP
3 . Wu et al. (2006) also

perform a conditional composite in which the influence

of the AO is removed via linear regression. We also

computed a spatial pattern using this technique and

found a pattern correlation of 0.78 with LSLP
3 . Based on

these findings, we refer to LSLP
3 as the DA mode.

Mode LSLP
1 has associated annual and semiannual

intermittent modes fISLP1 , ISLP2 , ISLP9 , ISLP10 g. Mode LSLP
3

is associated with a pair of annual intermittent modes

fISLP7 , ISLP8 g but not any semiannual intermittent modes.

b. Observational modes

We compute the coupled NLSA observational modes

using a locality parameter of � 5 1.20 and a truncation

level of l 5 21 eigenfunctions. A primary difference

between the observational modes and CCSM3 modes is

the variables used for the eigenfunction computation.

We find that computing SIC–SST–SLP eigenfunctions

from the observational datasets yields temporal modes

which are significantly noisier (more high-frequency

power) than the corresponding modes from CCSM3.

This corruption occurs because of the inclusion of the

SLP data in the eigenfunction computation.We find that

the eigenfunctions are substantially cleaner when com-

puted using SIC and SST, and we use this as the base

case for this study. On the other hand, the CCSM3 re-

sults are insensitive to the inclusion of SLP, with SIC–

SST–SLP and SIC–SST eigenfunctions yielding very

similar modes and conclusions regarding sea ice re-

emergence. We obtain SLP observational modes by

projecting the SLP data onto the SIC–SST eigenfunctions

and performing an SVD of the resulting operator. Note

that the observational SLP data is roughly 4 times finer

spatial resolution than the CCSM3 SLP data. This dis-

crepancy in resolution may explain the corruption in

observational modes compared with CCSM3modes. An

NLSA kernel that incorporates an initial spatial

smoothing of the input data (making them comparable

to the T42 resolution of the CCSM3 data) could alleviate

these issues, but we elected not to carry out these cal-

culations since we are able to identify reemergence

families ahead using SIC and SST only as inputs to the

kernel.

The observational temporal modes have a similar char-

acter to those obtained fromCCSM3.For each variable,we

find periodic, low-frequency, and intermittent modes, and

in many cases the low-frequency modes act as modulating

envelopes for the intermittent modes. (The temporal

modes for SIC, SST, and SLP are shown in the figures

available as supplemental material at the Journals Online

website: http://dx.doi.org/10.1175/JCLI-D-14-00354.s2.)

Next, we provide a brief description of the spatio-

temporal modes that will be discussed later in the paper.

Movies 3 and 4 in the online supplementary material

provide a more revealing spatiotemporal evolution of

these modes and others. Mode LSIC
1 (Fig. 7j) closely

resembles the leading EOF of winter Arctic sea ice re-

ported by Deser et al. (2000). In its positive phase, LSIC
1

has positive sea ice anomalies in the Labrador and Be-

ring seas and negative anomalies in the Greenland Sea,

Barents–Kara Seas, and Sea of Okhotsk. This mode has

a maximum pattern correlation of 0.88 with EOF1 of

Arctic sea ice from HadISST. Mode LSST
1 (Fig. 7k) is most

similar to EOF2 of Arctic SST, with a maximum pattern

correlation of 0.70. In positive phase, thismode has positive

anomalies in the Labrador Sea and subpolar gyre region,

negative anomalies in the Barents–Kara Seas and positive

anomalies in the Bering Sea. Mode LSLP
1 (Fig. 7l) strongly

resembles the annular structure of the AO. Computing

EOFs of ERA-Interim SLP north of 208N, we find a max-

imum pattern correlation of 0.97 with EOF1, the AO pat-

tern. Similar to the CCSM3 results, the intermittent modes

are generally associated with a low-frequency mode, are

active in the sameparts of the domain as this low-frequency

mode, and display finer spatial structure.

One feature which is conspicuously absent from the

observational SLP modes is a DA-like mode. Other

fields, such as 850-hPa geopotential height and surface

winds, and smaller domains were tested, but a low-

frequency DA mode analogous to the CCSM3 results

was not found. Certain modes obtained were quite tran-

sient and resembled the DA pattern at certain snapshots

in time but not persistently.
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c. Interpretation of low-frequency SLP modes

The low-frequency SLP modes have spatial patterns

that closely resemble the familiar spatial patterns

obtained via EOF analysis. However, their temporal

behavior differs substantially. The low-frequency NLSA

temporal modes have significant 1-yr autocorrelation

and carry most of their power at frequencies below

1 yr21. This lies in sharp contrast to the PCs obtained via

EOF analysis, which have a nearly white power spec-

trum and decorrelate very rapidly, losing all memory

after 1–2 months. Despite these extremely different

temporal characteristics, there is natural connection

between the two: the low-frequency NLSA modes

closely resemble a low-pass-filtered version of the noisy

PCs from EOF analysis.

This is illustrated in Fig. 8, which shows temporal

behavior for LSLP
1 , the leading low-frequency NLSA

mode from CCSM3; PCSLP
1 , the principal component

corresponding to the leading EOF of SLP; and hPCSLP
1 i,

a low-pass-filtered version of PCSLP
1 , computed by taking

a 24-month running mean. Mode LSLP
1 has a relatively

low correlation of 0.31 with PCSLP
1 but a significantly

higher correlation of 0.80 with the low-pass-filtered PC

hPCSLP
1 i. Mode LSLP

1 and hPCSLP
1 i share qualitatively

similar autocorrelation functions and power spectra,

which are very different from the rapidly decaying

autocorrelation and nearly white power spectrum of

PCSLP
1 . These results suggest a natural interpretation of

the low-frequency NLSA modes as low-pass-filtered

versions of the PCs from EOF analysis, which empha-

size variability on interannual to decadal time scales and

filter out higher-frequency variability. It is important to

note that the low-frequency NLSA modes have weak

sensitivity to the lag-embedding window Dt (as long as

Dt$ 12; see section 3). Also, a univariate NLSA analysis

with only SLP was performed, and similar low-frequency

modes were recovered. This suggests that these low-

frequency patterns describe an intrinsic component of

SLP variability, which in this case can be reproduced by

an ad hoc running averaging of the data.

The observational SLP modes also display a similar

correspondence, with a correlation of 0.83 between

hPCSLP
1 i and LSLP

1 . This high correlation indicates that

the SIC–SST eigenfunctions used for the observational

data are able to capture important variability in the raw

SLP data.

