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ABSTRACT

Because of its persistence on seasonal time scales, Arctic sea ice thickness (SIT) is a potential source of

predictability for summer sea ice extent (SIE). New satellite observations of SIT represent an opportunity

to harness this potential predictability via improved thickness initialization in seasonal forecast systems.

In this work, the evolution of Arctic sea ice volume anomalies is studied using a 700-yr control integration

and a suite of initialized ensemble forecasts from a fully coupled global climate model. This analysis is

focused on the September sea ice zone, as this is the region where thickness anomalies have the potential

to impact the SIE minimum. The primary finding of this paper is that, in addition to a general decay with

time, sea ice volume anomalies display a summer enhancement, in which anomalies tend to grow between

the months of May and July. This summer enhancement is relatively symmetric for positive and negative

volume anomalies and peaks in July regardless of the initial month. Analysis of the surface energy budget

reveals that the summer volume anomaly enhancement is driven by a positive feedback between the SIT

state and the surface albedo. The SIT state affects surface albedo through changes in the sea ice con-

centration field, melt-onset date, snow coverage, and ice thickness distribution, yielding an anomaly in the

total absorbed shortwave radiation between May and August, which enhances the existing SIT anomaly.

This phenomenon highlights the crucial importance of accurate SIT initialization and representation of

ice–albedo feedback processes in seasonal forecast systems.

1. Introduction

The rapid loss of Arctic sea ice has the potential to in-

fluence the climate system across a broad range of spatial

and temporal scales. These impacts include changes in the

global energy balance via the sea ice–albedo feedback

(Budyko 1969; Curry et al. 1995), potential influence on
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midlatitude weather (Screen and Simmonds 2013), and

many human-related consequences, including the live-

lihoods of northern communities andArctic wildlife, the

opening of trans-Arctic shipping routes, and new op-

portunities for resource industries (Jung et al. 2016).

The combination of a negative sea ice trend (Stroeve

et al. 2012), climate and weather implications, and di-

verse stakeholder interest has created a burgeoning re-

search focus on the prediction and predictability of

Arctic sea ice.

Current seasonal prediction systems based on ini-

tialized forecasts made with coupled dynamical models

have skill in predicting pan-Arctic sea ice extent (SIE)

at lead times of 2–6 months, depending on the initial

month and model used (Wang et al. 2013; Chevallier

et al. 2013; Sigmond et al. 2013; Merryfield et al. 2013;

Msadek et al. 2014; Peterson et al. 2015). These skill

estimates are based on retrospective forecasts (hind-

casts) that span a significant portion of the satellite era.

A larger set of forecasts, spanning 2008 to present, has

been collected as part of the sea ice outlook (SIO;

Stroeve et al. 2014a), which solicits forecasts of Sep-

tember SIE from dynamical, statistical, and heuristic

prediction systems. The SIO predictions have lower

skill than the hindcast experiments, which may reflect a

general property of seasonal prediction systems (Wang

et al. 2010) or may suggest that the present-day Arctic

has lower intrinsic predictability than earlier decades

(Blanchard-Wrigglesworth et al. 2015). Importantly,

the forecast skill in both the hindcast experiments and

the SIO is substantially lower than the potential pre-

dictability of Arctic SIE as estimated by perfect model

ensemble experiments. These perfect model experi-

ments, which examine how well a model can predict

itself, show that pan-Arctic SIE is potentially predict-

able at lead times of 12–24 months (Koenigk and

Mikolajewicz 2009; Holland et al. 2011; Blanchard-

Wrigglesworth et al. 2011b; Tietsche et al. 2014; Germe

et al. 2014). These estimates represent an upper limit to

sea ice prediction skill, as the forecast errors can be

directly attributed to chaotic error growth arising from

the nonlinear dynamics of the system. Forecast skill in

operational prediction systems is further degraded by

errors in initial conditions and model physics. The

current gap between potential and operational pre-

diction skill represents an opportunity for improved

predictions via improved initialization and model

physics.

A key aspect in improving seasonal forecasts is

understanding the physical mechanisms that un-

derlie the inherent predictability of Arctic sea ice.

Ensuring accurate representation of these mecha-

nisms in forecast systems may be one route to closing

the prediction skill gap. Persistence of SIE anomalies

has been long recognized as an important source of

Arctic predictability (Walsh and Johnson 1979;

Lemke et al. 1980). In addition to a persistence of 2–

5 months, more recent work has shown that SIE and

sea ice concentration (SIC) anomalies exhibit a re-

emergence of correlation (Blanchard-Wrigglesworth

et al. 2011a; Day et al. 2014b; Bushuk et al. 2014,

2015; Bushuk and Giannakis 2015). Specifically,

melt-season SIE and SIC anomalies tend to re-

emerge the following growth season, and growth-

season anomalies tend to reemerge the following

melt season. Reemergence mechanisms, related to

sea surface temperature (SST) and sea level pressure

(SLP) regime persistence, and sea ice thickness (SIT)

persistence have been proposed for these two re-

emergence phenomena, respectively. The SST and

SLP reemergence mechanisms are relevant for win-

ter sea ice prediction, whereas the SIT mechanism

is relevant for summer prediction (Bushuk and

Giannakis 2017, manuscript submitted to J. Climate).

Other studies have also shown that SIT is an impor-

tant source of predictability for summer sea ice

(Chevallier and Salas y Mélia 2012) and, moreover, that

the intrinsic predictability of sea ice may vary with the

SIT state, with thick states being more predictable than

thin states (Holland et al. 2011; Germe et al. 2014). The

multiyear persistence of sea ice volume and SIT anom-

alies (Day et al. 2014b) implies that knowledge of the

SIT state in the preceding winter and spring may be a

crucial factor in predicting September SIE. Indeed, a

number of recent studies have found that improved SIT

initialization leads to improvements in forecast skill on

time scales of days (Yang et al. 2014) to seasons (Lindsay

et al. 2012; Day et al. 2014a; Collow et al. 2015; Guemas

et al. 2016). The lack of pan-Arctic SIT observations has

been a past limitation in sea ice prediction efforts;

however, the recent CryoSat-2 and Soil Moisture and

Ocean Salinity (SMOS) satellite SIT measurements

(Kaleschke et al. 2012; Laxon et al. 2013; Tilling et al.

2015), which have data coverage in the melt-pond-free

months of October through April, represent a new op-

portunity for accurate, observation-based initialization

of SIT.