5. Arctic sea ice reemergence in models and
observations

Sea ice reemergence is a time-lagged correlation phe-

nomenon. SIC anomalies decorrelate over a 3–6-month

time scale; however, at some time lag in the future, an

FIG. 8. Snapshots of the time series, power spectral density, and autocorrelation functions for (top) LSLP
1 , the leading low-frequency

NLSA mode from CCSM3; (middle) PCSLP
1 , the principal component corresponding to the leading EOF of SLP; and (bottom) hPCSLP

1 i,
a low-pass-filtered version of PCSLP

1 , computed by taking a 24-month runningmean. The red curve is hPCSLP
1 i plotted on top of PCSLP

1 . Note

that the hPCSLP
1 i time series at bottom has been normalized to have a standard deviation of one.
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increase in correlation occurs. Sea ice reemergence is

observed in two forms: a spring–fall reemergence, in

which spring anomalies are reproduced the following fall,

and a fall–spring reemergence, in which fall anomalies

are reproduced the following spring. Both forms are ob-

served in CCSM3 model output and HadISST observa-

tions, with the spring–fall reemergence being the

significantly stronger signal in both cases.

We study sea ice reemergence via the time-lagged pat-

tern correlation methodology of Bushuk et al. (2014). For

eachmonth of the year, pattern correlations are computed

between the SIC anomaly field of the givenmonth and the

SIC field at lags of 0–23 months into the future. This is

done for all pairs (month, month1 lag) in the time series,

and we report the average of these correlation values.

Note that the pattern correlations are performed on

anomalies from the seasonal cycle, are area weighted, and

are uncentered (globalmean has not been subtracted from

the anomaly field). This differs from the approach of

Blanchard-Wrigglesworth et al. (2011), where the lagged

correlationswere performedusing a time series of total sea

ice area. Performing correlations using the full SIC field, as

opposed to its total area, allows for inclusion of the spatial

distribution of sea ice. The pattern correlation approach is

able to detect opposite-signed anomaly features, such as

sea ice dipoles, which would be integrated away in the

total area approach. It also enforces a notion of locality,

since anomalies must be spatially coincident in order to

yield a significant pattern correlation. This ensures that

a reported sea ice reemergence signal represents recurrent

anomalies at the same spatial location.

In this paper, we focus on the regions defined in Fig. 1:

a pan-Arctic domain (458–908N over all longitudes), the

Barents and Kara Seas (658–808N, 308–908E), the Lab-

rador Sea and Baffin Bay (458–808N, 708–408W), the

Greenland Sea (558–808N, 408W–08), the Bering Sea

(558–658N, 1658E–1608W), and the Sea of Okhotsk (458–
658N, 1358–1658E).

a. Regional sea ice reemergence in models and
observations

Webegin with a regional study of sea ice reemergence

using raw SIC data from HadISST observations and

CCSM3 output: the results of which are shown in Fig. 9.

This figure shows time-lagged pattern correlations,

computed for all initial months and lags of 0–23 months.

All correlations plotted in color are greater than 0.1 and

are significant at the 95% level, based on a t-distribution

statistic, which tests for the statistical significance of the

time-mean pattern correlation values against a null hy-

pothesis that there is no correlation.

Over a pan-Arctic domain, in both the model and

observations, we observe a clear ‘‘summer limb’’ of

positive correlations corresponding to sea ice anomalies

that originate in the melt season (March–August) and

reemerge in the growth season (Figs. 9a,b). The ‘‘winter

limb’’ of fall–spring reemergence, corresponding to

anomalies originating in September–February, is weak

over the Arctic domain, except for a small hint of the

limb in the CCSM3 data. An interesting consequence of

the time-lagged pattern correlation approach is the

striking similarity of pan-Arctic lagged correlations

in CCSM3 and observations. This lies in contrast to

the total area lagged correlation methodology of

previous studies, which reveal a clearly enhanced

reemergence signal in the model relative to observa-

tions (Blanchard-Wrigglesworth et al. 2011; Day et al.

2014). This indicates that, despite differences in

memory of total sea ice area anomalies, the model

and observations are quite similar in their memory of

sea ice spatial patterns.

The pan-Arctic reemergence signal is similar in the

model and observations; however, a regional analysis

reveals significant differences between the two. Both

CCSM3 and HadISST have strong summer limb signals

in the Barents–Kara Seas (Figs. 9g,h) and theGreenland

Sea (Figs. 9k,l). The CCSM3 data also exhibit a winter

limb in the Barents–Kara Seas, which is not significant in

observations. A striking difference is found in the Lab-

rador Sea, with a strong summer limb and a significant

winter limb in observations: neither of which is found in

the model (Figs. 9i,j). Conversely, the strong summer

limbs in the Bering Sea and Sea of Okhotsk found in the

model data are absent in the observations (Figs. 9c–f).

Note that the winter limb signal in the Bering Sea and

Sea of Okhotsk should not be overinterpreted, as these

domains are essentially sea ice free during the summer

and early fall. Therefore, the North Pacific winter limb

lagged correlations are performed using an extremely

low-variance signal and are not robust.

b. Sea ice reemergence revealed via coupled NLSA

Given the nontrivial lagged correlation structures in

the CCSM3 andHadISST sea ice datasets, we seek a low-

dimensional representation of sea ice reemergence via

the coupled NLSA modes obtained in section 4. We aim

to answer two main questions: 1) Can the reemergence

signal of the raw data be efficiently reproduced by low-

dimensional families of modes? 2) Can these mode

families reveal possible mechanisms for Arctic sea ice

reemergence? To answer the former, we perform time-

lagged pattern correlations using small subsets of re-

constructed spatiotemporal fields from coupled NLSA.

Our approach here is to first construct families of SIC

modes and then to augment these families with SST and

SLP modes, based on correlations.
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1) CCSM3 REEMERGENCE FAMILIES

Based on the associations between low-frequency

and intermittent modes identified in section 4a(1), we

construct two families of SIC modes, each consisting

of a low-frequency mode and annual and semi-

annual intermittent modes. These families, which

we refer to as FM
1 and FM

2 , are able to qualitatively

reproduce the reemergence signal of the raw data.

They are given by FM
1 5 fLSIC

1 , ISIC1 , ISIC2 , ISIC7 , ISIC8 g and

FIG. 9. Time-laggedpattern correlations ofArctic sea ice in different regions: (left) results fromCCSM3model output and

(right) results from HadISST observations. All colored boxes are significant at the 95% level, based on a t test.
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FM
2 5 fLSIC

2 , ISIC3 , ISIC4 , ISIC9 , ISIC10 , ISIC11 g. Here, the M

superscript indicates that these families come from

model output. Each family is particularly active in the

Barents–Kara, Bering, and Labrador Seas but shares

different phase relationships between the different re-

gions. Within each family, the low-frequency and in-

termittent modes are closely related, in the sense that

the low-frequency mode provides the modulating en-

velope for the intermittent modes. This means that all

modes in a given family tend to be active or inactive at

the same times. Note that similar envelope associations

were observed in the reemergence families identified in

Bushuk et al. (2014), suggesting that this approach may

be useful in a broader context. Many other mode subsets

were tested but were unable to reproduce the lagged

correlation structure as effectively as these families,

likely because they lack the envelope relationships that

characterize the families. Moreover,FM
1 andFM

2 appear

to be the minimal mode subsets, as smaller sets are un-

able to qualitatively reproduce the reemergence signal.