Another key mechanism affecting summer Arctic

sea ice is the positive feedback between SIC and

surface albedo, which is a contributor to Arctic am-

plification of surface warming (Holland and Bitz

2003; Winton 2006). The surface albedo in the Arctic

exhibits a complex evolution through the melt sea-

son, involving a progression from dry snow-covered

ice to ice that is covered by melt ponds (Perovich

et al. 2007; Perovich and Polashenski 2012). Subtle
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changes to this albedo evolution have important

implications for the surface energy budget of the

Arctic (Serreze et al. 2007) and, hence, the summer

melt of sea ice (Stroeve et al. 2014b). Recent work,

using a sea ice model that directly simulates surface

melt ponds, has identified a strong relationship be-

tween spring melt-pond coverage and September SIE

(Schröder et al. 2014).
In this study, we draw a connection between SIT-

based predictability and surface-albedo-based pre-

dictability. Motivated by the need to understand the

potential impact of SIT initialization on seasonal

prediction skill, we study the temporal evolution of

Arctic sea ice volume anomalies, with particular fo-

cus on their influence on September SIE. We consider

anomalies in the ‘‘September-ice zone,’’ the region

where September sea ice is typically present, as this is

the spatial region where SIT anomalies have greatest

potential to affect September SIE. This study is based

on analysis of a 700-yr control integration and a suite

of initialized forecast ensembles from a fully coupled

atmosphere–land–ocean–sea ice model, as described

in section 2. In section 3, we document a summer

enhancement of sea ice volume anomalies that occurs

in the September-ice zone. We find that this sum-

mer volume anomaly enhancement is driven by an

SIT-state-dependent albedo feedback, in which high-

(low-) thickness states drive positive (negative) sur-

face albedo anomalies. In section 4, we examine the

details of this mechanism by analyzing the surface

energy budget and the factors influencing surface

albedo. We find that the summer volume enhance-

ment can be explained by anomalies in absorbed

shortwave radiation. These albedo-driven shortwave

anomalies are dominated by SIC, surface melt, and

snow cover in May and June and by SIC alone in July

and August. In section 5, we demonstrate that a

similar volume enhancement occurs in initialized

ensemble experiments with perturbed SIT initial

conditions. Finally, the implications of this phenom-

enon for seasonal prediction systems are discussed

and conclusions are presented in sections 5b and 6,

respectively.

2. Model experiments

a. Control integration

This study is based on analysis of a 700-yr control in-

tegration of a fully coupled global climate model (GCM)

developed at the Geophysical Fluid Dynamics Labora-

tory (GFDL). The model is based upon the GFDL Cli-

mate Model, version 2.5 (CM2.5; Delworth et al. 2012),

but employs a lower resolution in the ocean and sea ice

components. This model, whose computational efficiency

makes it appealing for forecasting applications involving

ensembles, is referred to as the Forecast-Oriented Low

Ocean Resolution (FLOR) version of CM2.5 (Vecchi

et al. 2014). The FLOR model has fully coupled atmo-

sphere, land, ocean, and sea ice components, with nominal

horizontal resolutions of 0.58, 0.58, 18, and 18, respectively.
The simulation considered here is a 1990 control run,

forced with prescribed 1990-level radiative forcings and

run for 1400 years.Weuse the final 700 years of the run, as

the first 700 years showdrift associatedwithmodel spinup.

For all variables considered in this study, the final 700

years of the simulation evolve in a statistically steady

state. All data used in this study are monthly averaged.

The sea ice model in the FLOR model is the Sea Ice

Simulator, version 1 (SIS1; Delworth et al. 2006). SIS1

uses an elastic–viscous–plastic rheology for the sea ice

dynamics (Hunke and Dukowicz 1997), an ice thickness

distribution with five thickness categories (Bitz et al.

2001), and a three-layer thermodynamic formulation

with one snow layer and two ice layers (Winton 2000).

Of particular interest for this study is the treatment of

surface albedo in the sea ice model. The model has

specified albedo values for dry ice and snow (aice,dry 5
65%andasnow,dry5 85%) andwet ice and snow (aice,wet5
57.5% and asnow,wet 5 72.7%). The model uses a simple

parameterization for surface albedo that is designed to

capture the implicit effects of melt ponds (see section 3.6.2

of Hunke et al. 2015). This parameterization determines

the surface albedo as a function of the surface skin tem-

perature Ts and the freezing temperature of sea ice Tf,

which has a fixed value of20.0548C in themodel. For both

snow and ice, the temperature-dependent albedo a(Ts) is

given by

a(T
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which provides a linear interpolation between the dry

and wet albedo values for temperatures within 18C of Tf.

The model’s surface albedo is also directly influenced by

the sea ice thickness through the following relation:
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where hi is the ice thickness (measured in meters) in the

ith ice-thickness category, aocean 5 6% is the ocean al-

bedo, and fh 2 [0, 1] is the weighting factor for a convex

sum between the ice and ocean albedo values. This re-

lation acts to reduce the albedo of ice that is thinner than

0.5m and leaves the albedo of ice thicker than 0.5m

unchanged.

b. Initialized prediction experiments

We also perform initialized prediction ensemble ex-

periments with the FLOR model. These 12-member

ensembles are initialized using an ensemble Kalman

filter coupled data assimilation system (ECDA; Zhang

et al. 2007), which assimilates surface and subsurface

ocean data and atmospheric reanalysis data from the

National Centers for Environmental Prediction. The

ocean and sea ice initial conditions are taken from

ECDA, while the land and atmosphere initial conditions

are produced from a suite of AMIP-style atmosphere–

land simulations forced by observed SST and sea ice.

This method is used to initialize the atmosphere and

land components because the FLOR model uses a

higher resolution in these components than ECDA,

which was built on the CM2.1 model (Delworth et al.

2006). A suite of retrospective initialized FLOR model

forecasts spanning 1982–2014 has skill in predicting pan-

Arctic SIE at leads of 2–6 months, depending on the

initial month (Msadek et al. 2014).

The SIT initial conditions from ECDA are biased

thin relative to the FLOR model’s free-running model

climatology (Msadek et al. 2014) and the available

satellite observations of SIT (Tilling et al. 2015). Mo-

tivated by this, we perform a set of ensemble pre-

dictions with improved SIT initialization. The modified

SIT initial conditions use an ECDA SIT anomaly field

(computed relative to the ECDA climatology) and add

this anomaly to the SIT climatology from the FLOR

model (see section b in the appendix for a detailed

description). This approach is designed to improve the

SIT mean state while retaining the crucial interannual

and intra-annual variability captured by the data as-

similation procedure. We perform ensemble experi-

ments, termed FLORSITpert, for four start dates

(1 January, 1 February, 1 March, and 1 April 2013),

each consisting of 12 ensemble members. Comparing

these to the original prediction experiments from the

FLOR model allows us to assess the impact of the

modified SIT initial conditions.

3. Summer volume enhancement in the
September-ice zone

a. The September-ice zone

The SIT field in the central Arctic crucially affects Sep-

tember SIC, as this thickness field determines how much

energy will be required to melt sea ice during the summer

months. Since SIT anomalies are persistent on seasonal

time scales, winter and spring SIT may be an important

source of predictability for September SIE. Winter and

spring SIT anomalies may also potentially encode the

spatial patterns of future September SIC anomalies (Rigor

and Wallace 2004; Williams et al. 2016), and this relation-

ship is likely to evolve in a changing climate (Holland and

Stroeve 2011; DeRepentigny et al. 2016).

Motivated by this, we consider a region S, which we

term the September-ice zone. We define S as the union

of two regions: 1) the grid points covered by September

sea ice (SIC$ 15%) in the model climatology and 2) the

grid points with SIC standard deviation greater than

15%. This region, shown in Fig. 1a, is computed using

the FLOR control run, and represents the region in

which September sea ice is typically present. The area

covered by the September-ice zone is 7.3 3 1012m2, a

value similar to the observed SIE at the beginning of the

satellite record.

b. The impact of earlier SIT on September SIC

As amotivation for our study ofArctic sea ice volume,

we investigate the relationship between September SIC

anomalies and earlier SIT anomalies, asking, what can

earlier SIT tell us about September SIC? In Fig. 1b we

show gridpoint correlation values between September

SIC and May SIT in the FLOR control run. We choose

to show May SIT correlations, as this is a forecast ini-

tialization month of practical interest to stakeholders.