In Fig. 10d, we show time-lagged pattern correlations

computed over the Arctic domain using NLSA family

FM
1 . Comparing with the time-lagged pattern correla-

tion structure of the raw data, shown in Fig. 10a, we

observe qualitatively similar features. The FM
1 corre-

lations have a clear summer limb structure, with cor-

relations that decay to near zero over the summer

months and reemerge the following fall. They also have

a slightly weaker winter limb, which may correspond to

the weaker fall–spring reemergence seen in the raw

data. The FM
1 correlations are substantially higher than

the raw data correlations because the family’s activity

is primarily governed by LSIC
1 , which has a decorrela-

tion time of 3 years.

This NLSA family has a qualitatively similar corre-

lation structure to the raw data, yet it is natural to ask

whether this family is capturing the portion of the signal

responsible for the summer limb in the raw data. As

amethod for addressing this question, we compute time-

lagged cross correlations between the raw data and the

NLSA subspaces, shown in Figs. 10b,c. To explain

Figs. 10b,c, we introduce LC(A, B), a function that

computes time-lagged pattern correlations, with the

dataset B lagging A. Using this notation, Fig. 10a shows

LC(Raw, Raw) and Fig. 10d shows LC(FM
1 , FM

1 ). In

Figs. 10b and 10c, we plot LC(Raw, FM
1 ) and LC(FM

1 ,

Raw), respectively.

If the reemergence signal of FM
1 is not representative

of the signal in the raw data, one would expect these

cross correlations to be small. However, we observe

strong summer limbs in Figs. 10b,c, similar to the cor-

relation structure of the raw data. The fact that these

panels are similar to Fig. 10a indicates that family FM
1 is

capturing the portion of the data responsible for the sea

ice reemergence signal.

In Figs. 10e–h, we plot the same quantities as

Figs. 10a–d but for family FM
2 . The lagged correlations

LC(FM
2 , FM

2 ) also have a strong summer limb and

a weaker winter limb, but each of these limbs is weaker

than their respective counterparts in LC(FM
1 , FM

1 ).

Also, LC(Raw, FM
2 ) and LC(FM

2 , Raw), plotted in

Figs. 10f and 10g, show partial summer limbs, but these

correlations are weaker than the reemergence signal of

the raw data. This indicates that family FM
2 is capturing

some of the reemergence signal but not as significant

a portion as family FM
1 .

2) HADISST REEMERGENCE FAMILIES

The observational modes also admit a mode family

that is able to reproduce the reemergence signal of

the raw HadISST. This family is given by FO
1 5

fLSIC
1 , ISIC1 , ISIC2 , ISIC5 , ISIC6 g, where the O indicates ob-

servational data. There is no clear second family that has

nontrivial cross correlations with the raw observational

data. In Fig. 11 we plot time-lagged cross correlations for

FO
1 . The lagged correlations LC(FO

1 , FO
1 ) have a clear

summer limb and a weaker winter limb. We also find

a strong summer limb structure in LC(Raw, FO
1 ) and

LC(FO
1 , Raw), except for a small gap in the limb for

anomalies beginning in July. This indicates that the

family FO
1 is capturing a substantial portion of the re-

emergence signal in the raw data.

c. Variance explained by reemergence families

Another way to test the effectiveness of the families in

capturing the reemergence signal is to directly subtract the

families from the raw sea ice data and compute time-lagged

pattern correlations on the resulting dataset. Figure 12c

shows LC(Raw2FM
1 2FM

2 , Raw2FM
1 2FM

2 ), and

Fig. 12d shows LC(Raw2FO
1 , Raw2FO

1 ). Each of these

has a clearly reduced summer limb relative to LC(Raw,

Raw), which are shown in Fig. 12a for CCSM3 and Fig. 12b

for HadISST. This demonstrates that the reemergence

families are capturing a substantial portion of the re-

emergence signal. In terms of total sea ice area anomalies,

family FM
1 explains 41%, 25%, and 8% of the variance in

theBering, Barents–Kara, andLabrador Seas, respectively.

Similarly,FM
2 explains 18%, 1%, and 14% of the variance,

and FO
1 explains 7%, 30%, and 18% of the variance in

these respective regions.

The variance explained by these families is lower if one

considers the full (nonintegrated) sea ice anomaly field.

Over the full Arctic domain familyFM
1 explains 5% of the

variance, FM
2 explains 3%, and FO

1 explains 7%. While

these values seem somewhat low, it is interesting to note

that the leading two EOFs from CCSM3 capture 7% and
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FIG. 10. Time-lagged pattern correlations of sea ice computed over the Arctic domain, using NLSA families FM
1

and FM
2 : shown are correlations of (a) the raw data and (d) FM

1 and cross correlations of FM
1 and the raw data, with

the NLSA data (b) lagging and (c) leading. (e)–(h) As in (a)–(d), but for FM
2 . All colored boxes are significant at the

95% level.
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6% of the variance, respectively. These values are lower

than those typically reported in EOF studies for three

reasons: 1) the spatial domain is large; 2) there has been

no temporal smoothing or averaging performed; and 3)

the spatial resolution is relatively fine. For example, the

leading EOF of Deser et al. (2000) captures 35% of the

sea ice variance in the Arctic, but this is based on a time

series of winter-mean sea ice anomalies. This temporal

averaging substantially smooths the data, and the lead-

ing EOF captures variance more efficiently in this time-

filtered dataset. By contrast, the leading 10 EOFs of

CCSM3 Arctic sea ice capture 38% of the variance.