The largest correlations form an annulus of positive

values, which surround the perennial sea ice located

north of Greenland and the Canadian Archipelago. This

annulus corresponds to the dominant region of Sep-

tember SIC variability and represents the spatial regions

that could potentially benefit from an accurate initiali-

zation of May SIT in a seasonal forecast system. Note

that the largest correlation in this figure is roughly

0.6, indicating that, on a gridpoint basis, May SIT

explains less than 40% of September SIC variance.

This will impose a practical upper limit on the regional

forecast skill improvements achievable via improved

SIT initialization.

However, given the spatial autocorrelation and

consistently positive sign of the gridpoint correlation

map, it is likely that an area-integrated metric will

yield a stronger relationship between September SIC
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and earlier SIT. In Fig. 1c, we show correlations be-

tween September sea ice area and earlier sea ice vol-

ume. The sea ice volume is computed over the

September-ice zone, as this is the region where vol-

ume has the potential to impact September SIC. There

is a strong positive correlation between September sea

ice area and earlier sea ice volume, which decays with

lead time. The correlation values are greater than 0.5

for leads up to 20 months, indicating a potential for

SIT initialization to significantly improve seasonal

forecast skill of September SIE. Interestingly, the

lead-2-month correlations (September area with July

volume) are slightly higher than the lead-0-month

correlations (September area with September vol-

ume). The correlation curve also changes shape in July

of years 1, 2, 3, and 4 (leads of 14, 26, 38, and

50 months), although the effect is smaller. This feature

is related to a summer enhancement of sea ice volume

FIG. 1. Relation between September SIC and earlier SIT. (a) The September-ice zone, plotted in red.

(b) Gridpoint correlation ofMay SIT and September SIC in the FLOR control run. (c) Lagged correlation between

September sea ice area and earlier sea ice volume in the FLOR control run. The volume is computed over the

September-ice zone.
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anomalies, which is discussed in detail ahead. There is

also a notable drop in correlation between lead 3 and

lead 4 months (September area with June and May

volume, respectively) and slower rates of decrease at

lead times of 5–8 months. This feature may be related

to the May predictability barrier identified in earlier

work (Day et al. 2014b), in which perfect model

forecasts of September SIE initialized in winter

months have similar skill to those initialized in May.

This indicates that observationally based SIT initiali-

zation in January–April could provide similar skill

improvements to May initialization, a month where

high-quality satellite SIT observations are not cur-

rently available.

c. Volume anomaly time series

The primary focus of this study is the temporal evo-

lution of sea ice volume anomalies in the September-ice

zone. We begin by computing a September-ice zone

volume time series V(t) defined as follows:

V(t)5
1

r
i

ð
S

m(x, t) dS, (3)

where x is the latitude–longitude position, t is the time,

m(x, t) is the mass of sea ice and snow per unit area, ri is

the density of sea ice in the model (905 kgm23), and S is

the September-ice zone as defined above. The mass

variable m output by SIS1 combines sea ice and snow

mass. The contribution of snow mass to m is modest,

ranging from roughly 5% in winter and spring to less

than 1% over the summer. We also computed a Sep-

tember volume time series as V(t)5
Ð
S
c(x, t)H(x, t) dS,

where c(x, t) is the SIC and H(x, t) is the SIT in the ice-

covered portion of the grid cell. This produces a similar

time series to above, yielding the same qualitative con-

clusions that will be presented ahead in this study. We

opt to define the volume time series in terms of ice mass,

since the monthly mean volume is not necessarily the

product of monthly mean SIC and monthly mean

SIT. We next compute a monthly volume climatology

V(t) by computing monthly means of V(t). Subtracting

the monthly climatology from V(t), we obtain the

September-ice zone volume anomaly time series V0(t)

V 0(t)5V(t)2V(t) . (4)

Note that by definition, V 0(t)5 0. Time series for V(t)

and V0(t) computed using the FLOR control run are

shown in Figs. 2a and 2b, respectively. The V(t) time

series has a clear seasonal cycle and also displays sub-

stantial variability on interannual-to-decadal time

scales. This low-frequency variability is clearly visible in

the V0(t) time series and is possibly associated with

low-frequency variations in oceanic heat transport into

the Arctic Ocean (Zhang 2015).

We use the volume anomaly time series V0(t) to study

the evolution of volume anomalies in the September-ice

zone. We identify high- and low-volume states by finding

all times in which the volume anomaly exceeds a thresh-

old of plus or minus 1.5 standard deviations (61.5s; 1.43
1012m3), respectively. These thresholds are plotted as

horizontal lines in Fig. 2b. Figure 2c shows the number

of high- and low-volume ‘‘events’’ in the 700-yr time se-

ries, for each month of the year. We observe a clear

seasonality in the event count, with more high- and low-

volume states occurring over the summer months. Note

that the September-ice zone is SIC anomaly free in win-

ter, meaning that winter volume anomalies are driven

solely by SIT, whereas SIC and SIT both contribute to

the summer volume anomalies. To quantify the influence

of SIC anomalies, we decompose the volume anoma-

lies as V 0 5
Ð
S
(c0H1 cH0 1 c0H0) dS. Computing this de-

composition for high- and low-volume states, we find that

the cH0 term is dominant in all months, indicating that

SIT anomalies are the primary contributor to ice-volume

anomalies in the September-ice zone. Over themonths of

July–October, the c0H and c0H0 terms make notable

contributions to V0, with their sum ranging from 8% to

22% of the volume anomaly. Of particular interest in this

study is the rapid increase of high- and low-volume events

between May and July. This increase is due to enhance-

ment of volume anomalies in the September-ice zone

over these months. We describe this volume enhance-

ment phenomenon in the following subsection.

d. Summer volume anomaly enhancement

The potential ability of improved winter and spring

SIT initialization to influence September SIE pre-

dictions depends on how these SIT anomalies evolve

between the initialization month and September. For

instance, at some time scale, the model will relax to its

free-running climatology, at which point the influence of

SIT initialization will be lost. Here, we use the FLOR

control integration to study the conditional evolution of

volume anomalies in high- and low-volume states, for

each month of the year. In Fig. 3, we plot high- and low-

volume states for initial month January. We show the

evolution of the volume anomaly time series for the two

years following the initial January. Each black curve

represents an individual high- or low-volume January,

and the red curve is the conditional mean computed

over all high- and low-volume Januaries.

The conditional mean curves display an unexpected

feature: in addition to a general decay in time, the volume

anomalies experience an enhancement over the summer

months. This summer enhancement initiates in May and
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reaches a maximum value in July, which is larger than

the initial anomaly. After July, the volume anomalies be-

gin to decay again, yet the August and September values

remain comparable in magnitude to the initial January

anomaly, owing to the summer enhancement. The volume

anomalies decay through the ice-growth season andwinter

months, until May of the second year, when they display

a second summer volume enhancement. The volume en-

hancement in year 2 is sufficiently large that the July

anomaly in year 2 is of comparable size (in high-volume

states; smaller in low-volume states) to the initial January

anomaly from 18 months prior.

FIG. 2. (a) Time series of sea ice volume in the September-ice zone (80 yr shown here). (b) Sea ice volume

anomaly time series in the September-ice zone. The red and blue lines represent 61.5s, respectively, the cutoffs

used to define high- and low-volume states. (c) The number of high- and low-volume events over the 700-yr time

series, in each month of the year. Note that there are more extreme volume events in summer months. On average,

high-volume states have a slightly higher probability of occurrence than low-volume states (7.1% vs 6.2%).
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The evolution of volume anomalies is relatively sym-

metric in high- and low-volume states, with volume

anomalies peaking in July in both year 1 and year 2. One

notable difference is that the negative anomalies decay

at a slightly faster rate than the positive anomalies. This

asymmetry in decay rate is likely due to an asymmetry in

the negative feedback between ice growth and ice

thickness, as this feedback is particularly strong when

the ice thins to values near zero.

It is important to note that the summer volume en-

hancement is a statistical feature of the volume evolution

and there is a significant amount of internal variability to

this phenomenon. In particular, any given year in Fig. 3

may evolve quite differently than the conditional mean.

This is analogous to comparing a single ensemblemember

of an initialized forecast with the ensemblemean forecast.

We will return to this concept in section 5, when we ex-

amine the summer volume enhancement phenomenon

using an initialized forecast ensemble.

Next, we ask, is the timing of volume enhancement a

function of the initial month? To investigate this, we

compute conditional means for high- and low-volume

states for each initial month of the year. The temporal

evolution of these conditional means is plotted in Fig. 4.

We observe a robust volume enhancement that peaks in

July across all initialmonths and for high- and low-volume

states. The temporal evolution is very similar for different

initial months, which suggests that the mechanism for this

summer volume enhancement is closely tied to the sea-

sonal cycle, rather than being initial-month dependent. In

this regard, this phenomenon is distinctly different from

sea ice reemergence (Blanchard-Wrigglesworth et al.

2011a), in which the month of reemergence of SIC

anomalies depends strongly on the initial month.

Figure 4 strongly suggests a positive feedback mech-

anism for this summer volume enhancement, as positive

anomalies become more positive and negative anoma-

lies become more negative. To further investigate the

state dependency of volume enhancement, we compute

conditional means over a continuous range of volume

anomaly states. Specifically, we divide the volume anom-

alies into nine bins centered symmetrically around zero.

The bin limits (in units of 1012m3) are2‘,21.5,21,20.5,

20.2, 0.2, 0.5, 1, 1.5, and ‘. We place each January from

the 700-yr simulation into one of these bins and compute

conditional means within each bin (plotted in Fig. 5a). We

find that the summer volume anomaly enhancement oc-

curs in all bins other than the zero-centered bin, indicating

that this phenomenon is present in nearly all volume

states. Moreover, we find that the strength of this en-

hancement scales smoothly with the size of the initial

volume anomaly. In Fig. 5b, we plot the summer volume

anomaly change DV (defined as DV 5 V0
July 2 V0

May)

versus the January volume anomaly V0
Jan. This shows a

clear positive relationship between the size of January

anomalies and the amount of summer volume enhance-

ment. This relationship is opposite of what one would

expect from a red-noise null hypothesis: If V0(t) behaved
as a red noise process, for V0

Jan . 0, one would expect

DV , 0, and for V0
Jan , 0, one would expect DV . 0.

Indeed, this is what we find if DV is computed using

month pairs outside of the summer (e.g., December

and October). This clear deviation from red-noise be-

havior over the summer months indicates the presence

of positive feedbacks in the Arctic system.

e. Spatial composites in high- and low-volume states

We have documented a summer enhancement of sea

ice volume anomalies in the September-ice zone.

Next, we consider the spatial patterns of this volume

enhancement. In Fig. 6, we plot monthly composite

maps of the SIT anomaly field, computed over all

years with high-volume Januaries. The composite

maps are relatively insensitive to the choice of initial

month and are qualitatively similar, with opposite

sign, for low-volume states. The high-volume states

are characterized by positive SIT anomalies that extend

FIG. 3. Temporal evolution of September-ice zone volume

anomalies, in (a) high- and (b) low-volume states. Each black curve

represents two years of evolution of an individual high- and low-

volume January. The red curves are the conditional mean over all

high- and low-volume Januaries.
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throughout the September-ice zone. The monthly evo-

lution of these SIT anomalies exhibits a similar summer

enhancement to the volume anomaly time series, with

enhanced anomalies beginning in June and extending

into July, August, and September. This summer SIT

enhancement encompasses a broad spatial scale, cov-

ering most of the September-ice zone, indicating that

the summer enhancement is a spatially distributed ef-

fect. After September, the SIT anomalies begin to thin

to smaller values, driven by negative feedbacks from

sensible and latent heat fluxes (see section 4, ahead).

In Fig. 6, we also plot corresponding monthly com-

posite maps for the SIC anomaly field. The winter and

spring months display very little SIC anomaly, as the

FIG. 4. Evolution of volume anomalies in the September-ice zone for different initial months and (left) high- and

(right) low-volume states. Each of these curves is a conditional mean, computed over all high- or low-volume states

for the given initial month. Note that the summer enhancement consistently peaks in July for all initial months.
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September-ice zone is fully covered by sea ice in these

months. In the summer and early fall, particularly July–

October, we observe an annulus of positive SIC anom-

alies located near the edge of the September-ice zone.

This shows that high-volume Januaries tend to produce

summers with more extensive sea ice. Also, it is im-

portant to note that the month of June is nearly

SIC-anomaly free. The summer volume enhancement,

however, has already begun in June (see Fig. 3), which

suggests that the volume enhancement is not being

driven exclusively by SIC anomalies. We examine the

physical mechanisms that drive the summer volume

enhancement in the following section.

4. Mechanisms for volume enhancement

a. Surface energy budget

To understand the mechanisms responsible for the

observed summer volume enhancement, we begin by

considering the surface energy budget over the Arctic

Ocean. The net surface heat flux (at the atmosphere–ice

and atmosphere–ocean interfaces) Fsfc is given by

F
sfc

5 SW1LW1 SH1LH, (5)

where SW is the absorbed shortwave radiation flux

(shortwave down minus shortwave up), LW is the

absorbed longwave radiation flux (longwave down minus

longwave up), SH is the sensible heat flux, and LH is the

latent heat flux. (A schematic, showing the various terms

in the surface energy budget, is shown in Fig. 11a.) Note

that each term in this equation is defined as positive

downward. Therefore, positive terms contribute to melt-

ing ice and negative terms contribute to freezing ice. To

study the mechanisms for summer volume enhancement,

we consider the conditional evolution of these surface

heat flux terms in high- and low-volume states.

For each variable, we compute a spatial-mean time

series, where the area integration is performed over the

September-ice zone. Subtracting a monthly climatology,

we obtain an anomaly time series. Next, we form con-

ditional means from these anomaly time series, com-

puted over all high- and low-volume Januaries. In Fig. 7,

we plot the 2-yr evolution of these conditional means

for a number of different variables. The SIT anomaly

evolution displays a similar summer enhancement to the

volume anomaly time series, with thick anomalies be-

coming thicker and thin anomalies becoming thinner

over the summer months.