The comparison with SSA, a variance greedy algo-

rithm, is also illuminating. The leading two SSA modes

capture 2.5% and 2% of the variance, respectively, and

the leading 10 nonperiodic SSA modes capture 14% of

the variance. By comparison, the leading 10 nonperiodic

NLSA modes capture 10% of the variance, which is

modestly less than SSA. The main reason for this dis-

crepancy is that the intermittent modes of NLSA carry

less variance than low-frequency modes. Despite being

low variance, these intermittent modes are crucial

components of the reemergence families and illustrate

an important point: low-variance modes can play an

important role in explaining dynamical phenomena.

d. Temporal variability of sea ice reemergence

To this point, all reported lagged correlations have

been time-mean values, computed over the full time

series. Next, we consider the time-dependent aspects of

sea ice reemergence. Figure 12e shows lagged correla-

tions of the raw CCSM3 sea ice data, conditional on the

low-frequency modes of FM
1 or FM

2 (LSIC
1 and LSIC

2 )

being active. Specifically, we condition on all times for

which jLSIC
1 (t)j. 2 or jLSIC

2 (t)j. 2 (which corresponds

to 11% of the data). Similarly, Fig. 12f shows lagged

correlations of the rawHadISST conditional on the low-

frequency mode of FO
1 being active [jLSIC

1 (t)j. 1:5,

which corresponds to 14% of the data]. We observe

a clearly enhanced reemergence signal (both summer

and winter limbs) during times when these modes are

active. Figures 12g and 12h show lagged correlations

conditional on these modes being inactive [jLSIC
1 (t)j, 1

and jLSIC
2 (t)j, 1 for CCSM3 and jLSIC

1 (t)j, 1 for

HadISST]. This corresponds to 45%and 59%of the data,

respectively. In both cases, particularly with CCSM3, we

observe a diminished reemergence signal. These results

indicate that reemergence events have significant tem-

poral variability, characterized by regimes of quiescence

and other regimes of intense activity. Another notable

FIG. 11. Time-lagged pattern correlations of sea ice computed over the Arctic domain, using HadISST family FO
1 :

shown are correlations of (a) the raw data and (d) NLSA family FO
1 and cross correlations of FO

1 and the raw data,

with the NLSA data (b) lagging and (c) leading. All colored boxes are significant at the 95% level.
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feature is the robust initial decay of correlation for lags

of 0–3 months. The most significant differences between

Figs. 12e,f and Figs. 12g,h occur at lags greater than

3 months, indicating that reemergence events display

more temporal variability than the initial decay of per-

sistence. Note that, because of the shortness of observa-

tional record, the conditional correlations fromHadISST

are less robust than those from CCSM3.

In CCSM3, about half of the record is characterized by

a very weak reemergence signal (Fig. 12g), whereas other

times exhibit strong reemergence (Fig. 12e). This may

have important implications for sea ice predictability,

since predictability resulting from reemergence will have

a strong temporal dependence, dependent on the strength

of the reemergence signal at a given time. The results here

also demonstrate the efficacy of certain low-frequency

FIG. 12. Time-lagged pattern correlations of sea ice computed over the Arctic domain. Lagged correlations for

CCSM3 data are shown for (a) the raw data, (c) Raw2FM
1 2FM

2 , (e) conditional on jLSIC
1 (t)j. 2 or jLSIC

2 (t)j. 2

(which corresponds to 11% of the data), and (g) conditional on jLSIC
1 (t)j, 1 and jLSIC

2 (t)j, 1 (45% of the data).

HadISST lagged correlations are shown for (b) the raw data, (d) Raw2FO
1 , (f) conditional on jLSIC

1 (t)j. 1:5 (which

corresponds to 14% of the data), and (h) conditional on jLSIC
1 (t)j, 1 (59% of the data).
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NLSA modes as predictors for the strength of re-

emergence events. Therefore, these modes could be

a valuable addition to statistical sea ice forecast models.

As another method to test the temporal variability

of reemergence events, we measure the strength of the

reemergence signal as a function of time. We define the

reemergence strength as the sum of correlation values

along the summer limb, compute this quantity for each

year of the time series, and create a probability density

function (PDF). The PDF (not shown) is close to

Gaussian, with a slight skew toward large reemergence

events. If we let m be the mean of the PDF, we find that

23% of reemergence events are less than 0.5m and 23%

of events are greater than 1.5m. This spread in event

distribution demonstrates that reemergence strength

fluctuates strongly in time.

This temporal characterization of Arctic reemergence

events is a new result of this study, which was in-

accessible in previous studies of reemergence based on

time-lagged total area correlations. In the time-lagged

pattern correlation methodology, correlations are per-

formed space, rather than time, which allows for the

temporal variations of these correlations to be studied.

The mode families also allow for an investigation of the

temporal variability of reemergence events and mech-

anisms, and this will be returned to later in section 6c.

e. SIC–SST–SLP reemergence families

We have identified families of coupled NLSA SIC

modes that are able to reproduce the reemergence signal

of the raw SIC data. Next, we focus on the spatiotem-

poral evolution of these families and their associated

SST and SLP patterns. As noted earlier, there are strong

correlations between the temporal modes of SIC, SST,

and SLP. We use this fact to augment the families FM
1 ,

FM
2 , and FO

1 with associated SST and SLP modes.

The low-frequency mode of FM
1 is LSIC

1 . Performing

correlations between this mode and all low-frequency

SST and SLP PCs, we find maximum correlations of

20.99 with LSST
1 and 20.69 with LSLP

3 . Similarly, for the

LSIC
2 mode of FM

2 , we find maximum correlations of

20.93 with LSST
2 and 0.64 with LSLP

1 . For the observa-

tional family FO
1 , we find that LSIC

1 has maximum cor-

relations of 0.998 with LSST
1 and 20.81 with LSLP

1 . Note

that the low-frequency mode correlations are higher

between SIC and SST than between SIC and SLP, in-

dicating that the temporal covariability between SIC

and SST is somewhat stronger.

Each family consists of a low-frequency mode and

associated annual and semiannual intermittent modes.

To form the augmented families, we identify the in-

termittent modes associated with the low-frequency SST

and SLPmodes identified above. Based on the envelope

correlations shown in Fig. 6, we define the following

augmented families:

FM
1 5 fLSIC

1 , ISICf1,2,7,8g,L
SST
1 , ISSTf2,3,8,9g,L

SLP
3 , ISLPf7,8gg ,

FM
2 5 fLSIC

2 , ISICf3,4,9,10,11g,L
SST
2 , ISSTf5,6,11g,L

SLP
1 , ISLPf1,2,9,10gg,

and

FO
1 5 fLSIC

1 , ISICf1,2,5,6g,L
SST
1 , ISSTf1,2,7,8g,L

SLP
1 , ISLPf1g g .

Here, the intermittent mode indices are given in braces

for each variable.

6. Sea ice reemergence mechanisms

a. SST–sea ice reemergence mechanism

We now examine the sea ice reemergence mechanisms

suggested by the SIC–SST–SLP families defined above.

Bushuk et al. (2014) showed that low-dimensional families

of NLSA modes produce an SST–sea ice reemergence

mechanism in the North Pacific sector, which is consistent

with that proposed by Blanchard-Wrigglesworth et al.

(2011). Can a similar mechanism be observed in Arctic

NLSA modes? In both the model and observations, the

answer is yes.