The dominant contribution to surface energy budget

anomalies betweenMay and August comes from SW. In

high-volume states, there are negative SW anomalies in

May through September, with a spatial-mean value of

roughly 22Wm22. The magnitude of the summer SW

anomalies substantially exceeds the other terms of the

surface energy budget and is also larger than their sum

(LW 1 SH 1 LH; see Fig. S1 of the supplementary

material for the evolution of each term in the surface

energy budget). We observe a similar behavior in low-

volume states, with positive SW anomalies spanning the

months of May through August. Are these SW anoma-

lies large enough to explain the observed SIT anomaly

enhancement?

To check this, we compute a quantityE, defined as the

time-integrated SW anomaly over the months in which

the SIT anomalies are enhanced (May through July). If

all of the anomalous shortwave energy is used to melt

or freeze ice, then E5 riLDz, where ri 5 905 kgm23 is

the density of sea ice in the model, L5 3.343 105 Jkg21

is the latent heat of fusion of ice, andDz is the thickness
change in meters. Computing Dz for high- and low-

volume states, we find Dz 5 0.05 and 20.09m, re-

spectively. Performing a similar computation based on

FIG. 5. (a) Volume anomaly evolution for different January

volume states. Each January is placed into a volume bin (bin limits

shown in red on the y axis), and conditional means within each bin

are computed. (b) Summer volume anomaly enhancement (July

volume anomaly minus May volume anomaly) vs January volume

anomaly. The white numbers indicate the number of Januaries that

fall within each volume bin. The x-axis values are themean January

volume anomaly within each bin [the y intercepts in (a)].
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FIG. 6. High-volume composites for (top) SIT (m) and (bottom) SIC (%) anomalies computed over all years with

high-volume Januaries. Only anomalies in the September-ice zone are plotted.
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LW 1 SH 1 LH, we find that these heat fluxes corre-

spond to thickness changes of Dz5 0.02 and20.01m for

high- and low-volume states, respectively. These changes

are small compared with the SW estimates, indicating

that the summer thickness changes are indeed dominated

by SW anomalies. Summing these two contributions, we

recover total thickness changes of Dz5 0.07 and20.10m

in high- and low-volume states, respectively. The actual

observed thickness changes are 0.07 and20.07m for high-

and low-volume states, respectively, which agree quite

well with the above estimates. The discrepancy in the

low-volume estimate is likely because some of the SW

signal is absorbed into the ocean and is not directly

used to melt or freeze ice. This issue does not arise in

high-volume states because the September-ice zone is

close to being fully ice covered in these states.

Following the summer SIT enhancement, the SW

anomalies becomeweaker, reaching a near-zero value in

October. The sensible and latent heat flux terms become

large in September through November, arising as a

lagged response to SIC anomalies, which peak in Sep-

tember (see Fig. S1 of the supplementary material).

Note that the LW anomalies are weak during these

months, therefore the LW 1 SH 1 LH term is domi-

nated by SH 1 LH. In high-volume states, positive

September SIC anomalies provide a barrier between the

atmosphere and ocean, reducing surface evaporation

and also reducing the sensible heat flux from the ocean

to atmosphere. These effects produce positive anoma-

lies in latent and sensible heat flux (note that we are

using the convention of positive downward). There is

also a weaker LW signal (see Fig. S1), with positive LW

anomalies from December–April and negative LW

anomalies from May–August. The same behavior, with

opposite sign, occurs in low-volume states.

Year 2 displays similar relationships, with smaller

amplitude, between SIT, SIC, and the surface heat

budget terms. In Fig. 8, we consider the longer-time-

scale evolution of these fields, in high- and low-volume

states. We find a consistently recurring summer SIT

enhancement, with a discernible signal for five years

beyond the initial thickness anomaly. There are also

consistently recurring surface energy relationships in

each year, characterized by synchronous SW anomalies

and SIT enhancement, followed by SIC anomalies, and

then followed by latent and sensible heat flux anomalies.

We have shown earlier that the size of the summer en-

hancement is proportional to the SIT anomaly magni-

tude (Fig. 5). Here, we additionally find that the

magnitudes of the SW, SIC, and LW 1 SH 1 LH

anomalies scale with the magnitude of the SIT anomaly.

The fact that the SW anomaly scales with the SIT

anomaly further supports the hypothesis that the sum-

mer enhancement is SW driven. In both high- and low-

volume states, the anomalies decay within a roughly

exponential envelope, with e-folding time scales of 4.6

and 3.1 yr, respectively (estimated based on exponential

fits to the SIT anomaly curves). Other GCMs will likely

FIG. 7. The surface heat budget over the September-ice zone in

(top) high- and (bottom) low-volume states. Shown are the con-

ditional evolution of net SW anomalies, the sum of LW, SH, and

LH anomalies, SIC anomalies, and SIT anomalies. All terms are

spatial averages computed over the September-ice zone. Positive

heat fluxes contribute to melting ice and negative fluxes contribute

to freezing ice.

FIG. 8. The surface heat budget over the September-ice zone in

(top) high- and (bottom) low-volume states plotted for 8 yr of time

evolution. Positive heat fluxes contribute to melting ice and nega-

tive fluxes contribute to freezing ice.
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have different anomaly decay characteristics and

possibly a different representation of summer volume

enhancement. Future work is required to explore these

directions.

Next, in Fig. 9, we consider the cumulative anomalous

energy input from each term in the surface energy

budget (i.e., the running time integral of the fluxes in

Fig. S1). In high-volume states, the SW term provides a

net negative energy input, a positive feedback, whereas

the other terms provide negative feedbacks via their

positive energy input. The sum total of the four terms

exhibits a positive secular trend, indicating that the

fluxes generally act to relax the volume anomaly toward

zero. Each summer this secular trend is temporarily re-

versed as a result of the positive feedback contribution

from the SW term. The largest negative feedbacks come

from sensible and latent heat fluxes, with the sensible

heat contribution being the slightly larger of the two.

The negative feedbacks from these terms are strongest

over the months of September–December, likely asso-

ciated with the SIC anomalies present in these months.

In low-volume states, similar relationships hold, with

SW providing the positive feedback and LH, SH, and

LW providing negative feedbacks.

b. Volume-driven changes in surface albedo

We have shown that summer sea ice volume changes

are driven primarily by anomalies in shortwave radiation.

Next, we argue that the summer shortwave anomalies

result from a positive feedback between the volume state

and surface albedo. The volume state can potentially

influence surface albedo in four distinct ways: 1) changes

in SIC (the ocean has lower albedo than sea ice), 2)

changes in SIT (thin ice has lower albedo than thick ice),

3) changes in snow cover on sea ice (bare sea ice has a

lower albedo than snow-covered sea ice), and 4) changes

in surface melt (wet sea ice and snow have lower albedos

than their dry counterparts). We next consider the indi-

vidual contributions to surface albedo from each of these

four factors. In Figs. 10a,b, we plot the conditional

anomaly evolution of variables relevant to surface al-

bedo. In Figs. 10c,d, we place these contributions on

common axes, providing estimates of the surface albedo

changes that result from these anomalies. For simplicity,

the analysis below is primarily focused on high-volume

states, but the same arguments apply symmetrically to

low-volume states.

First, we consider the effect of SIC on surface albedo.

We find that high-volume states have positive SIC

anomalies over May–October (Fig. 10a), which produce

positive albedo anomalies and negative SW anomalies

over these months. To quantify this albedo impact, we

compute an albedo response function, defined as the

surface albedo change resulting from a 11% change in

SIC. This albedo response function is computed from

themodel’s albedo difference between sea ice and ocean

albedo, which varies seasonally. For example, the value

of the response function in May is 10.69% compared

with 10.45% in August, since snow-covered May ice

has a substantially higher albedo than the surface-

melted August ice (see Fig. S2 of the supplementary

material). This monthly dependence places additional

weight on SIC anomalies in the early melt season, im-

plying that the relatively modest SIC anomalies of May

and June can have an important impact on surface al-

bedo. In Fig. 10c, we plot the estimated surface albedo

anomaly resulting from SIC, obtained bymultiplying the

SIC anomaly curve in Fig. 10a by the albedo response

function. We find that SIC is the dominant contributor

to surface albedo anomalies in July–September. In May

and June, the SIC-based anomalies are comparable in

magnitude to the anomalies that result from snow area

and surface skin temperature. Note that the SW curve

peaks earlier than the albedo maximum because SW 5
(1 2 a)swdn, where swdn is the downwelling shortwave

radiation. SW peaks in August, between the swdn

maximum at the summer solstice in late June and at the

albedo anomaly maximum in September. Next, we

perform a similar analysis for other variables that in-

fluence surface albedo: snow, thin ice concentration, and

surface skin temperature.

FIG. 9. The cumulative anomalous energy input from each term

in the surface energy budget in (top) high- and (bottom) low-

volume states. Themagenta line shows the cumulative energy input

from the sum of the four terms. Positive energy input contributes to

melting ice and negative energy input contributes to freezing ice.
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In this model, the September-ice zone is fully snow

covered inMay and completely snow free in July. June is

the transition month in which the snow cover on sea ice

melts. Given the albedo difference between snow and

sea ice, the timing of this snowmelt has important im-

plications for June surface albedo. We consider a snow-

area variable, defined as the areal sum of all grid cells

that have a snow thickness of at least 0.02m. We find

that June has positive snow-area anomalies in high-

volume states, which creates a positive albedo anomaly.

There are also large snow-area anomalies in the fall

months. These anomalies are the result of SIC anoma-

lies: the positive SIC anomaly in high-volume states re-

sults in a larger areal platform to collect snowfall in the

fall months. Analogous to SIC, we compute an albedo

response function for snow area. For this function, we

use the average value of the difference between snow

and ice albedos quoted in section 2a, yielding a response

function of 10.176% for every 11% snow-area anom-

aly. Snow area contributes a positive albedo anomaly in

June, which is consistent with the negative SW anomaly

in this month. While the June snow-area anomaly ap-

pears dominant in Fig. 10a, its corresponding albedo

anomaly (Fig. 10c) is of comparable magnitude to that

resulting from SIC.

In the sea icemodel, ice that is thinner than 0.5m has a

reduced albedo, as shown in Eq. (2). This albedo re-

duction depends on the thicknesses hi and concentra-

tions ci in each ice-thickness category.We do not have hi
values saved as output data for this model, but we do

have ci (note that SIC 5 �5

i51ci). The thickness bound-

aries that define the five ice-thickness categories in the

FLORmodel are 0.1, 0.3, 0.7, and 1.1. Therefore, sea ice

in categories 1, 2, and the first half of 3 has reduced al-

bedo because of its thickness.We find that, in addition to

positive SIC anomalies, high-volume states have nega-

tive ice concentration anomalies in categories 1–4 and

positive anomalies in category 5 (not shown). In par-

ticular, the thin-ice categories (1–3) have negative con-

centration anomalies over the summer and fall months

(see Fig. 10a). These anomalies are negligible in June

but are notably negative in July through September and

FIG. 10. Time evolution of variables influencing surface albedo in (a) high- and (b) low-volume states. Plotted are the conditional

evolution of SIC, the concentration of ice in categories 1, 2, and 3 (C123), the surface skin temperature (TS), and the area of snow-covered

ice (SA). The snow area is normalized by the area of the September-ice zone. Note that a different y scale is used for snow area anomalies

in high- and low-volume states. (c),(d) Estimates of the surface albedo anomaly resulting from the anomalies shown in (a) and (b). The SW

anomaly is what we seek to explain.
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reach more negative values in October through De-

cember. We compute an albedo response function (see

Fig. S2) for thin ice concentration using Eq. (2) and an

assumption that the mean thickness of ice in categories

1–3 is 0.3m. We find that thin-category ice creates a

small positive albedo anomaly in July–September. This

surface albedo anomaly is consistent with the negative

SW anomaly observed over these months, but its mag-

nitude is negligible compared to the influence of SIC.

Finally, we consider Ts, the surface skin temperature,

which is determined from the surface energy balance and

plays a role in the spring melt onset of sea ice. In Fig. 10a,

we find that high-volume states have negative winter Ts

anomalies, which are the result of colder ice temperatures

in the thicker ice (not shown). The negative Ts anomalies

persist into the spring months and begin to affect surface

albedo inMay via Eq. (1). Note thatTs does not influence

albedo before May because the Ts values are sufficiently

negative that Eq. (1) always uses the adry values.

Anomalously cool surface temperatures inMay delay the

onset of surface melt, resulting in a positive surface al-

bedo anomaly and a negative anomaly in SW. Unlike the

other variables considered above, it is not straightforward

to convert a given Ts anomaly into a surface albedo

anomaly since the effect of Ts on surface albedo occurs

indirectly via Eq. (1). To compute an albedo response

function for Ts, we use a multiple linear regression in

which surface albedo is predicted using SIC, snow area,

thin ice concentration, and Ts as predictor variables.

This multiple linear regression is computed on a

monthly basis and the regression coefficient for Ts

provides the surface albedo response owing to a 11-K

anomaly in Ts. We find that Ts contributes surface al-

bedo anomalies in May and June that are comparable

in magnitude to the SIC contribution. The influence of

Ts is relatively small over July–September, when the

albedo anomaly is dominated by SIC.

A schematic summary of the volume enhancement

mechanism is shown in Fig. 11b. The summer volume

enhancement is driven by a positive feedback between

surface albedo and the sea ice state. In May and June,

the feedback is dominated by changes in SIC, the melt-

onset date, and snow area on sea ice. In July andAugust,

the feedback is dominated by changes in SIC alone. In

years 2 through 5 of Fig. 8 there are two distinct peaks in

SW, corresponding to June and August anomalies, re-

spectively. This distinct separation is consistent with the

fact that different mechanisms drive the SW anomalies

in June versus August. It is important to note that this

mechanism is based on a set of nonlinear feedbacks, and

therefore there are limitations to the linear separation of

albedo factors presented in Figs. 10c,d. In particular, the

present analysis cannot identify a causal chain of events

that initiate the ice–albedo feedback. Further model

experiments would be required to quantify the relative

importance of SIC and surface ice properties in initiat-

ing this feedback.