Figure 13 shows spatial reconstructions of SIC, SST,

and SLP using family FM
1 . These spatial patterns are

composites, produced by averaging over all times where

LSIC
1 (t). 1 (which corresponds to 17% of the data).

Similar patterns, with opposite sign, are obtained by

compositing over times when LSIC
1 (t) is in negative

phase. This figure shows four months of the year, but the

time evolution of FM
1 , shown in movie 5 in the online

supplementary material, is much more illuminating.

In the winter months of January–March, we observe

strong negative sea ice anomalies in the Barents Sea and

strong positive anomalies in the Bering and Labrador

Seas. These anomalies reach their maximum southerly

extent in March. We observe SST anomalies of opposite

sign, which are roughly spatially coincident with the sea

ice anomalies but also extend farther south in each of the

three seas. Note that in March the Kara Sea, the

northern Bering Sea, and the northern Labrador Sea are

all SST anomaly free. The ice anomalies move north-

ward and weaken over the melt season, which begins in

April. In June, the ice anomalies in the region of the

Barents–Kara Seas are located primarily in the Kara

Sea. Also, the Bering and Labrador anomalies have

moved into the northern parts of these seas and weak-

ened substantially.

As the ice anomalies move northward, they imprint an

anomaly of opposite sign in the SST field. In particular,
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FIG. 13. Sea ice, SST, and SLP patterns of CCSM3 reemergence family FM
1 at different months of the year. These spatial

patterns are composites, obtained by averaging over all years in which LSIC
1 . 1.
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the previously anomaly-free Kara and northern Bering

and Labrador Seas now have strong SST anomalies. The

ice continues to retreat northward over the melt season,

reaching its minimum extent in September. In Septem-

ber, the sea ice anomalies are extremely weak in the

Barents–Kara, Bering, and Labrador Seas, yet each of

these seas has retained an SST anomaly. The SST

anomaly retained in the Barents–Kara and Bering Seas

is particularly strong, with a weaker anomaly in the

Labrador Sea. As the growth season begins, the ice

moves southward, interacts with the SST anomalies that

have been stored over the summer months, and rein-

herits anomalies of the same sign as the previous spring.

In December, we observe that most of the summer im-

printed SST anomalies have disappeared, and the sea ice

anomalies have reemerged with the same sign as the

spring anomalies. This reemergence family is typically

active for a 2–8-yr period, during which we observe re-

emerging sea ice anomalies of a consistent sign (see

movie 5 in the online supplementary material).

We observe a similar SST–sea ice reemergence

mechanism in family FM
2 , shown in Fig. 14 and movie

6 in the online supplementary material. This figure is

based on a composite over all times in which LSIC
2 . 1

(which corresponds to 16% of the data). This family

exhibits strong winter sea ice anomalies in the Bering

and Labrador Seas, which are out of phase with each

other. These anomalies disappear over the melt season,

leaving an SST imprint in the northern parts of these

seas in June and September. We observe a sea ice re-

emergence during the growth season, as the SST

anomalies are converted into ice anomalies. This family

does not have a strong signal in the Barents–Kara Seas.

The observational family FO
1 displays a clear sea ice

reemergence, which is active primarily in the Sea of

Okhotsk and the Barents–Kara, Bering, Labrador, and

Greenland Seas (movie 7 in the online supplementary

material). This family, shown for the year 1991 in Fig. 15,

also displays the SST–sea ice reemergence mechanism,

but in a slightly less cleanmanner than themodel output.

The FO
1 has positive winter sea ice anomalies in the

Bering and Labrador Seas, and negative anomalies in

the Barents–Kara Seas, Greenland Sea, and Sea of

Okhotsk. The family has winter SST anomalies of op-

posite sign to these sea ice anomalies, which extend

southward of the sea ice anomalies. Comparing the

March panels to the June and September panels, an SST

imprinting can be observed in the Barents–Kara Seas

and, to a lesser extent, the Labrador and Bering Seas.

Sea ice anomalies of the same sign reappear in the fall,

and this pattern roughly repeats the following year.

The reemergence families are able to capture the

SST–sea ice mechanism of Blanchard-Wrigglesworth

et al. (2011), previously only accessible via time corre-

lation analysis of raw sea ice and SST fields. This mode-

based representation of reemergence allows one to track

the temporal variability and strength of the SST–sea ice

reemergence mechanism, as will be done later in section

6c. Also, the low dimensionality of these families has

implications for predictability, since a small number of

predictors (specifically the low-frequency modes of the

families) define the amplitude and sign of reemergence

events.

b. Sea ice teleconnections and reemergence via
low-frequency SLP variability

Movies 5–7 in the online supplementary material re-

veal consistent phase relationships between sea ice

anomalies in the Barents–Kara, Bering, and Labrador

Seas. The SST mechanism described above provides

a local mechanism for sea ice reemergence but does not

explain this phase locking between geographically dis-

connected seas. We find that the SLP patterns of FM
1 ,

FM
2 , and FO

1 (shown in the right panels of Figs. 13–15)

provide pan-Arctic-scale teleconnections between these

different regions.

We begin with family FM
1 (Fig. 13), which has an SLP

pattern closely resembling the DA. This pattern is

characterized by four main centers of action: pressure

anomalies of the same sign over Greenland and north-

west North America and opposite-signed anomalies

over western Russia and eastern Siberia. The geo-

strophic winds associated with this SLP pattern are

primarily meridional, blowing across theArctic from the

Bering Sea to the Barents–Kara Seas, or vice versa. We

find that the ice advection and surface air temperature

advection associated with these large-scale winds is

consistent with the observed phase relationships in re-

gional sea ice anomalies.

From January to March, the dipole anomaly is very

active, with strong northerly winds over the Bering Sea

and strong southerly winds over the Barents–Kara Seas.

The northerly winds advect cold Arctic air over the

Bering Sea and also push the ice edge southward and

advect additional ice into the sea. Each of these effects

encourages the formation of a positive sea ice anomaly

in the Bering Sea. Similarly, the Barents–Kara Seas

experience warm southerly winds, which melt additional

ice and also push the ice edge northward, contributing to

the observed negative sea ice anomaly. Also, the SLP

anomaly centered over Greenland produces northerly

geostrophic winds over the Labrador Sea, contributing

to its positive sea ice anomalies for the same reasons.

The SLP anomalies and corresponding winds weaken

substantially over the summer months, as do the sea ice

anomalies in each of these regions. In October, the SLP
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FIG. 14. Sea ice, SST, and SLP patterns of CCSM3 reemergence family FM
2 at different months of the year. These spatial

patterns are composites, obtained by averaging over all years in which LSIC
2 . 1.
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FIG. 15. Sea ice, SST, and SLP patterns of HadISST reemergence family FO
1 shown for different months of 1991.
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anomalies begin to reappear with the same sign and

a similar spatial pattern to the previous winter. This

coincides with the beginning of the sea ice growth season

and the reemergence of ice anomalies from the previous

spring. In December, we observe a strong dipole SLP

anomaly, and, again, observe sea ice anomalies in the

Bering, Barents–Kara, and Labrador Seas, which are

physically consistent with this pattern.