An implicit assumption in the above mechanism is

that the SW anomalies are driven by surface albedo

changes, rather than changes in swdn. Since SW 5 (1 2
a)swdn, the negative SW anomalies in high-volume

states could result from either a negative swdn

anomaly or a positive albedo anomaly. To check this,

we compute swdn anomalies in high- and low-volume

states. We find positive swdn anomalies in high-

volume states and negative swdn anomalies in low-

volume states; the opposite of the anomalies necessary

to explain the observed SW anomalies. From this, we

conclude that the SW anomalies are indeed surface-

albedo driven.

c. Ice–ocean energy budget

The analysis to this point has focused on the sur-

face energy balance (i.e., the energy balance at the

atmosphere–ice and atmosphere–ocean interfaces). We

next consider the energy balance at the ice–ocean in-

terface, with the goal of diagnosing the primary driver of

melt at this interface. In particular, there is a possibility

that the observed volume changes are being driven by

oceanic turbulent heat flux (TH). We let Focean be the

net ice–ocean heat flux. This term has contributions

from Fsfc via direct transmission into the ocean surface

through sea ice leads or transmission through suffi-

ciently thin sea ice and from TH via ocean mixing. The

term Focean is saved as a model diagnostic, but the in-

dividual contributions from the transmitted surface heat

flux and TH are not. Therefore, we estimate the trans-

mitted heat flux from each term in the surface energy

budget, as detailed in section a of the appendix. The

computation of transmitted SW (SWT) uses Beer’s law

to estimate transmission through sea ice (see appendix;

section 3.6.2 of Hunke et al. 2015). This estimate likely

underestimates the magnitude of SWT due to the tem-

poral resolution of the data; however, it does capture its

temporal variability. We let Fsfc-t be the portion of the

net surface heat flux that is directly transmitted into the

ocean surface.

We find that the total May–July Focean and total

May–July Fsfc-t are highly correlated (r 5 0.93), in-

dicating that a large fraction of Focean variance (87%) is

captured by Fsfc-t. This substantial covariance high-

lights an important point: surface heat flux anomalies

are coupled to the ocean and can ultimately contribute

tomelting sea ice at the ice–ocean interface. Indeed, we

find that the Focean anomalies in high- and low-volume

states correspond to ice-thickness changes of Dz5 0.04
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and 20.05m, respectively. These represent a sub-

stantial fraction of the ice-thickness changes from

volume enhancement of Dz 5 0.07 and 20.07m re-

ported in section 4a. The strong covariance of the

transmitted surface heat flux and the ice–ocean heat

flux indicates that TH does not play a leading role in

driving the summer volume anomaly enhancement.

This is consistent with the expectation that vertical

mixing is weak in the strongly stratified central Arctic

Ocean. Also, one would expect the reduced (addi-

tional) melt in high- (low-) volume states to decrease

(increase) surface stratification, thereby increasing

(decreasing) vertical mixing and providing a negative

feedback for the volume anomaly. Therefore, the ver-

tical mixing contribution has the incorrect sign to ex-

plain the observed volume anomaly enhancement.

Of the four terms in the surface energy budget, SWT is

the dominant contributor to Fsfc-t (98% of the variance)

over the volume enhancement months of May–July.

This suggests that the ice–ocean heat flux in May–July is

primarily shortwave driven. Note that while the SW

anomaly occurs at the surface, it influences the sea ice in

three distinct ways: 1) top melt at the ice–atmosphere

interface; 2) warming of the interior ice via shortwave

absorption, which influences both top and bottom melt

by modifying conductive heat fluxes in the ice; and

3) bottom melt at the ice–ocean interface.

5. Implications for Arctic seasonal predictability

a. Volume enhancement in an initialized forecast
system

Using a control run, we have demonstrated that volume

anomalies in the September-ice zone are enhanced over

the summer months. What are the implications for sea-

sonal predictions made with initialized forecast ensem-

bles? To examine this question, we compare the FLOR

and FLORSITpert prediction ensembles. These ensemble

experiments use the same dynamical model and, besides

FIG. 11. (a) Schematic of the heat fluxes in the surface energy budget. (b) Summary of the

mechanism for summer enhancement of sea ice volume anomalies.
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SIT, share identical initial conditions. The FLORSITpert

experiments are initialized with thicker SIT, as described

in section 2b and section b of the appendix. We compare

the FLOR and FLORSITpert runs to study the system’s

memory of SIT initial conditions. Analogous to section 3,

we study the evolution of sea ice volume anomalies in the

September-ice zone. We define anomalies for each per-

turbed ensemble member as FLORSITpert 2 hFLORi,
where angle brackets indicate an ensemble mean.

In Fig. 12, we plot 12 months of volume anomaly

evolution for forecasts initialized in January through

April 2013. All forecasts are initialized on the first of the

month and run with 12 ensemble members. We find

significant persistence of the initial SIT anomalies, with

48 of 48 ensemblemembers displaying a positive volume

anomaly 12 months after initialization. The mean

e-folding time scale of these volume anomalies is 2.0 yr.

This indicates that, in this forecast system, SIT initiali-

zation has the potential to impact forecast skill for lead

times up to roughly 24 months. In addition to their

volume memory, the ensemble means show a summer

volume enhancement that closely resembles that of the

control run. For each initialization month, the volume

enhancement begins in May and peaks in July. As in the

control run, the volume enhancement is a statistical

feature, which is visible in the ensemble mean but not

necessarily in every ensemble member. The mean vol-

ume enhancement (over all start dates) is 0.383 1012m3,

which is roughly 30% larger than the largest volume

enhancements shown in Fig. 5. The initial volume

FIG. 12. Volume anomaly and SIC anomaly evolution for ensemble predictions initialized on 1 January, 1 February, 1 March, and

1 April 2013. Anomalies are defined as FLORSITpert minus FLOR. Each black curve represents the volume anomaly of an individual

ensemble member, and the red and green curves are ensemble means of the volume and SIC anomalies, respectively.
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anomalies in the ensemble runs are significantly larger

(4s) than the typical anomalies in the control run, which

is consistent with this increased enhancement. Figure 12

also shows the ensemble-mean evolution of spatial-

mean SIC anomalies, which are defined analogously to

the volume anomalies. For all initialization months, the

SIC anomalies are positive over the summermonths and

peak in September. This SIC behavior is consistent with

the findings from the control run and demonstrates a

clear influence of SIT initialization on September SIE.

b. Implications and discussion

The ensemble prediction experiments show that SIT

initial condition perturbations are persistent on seasonal

time scales and, moreover, that these perturbations are

enhanced over the summer months. This indicates a

promising potential for improvements in winter and

spring SIT initialization to impact and improve seasonal

forecasts of September sea ice. Since the SIT enhance-

ment occurs over the summer months, this phenomenon

is particularly relevant for predictions of September sea

ice. It is important to note that in the FLORSITpert ex-

periments, only the SIT initialization was changed. This

is distinct from the control run, in which SIT anomalies

exist as part of a fully consistent ice–ocean–atmosphere–

land state. The fact that a robust volume enhancement

occurs with changes to solely SIT allows us to directly

attribute volume enhancement to the thickness state.

The summer volume enhancement is driven by a state-

dependent albedo feedback, which, in May and June, is

controlled by SIC, surface melt onset, and snow cover.

This suggests that an accurate representation of SIC and

ice-surface conditions in May and June are crucial for

accurately capturing volume, and hence SIC, evolution

through the summer months. While satellite SIT obser-

vations are not currently available in May and June be-

cause of challenges associated with surface melt, SIC and

melt pond data are available and may encode crucial in-

formation about the SIT state. This suggests a potential

future initialization strategy, in which satellite SIC data

are assimilated in all months and satellite SIT data are

assimilated in the winter and early spring months (up to

the end of April), after which satellite-derived melt pond

data are assimilated for May and June. This strategy

would allow thickness-related data to be assimilated well

into the melt season, potentially improving September

predictions. Indeed, recent work has shown that melt

ponds are a source of predictability for September sea ice,

although there is some disagreement regarding the lead

times at which this predictability is realized (Schröder
et al. 2014; Liu et al. 2015).