Besides explaining the observed teleconnection in

sea ice anomalies, these SLP patterns also suggest

an SLP–sea ice reemergence mechanism via their

winter-to-winter regime persistence. Mode LSLP
3 , the

low-frequency SLP mode of FM
1 , has a strong 1-yr

autocorrelation of 0.70. Because SLP anomalies

produce a significant sea ice response, recurring SLP

patterns will produce recurring sea ice patterns. Thus,

the observed winter-to-winter persistence of the SLP

patterns of FM
1 provides a candidate mechanism for

sea ice reemergence.

As mentioned earlier, in section 4c, the SLP patterns

of FM
1 represent a low-pass-filtered version of the full

atmospheric signal. The SLP patterns of FM
1 should be

thought of as a slowly evolving atmospheric circulation

regime, rather than a snapshot of the full SLP field at

each point in time. For example, the temporal evolution

of the full SLP field is similar to the time series of PCSLP
1

in Fig. 8, whereas the SLP patterns of FM
1 are similar to

the low-pass-filtered PC (red curve in Fig. 8). It is the

persistence of the atmospheric circulation regime of FM
1

that provides a plausible mechanism for sea ice re-

emergence. Sea ice anomalies are known to have a per-

sistence of 2–5 months (Blanchard-Wrigglesworth et al.

2011); therefore, the sea ice anomalies at a given time

represent an integrated response to earlier atmospheric

and oceanic forcing. Given this, one would expect that

sea ice anomalies are not strongly dependent on the

chaotic month-to-month fluctuations of the atmosphere

but are more dependent on a temporally smoothed

version of this fluctuating field. Therefore, the low-pass

filtered SLP patterns of FM
1 provide a plausible physical

link between atmospheric and sea ice variability. The

study of Blanchard-Wrigglesworth et al. (2011) dismisses

SLP persistence as a source of sea ice reemergence because

of the low 1-month autocorrelation of the SLP pattern that

best explains changes in sea ice extent. Here, we argue that

the low-frequency component of similar SLP patterns may

play an important role in sea ice reemergence.

Similar relationships between sea ice and SLP

anomalies are also observed in family FM
2 (Fig. 14),

which has an annular SLP pattern resembling the AO

and a 1-yr autocorrelation of 0.41. Similar to FM
1 , these

SLP patterns are strongly active over the winter months

(October–March) and fairly inactive over the summer

months. The geostrophic winds of this pattern are pri-

marily zonal but also have a meridional component,

which affects sea ice via surface air temperature advec-

tion. In January–March, there are northeasterly winds

over the Bering Sea, southeasterly winds over Labrador

Sea, and northeasterly winds over the Barents–Kara

Seas, with corresponding positive, negative, and positive

sea ice anomalies, respectively. The SLP anomalies be-

come small over the summer months and reappear

during the fall months with the same sign as the previous

winter. With the reappearance of these SLP anomalies,

we observe an ice reemergence, which is particularly

strong in the Bering and Labrador Seas.

The relationship between SLP and sea ice is some-

what less clear in the observations than in the model.

The right panels of Fig. 15 show theFO
1 SLP patterns for

1991, a year when the family was active. In January–

March, there is an AO-like SLP pattern producing

northerly winds over the Labrador Sea and southerly

winds over the Barents–Kara Seas. We observe corre-

sponding positive and negative sea ice anomalies in

these seas, analogous to what was observed in FM
2 .

However, the SLP patterns differ in the North Pacific.

There is minimal advection over the Bering Sea, as

a high pressure anomaly is centered directly over it. This

anomaly produces southerly winds over the Sea of

Okhotsk, which are consistent with the negative sea ice

anomaly. On the other hand, the SLP patterns do not

provide a clear explanation, in terms ofmeridional wind,

for the positive Bering sea ice anomalies. Compared to

FM
2 , these SLP patterns do not decorrelate as strongly

over the summermonths, and a negative SLP anomaly is

retained over the pole, which also shifts onto the Eur-

asian continent over the summer months. The anomaly

strengthens during the fall, producing similar winds and

sea ice patterns to the previous winter. One notable

difference between the observational and model SLP

families is the spatial stationarity of the SLP patterns.

The SLP patterns of FM
1 and FM

2 are relatively fixed in

space and pulse on and off with the annual cycle. TheFO
1

SLP patterns also pulse with the annual cycle but are

transient in space. The SLP centers of action advect

substantially over the course of a year.

Given the seemingly similar sea ice anomalies of FM
1

and FO
1 , a natural question is why these families have

such different atmospheric patterns. A closer analysis of

the sea ice variability of each family reveals clear dif-

ferences between the two. For each family, we compute

the proportion of sea ice variance in a given region,

relative to the variance of the full Arctic domain. We

find that FM
1 contains 24% of its variance in the Bering

Sea, 22% in the Barents–Kara Seas, and 8% in the

Labrador Sea. Conversely,FO
1 contains 5%of its variance
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in the Bering Sea, 35% in the Barents–Kara Seas, and

14% in the Labrador Sea. Therefore, the dominant sea ice

feature of FM
1 is the dipole between the Bering and

Barents–Kara Seas, whereas the dominant feature of FO
1

is the dipole between the Labrador and Barents–Kara

Seas. The corresponding atmospheric circulation patterns

of each family act to reinforce these dominant sea ice

anomalies and have significantly different spatial patterns.

It should be noted that the data analysis approach

employed here is capable of identifying correlation but

not causality. In particular, we have not quantified the

relative importance of the ocean and the atmosphere in

producing sea ice reemergence. Also, we have identified

SLP modes with interannual to decadal variability but

have not provided a mechanism for this observed vari-

ability. We speculate that, rather than intrinsic atmo-

spheric variability, this low-frequency variability of the

atmosphere results from SST or sea ice forcing. The

generation of low-frequency atmospheric variability has

been widely studied, with many authors suggesting that

extratropical and tropical SST anomalies are capable of

driving low-frequency variability in the atmosphere

(Lau and Nath 1990; Latif and Barnett 1994; Trenberth

and Hurrell 1994; Weng and Neelin 1998; Selten et al.

1999; Robertson et al. 2000; Kushnir et al. 2002; Czaja

and Frankignoul 2002). Other authors (e.g., Mysak and

Venegas 1998) have suggested that sea ice anomalies

could drive low-frequency atmospheric patterns, but

modeling studies have suggested that the atmospheric

response is quite weak compared with the typical mag-

nitude of atmospheric anomalies (Alexander et al. 2004;

Magnusdottir et al. 2004). Therefore, we speculate that

anomalous SST forcing is the most likely candidate for

the observed low-frequency SLP patterns, but more

study is required on this problem. These unanswered

questions could be investigated in a future study in-

volving a hierarchy of GCM experiments.

c. Metrics for sea ice reemergence

We now establish a set of reemergence metrics for sea

ice, SST, and SLP, by which one can judge the activity of

sea ice reemergence and associated mechanisms in dif-

ferent regions. These metrics, computed for the recon-

structed fields of each family, quantify the intensity and

sign of ice reemergence events. We focus on the values of

these metrics in the Bering, Barents–Kara, and Labrador

Seas. The sea ice metric is defined as the integrated (area

weighted) SIC anomaly in a given region. We define the

SLP metric as the maximum value of the meridional

geostrophic wind over a given region. This is a proxy for

the amount of warm/cold air advection and northward/

southward ice advection over a given region. The SST

metric is defined as the integrated (area weighted) SST

anomalies in the portion of the seas that are imprinted by

summer SST anomalies. Specifically, we compute the

integrated SST anomalies in theKara Sea (658–808N, 758–
1008E), the northern Bering Sea (608–658N, 1658E–
1608W), and the northern Labrador Sea (608–808N,

708–408W). It is helpful to compare the metrics, plotted in

Figs. 16–18, to movies 5–7 in the online supplementary

material which show the dynamical evolution of the

corresponding fields for the same time period.

Figure 16 showsFM
1 metrics for 100yr of model output.

We observe a number of reemergence events, charac-

terized by periods inwhich the sea icemetric is large, with

consistent sign, over a number of successive winters. For

example, notable periods of active reemergence occur

during years 101–106, 128–131, 146–155, and 175–179.

The sea ice phase relationships for this family are striking,

with strong positive correlation (0.95) between theBering

and Labrador Seas and strong anticorrelation (20.95)

between the Bering and Barents–Kara Seas. The SST

metric reveals the SST–sea ice reemergence mechanism,

as years with large ice metrics have large SST metrics of

the opposite sign (note the anticorrelation of like-colored

curves in Figs. 16a,b). During reemergence events, the

SST metrics are close to zero in the winter months and

grow large in the summermonths as the sea ice anomalies

imprint the SSTfield. These SSTmetrics also show a clear

in-phase relationship between the Bering and Labrador

Seas and out-of-phase relationship between the Bering

and Barents–Kara Seas. The SLP metric is clearly out of

phase with the sea ice metric, which illustrates the sea

ice–SLP reemergence mechanism, since positive (neg-

ative) meridional wind anomalies produce negative

(positive) sea ice anomalies. During reemergence

events, in theBering and Labrador Seas, we observe that

the SLP metric is large over the winter and close to zero

over the summer. In the Barents–Kara Seas, we observe

more persistence, as the family maintains its wind

anomalies throughout an entire reemergence event.

Figure 17 shows the metrics for family FM
2 . Again, we

observe very strong phase relationships in sea ice

anomalies, with in-phase anomalies between the

Barents–Kara and Bering Seas and out-of-phase

anomalies between the Bering and Labrador Seas. The

SST metric displays strong SST–sea ice reemergence

mechanisms in the Labrador and Bering Seas. Also, as

noted in section 5c, there is not a clear SST–sea ice

mechanism in the Barents–Kara Seas. The SLP metric

has a strong signal in the Labrador Sea, which is large in

winter and small in summer and out of phase with the

sea ice anomalies. The SLP–sea ice mechanism is less

strong in the Barents–Kara and Bering Seas, yet we do

observe persistent wind anomalies that are out of phase

with the sea ice anomalies.
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We showmetrics forFO
1 in Fig. 18. This family exhibits

a strong SST–sea ice reemergence mechanism in the

Barents–Kara Seas. The SST signal is very weak in the

Bering Sea, and in the Labrador Sea it tends to persist

over periods of reemergence, rather than being imprinted

each summer. The wind anomalies in the Labrador and

Barents–Kara Seas are consistent with the sea ice–SLP

reemergence mechanism. As noted earlier, the Bering

Sea wind anomalies are not consistent with the sea ice

anomalies. Rather, we observe that the wind anomalies

are inconsistent (in phase) with the sea ice anomalies.

d. Regional sea ice relationships conditional on SLP
modes

The reemergence families suggest a number of sea ice

teleconnections that are related to large-scale SLP pat-

terns. Are these regional teleconnections visible in the

raw SIC data? Are the teleconnections strengthened by

conditioning on certain low-frequency SLPmodes being

active? To answer these questions, we select pairs of

regions and compute lagged cross correlations in total

sea ice area anomalies of the raw data between these

regions. Note that the cross correlations are obtained by

computing a time series of sea ice area anomalies for

each region and performing lagged correlations between

these two time series. Our choice of regions and SLP

modes is guided by the reemergence families. We con-

sider the regions and SLP pattern that display the

strongest teleconnection for each family.

The results are shown in Fig. 19, for months of the year

with sea ice coverage in the marginal ice zones (December–

May) and for lags from 223 to 23 months. Figures 19a,b

show lagged cross correlations between the Barents–Kara

and Bering Seas for the raw CCSM3 data and conditional

FIG. 16. Reemergence metrics for sea ice, SST, and wind of family FM
1 in the Barents–Kara, Bering, and Labrador

Seas, by whichwe judge the activity of ice reemergence. Active periods of reemergence are characterized by repeated

years in which these metrics are large (either positive or negative). Note that the SIC and SST metrics have been

normalized by their respective standard deviations and the SLP metric is reported in meters per second.
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on jLSLP
3 j. 1:5 (corresponds to 14% of the data), re-

spectively. This corresponds to the primary tele-

connection of FM
1 . All correlations plotted in color are

significant at the 95% level, based on a t-distribution

statistic. In the rawdata, we observe negative correlations

between the Bering and Barents–Kara Seas, which are

strongest at lags from26 to 6months. There is a dramatic

strengthening of these negative correlations when con-

ditioned on an activeLSLP
3 mode (theDAmode).We also

observe that the correlations are more persistent when

the DAmode is active. Another interesting feature is the

clear bias in correlations toward lags in which Bering Sea

anomalies lead anomalies in the Barents–Kara Seas. The

analogous correlations, corresponding to family FM
2 , are

shown in Figs. 19c,d for the Labrador and Bering Seas

and for SLP mode LSLP
1 (the AO mode). These correla-

tions are very small compared with Figs. 19a,b. The raw

data display very little correlation structure, and weak

correlations, which are primarily negative, emerge after

conditioning on theAOmode. It should be noted that the

limb of negative correlations, with Bering lagging Lab-

rador, corresponds to summer sea ice anomalies in the

Bering Sea, which are extremely weak. Therefore, this

limb has questionable significance.

Figures 19e,f show cross correlations between the

Barents–Kara and Labrador Seas for the HadISST,

conditional on jLSLP
1 j. 1 (corresponds to 35% of the

data). Note that we use a value of 1 rather than 1.5 for

the conditional correlations because of the shortness of

the observational time series. Also, the shortness of the

time series implies a higher 95% significance level for

correlations. We plot correlations using the same color

bar as CCSM3 and simply white out all correlations that

are not significant at the 95% level. The raw data display

some negative correlation, but a dramatic strengthening

is observed when conditioning on an active AO mode.

The limb of white in Fig. 19f, extending from May (13)

to December (19) corresponds to lagged correlations

with summer months. At lags beyond this limb, we

observe strong negative correlations. This feature is

FIG. 17. As in Fig. 16, but for the family FM
2 .
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a reemergence of anticorrelation between the Barents–

Kara and Labrador Seas. The reemergence structure is

less clear for negative lags, where the Labrador Sea

leads the Barents–Kara Seas; however, we generally

observe anticorrelation between the two seas, which is

significantly stronger than in the raw data.

7. Conclusions

We have studied Arctic sea ice reemergence

(Blanchard-Wrigglesworth et al. 2011) in a comprehen-

sive climate model and observations. This study has

documented the regional and temporal details of sea ice

reemergence and illustrated two potential reemergence

mechanisms, involving SST and SLP persistence, re-

spectively. We have used coupled NLSA (Giannakis

and Majda 2012b, 2013; Bushuk et al. 2014), a nonlinear

data analysis technique for multivariate time series, to

analyze the covariability of Arctic SIC, SST, and SLP.

Coupled NLSA was applied to a 900-yr-equilibrated

control integration of CCSM3, yielding spatiotemporal

modes, analogous to EEOFs, and temporal patterns, anal-

ogous to PCs. Modes were also extracted from 34 years of

observational data, using SIC and SST observations from

HadISST and SLP reanalysis from ERA-Interim. In both

the model and observations, these NLSA modes capture

three distinct types of temporal behavior: periodic, low-

frequency, and intermittent variability. The low-frequency

modes have spatial patterns that closely resemble the lead-

ing EOFs of each variable. In particular, the low-frequency

SLP modes correlate strongly with the well-known Arctic

Oscillation (AO;Thompson andWallace 1998) andArctic

dipole anomaly (DA; Wu et al. 2006) patterns of SLP

variability. The temporal patterns of the low-frequency

SLP modes, obtained here without any preprocessing of

the raw data, closely resemble a low-pass-filtered version

of the corresponding PCs obtained via EOF analysis.

Performing time-lagged pattern correlations, we have

found clear pan-Arctic sea ice reemergence signals in

the model and observations. The lagged pattern

FIG. 18. As in Fig. 16, but for the family FO
1 .
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correlation approach employed in this study reveals

a stronger reemergence signal in observations than pre-

vious studies on reemergence (Blanchard-Wrigglesworth

et al. 2011; Day et al. 2014). Using coupled NLSA

modes, we have found low-dimensional families that are

able to reproduce the reemergence signal of the raw SIC

data. Intriguingly, these families explain a relatively

small portion of the raw SIC variance, yet when re-

moved from the raw data the resulting signal exhibits

significantly weaker reemergence. Moreover, the asso-

ciated SST and SLP patterns of these families demon-

strate two possible reemergence mechanisms, consistent

FIG. 19. Lagged correlations in sea ice area anomalies between different seas: shown are CCSM3 correlations

between the Barents–Kara and Bering Seas for (a) the raw data and (b) conditional on jLSLP
3 j. 1:5, CCSM3 cor-

relations between the Bering and Labrador Seas for (c) the raw data and (d) conditional on jLSLP
1 j. 1:5, and Ha-

dISST correlations between the Barents–Kara and Labrador Seas for (e) the raw data and (f) conditional on

jLSLP
1 j. 1.
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with those proposed by Blanchard-Wrigglesworth et al.

(2011) and Deser et al. (2002). The SST–sea ice re-

emergence mechanism, in which spring sea ice anomalies

are imprinted and stored as summer SST anomalies, is

clearly active in the Barents–Kara, Bering, and Labrador

Seas. The SLP–sea ice mechanism, in which sea ice

anomalies reemerge because of the winter-to-winter per-

sistence of low-pass-filtered SLP anomalies (atmospheric

regimes), is also observed in these regions, with the ex-

ception of the Bering Sea in the observational record.

A key finding of this study is that these reemergence

patterns are part of a pan-Arctic-scale organization in-

volving SLP teleconnection patterns. In particular, we

have found strong phase relationships between sea ice

reemergence events in geographically distinct regions.

Unable to explain this teleconnection in terms of purely

local SST anomalies, we find clear relationships between

regional sea ice anomalies and large-scale SLP variability.

In CCSM3, an out-of-phase relationship between the

Bering/Labrador and Barents–Kara Seas is found to be

consistent with the phase and amplitude of theDAmode.

Similarly, an out-of-phase relationship between theBering/

Barents–Kara and Labrador Seas is found to be consis-

tent with the phase and amplitude of the AO mode. In

observations, the AOmode is able to explain the strong

out-of-phase anomalies of the Barents–Kara and Lab-

rador Seas but cannot explain the weaker anomalies of

the Bering Sea. These regional phase relationships are

weakly visible in the raw SIC data and are significantly

strengthened by conditioning on an appropriate SLP

mode (the AO or DA) being active.

Another key aspect of this study is the regional and

temporal characterization of sea ice reemergence. We

have identified significant regional differences in ree-

mergence between the model and observations, particu-

larly in the Labrador Sea and the North Pacific sector,

despite their pan-Arctic agreement. We have also found

that reemergence events and mechanisms have significant

temporal variability, and that the low-frequency modes of

the reemergence families act as effective predictors of

periods of active or quiescent reemergence. A set of ree-

mergence metrics has been created, by which one can

judge the strength and sign of sea ice reemergence events

and the associated SST and SLP mechanisms.

In this study, we have demonstrated two plausible

mechanisms for sea ice reemergence, involving the atmo-

sphere and the ocean, butwhichmechanism ismost crucial

in producing ice reemergence? Is sea ice reemergence

a fully coupled phenomenon, or does it also occur in more

idealized situations? This data analysis study has identified

correlation but not causation. An interesting subject for

future work would be to perform a suite of coupled model

experiments to study this question of causality.
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