Another recent study shows that prediction ensem-

bles initialized in May with realistic sea ice conditions

show improved seasonal forecast skill compared to en-

sembles initialized with a sea ice climatology (Guemas

et al. 2016). The initialized ensembles in Guemas et al.

(2016) show a summer enhancement of SIE forecast

skill, which resembles the volume enhancement signal in

this study lagged by roughly one month. These results

suggest that summer SIT anomaly enhancement in-

creases the predictability of September SIE. Additional

future work is required to understand the impact of

summer volume enhancement on September SIE pre-

diction skill.

6. Conclusions

Using a control integration and a suite of initialized

forecast ensembles from a fully coupled global climate

model (GCM), we have examined the temporal evolu-

tion of sea ice volume anomalies in the September-ice

zone. The September-ice zone is the region where Sep-

tember sea ice is typically present and, therefore, the

region where sea ice thickness (SIT) has greatest po-

tential to influence September sea ice concentration

(SIC). We have found that the control simulation has

a strong correlation between September sea ice area

and earlier sea ice volume in the September-ice zone.

These correlation values are greater than 0.7 for leads of

0–8 months and remain above 0.5 up to a lead of

20 months. Interestingly, despite the longer lead time,

the correlation values are slightly larger in July than

September. This increased correlation is directly related

to the primary finding of this paper: Arctic sea ice vol-

ume anomalies tend to be enhanced over the summer

months, peaking in July.

Computing a volume anomaly time series for the

control simulation, we have identified high- and low-

volume states, and studied the conditional evolution of

volume anomalies in these states. There is a clear sea-

sonality to the high- and low-volume event count, with a

greater prevalence of high- and low-volume events over

the summer months. The volume anomaly evolution

shows a clear summer enhancement, in which anomalies

grow between the months of May and July because of a

positive ice–albedo feedback mechanism. A typical

summer volume anomaly enhancement in a high- or

low-volume state corresponds to a spatially averaged

SIT anomaly of 7 cm over the September-ice zone. We

have found that the summer volume anomaly en-

hancement is robust with respect to the initial month,

as anomalies present in different initial months exhibit

a similar volume evolution. In particular, the volume

anomaly enhancement in both high- and low-volume

states consistently peaks in July. It is crucial to note

that the summer volume anomaly enhancement is a
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statistical feature and individual events exhibit a sig-

nificant amount of internal variability. Typically, the

anomaly enhancement can be robustly identified when

averaging over 10 (or more) randomly selected high-

and low-volume years, which is similar to a typical

forecast ensemble size. We have also found that the

size of the summer volume anomaly enhancement in-

creases monotonically with the size of the initial volume

anomaly, indicating that this phenomenon is always

present but most significant in large anomaly years. The

summer SIT enhancement has a spatially broad signal

that encompasses most of the September-ice zone, with

SIT anomalies that persist throughout the year and are

largest in July, August, and September. The SIC field

is characterized by an annular anomaly pattern sur-

rounding the perennial-ice zone, with matching sign to

the SIT anomalies.

Analysis of the surface energy budget in high- and

low-volume states revealed that the summer volume

enhancement is primarily driven by anomalies in

absorbed shortwave radiation (SW) over the months of

May–July. The anomalous SWenergy input corresponds

closely to the observed changes in ice thickness. Fol-

lowing the volume enhancement, which peaks in July,

there is an SIC anomaly that peaks in September and

latent and sensible heat flux (LH 1 SH) anomalies that

peak in October. Owing to the persistence of SIT

anomalies, this sequence of events repeats in subsequent

years, with SW, SIC, and LH1 SH anomaly amplitudes

that scale with the size of the SIT anomaly. We have

found that SIT anomalies have e-folding time scales of

4.6 and 3.1 yr in high- and low-volume states, respec-

tively. These time scales also set the decay time scale for

the summer enhancement phenomenon and related

variables in the surface energy budget. We have dem-

onstrated that the SW anomalies result from SIT-state-

dependent changes in surface albedo. These albedo

changes are driven by SIC and surface properties related

to the melt-onset date and snow coverage in May and

June, and by anomalies in SIC in July and August. A

schematic summary of the mechanism for summer vol-

ume anomaly enhancement is provided in Fig. 11b.

It is interesting to note that a similar volume enhance-

ment also occurs in the context of initialized forecast en-

sembles with perturbed SIT initial conditions. Since the

sole change to the initial conditions was SIT, this directly

attributes the volume enhancement to the SIT state. The

results of this study suggest that future initialization

strategies incorporating SIT, SIC, and surface melt ponds

may be promising for seasonal forecasting systems since

each of these have an important influence on the ice–

albedo feedback. These findings highlight the need for

accurate representation of the ice–albedo feedback in

GCMs since its strength crucially affects summer SIT and

September sea ice extent. Future work testing the ro-

bustness of the conclusions of this study across other

GCMs, especially those with explicit representation of

melt ponds, is needed.
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APPENDIX

Detailed Methodology

a. Computation of transmitted surface energy fluxes

We estimate transmitted shortwave radiation

(SWT) using monthly averaged data of snow depth hs,

ice-category concentrations ci, and absorbed short-

wave radiation SW. This estimate has potential errors

for two reasons: 1) the thicknesses in each ice category

hi are not saved for this run and need to be estimated,

and 2) hs, ci, and SW are saved at monthly time reso-

lution. Since SWT is based on instantaneous products

of these quantities, using monthly averaged data may

introduce biases. In particular, since 1 2 SIC and SW

have a positive covariance, our estimate is likely an

underestimate of the true transmitted shortwave

radiation.

A portion of SW is directly absorbed by the ocean

surface and a portion is transmitted through sea ice,

according to Beer’s law. We let SWocean be the net

shortwave radiation that is absorbed by the ocean sur-

face. Note that, because of the presence of sea ice,

SWocean # SW. Let I0 be the amount of SW that pene-

trates into the ice. The term I0 is given by

I
0
5 0:3(12 f

snow
)SW, (A1)

where

f
snow

5
h
s

h
s
1 0:02

(A2)

and hs is the snow depth. The SWpenetration is given by

I(z)5 I
0
e2kz , (A3)

where k 5 1/0.67m21 is the extinction coefficient.

Therefore, SWocean is given by
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k51

c
i

!
SW. (A4)

The first term represents the amount of SW that pene-

trates through sea ice, and the second term represents

the SW absorbed directly by the ocean (through leads

and in ice-free regions). To compute the first term, we

need hi, which is not saved as an output variable for this

run. However, we do have ci, and we know the thickness

category limits. We choose to estimate the hi values as

the midpoint of each thickness category. Specifically, we

use the following values: h1 5 0.05, h2 5 0.2, h3 5 0.5,

h4 5 0.9, and h5 5 2. With this choice, we can compute

SWocean.

Finally, we want to compare SWocean to Focean, the

total ice–ocean heat flux. Since Focean is only defined

over grid points with positive SIC, we weight SWocean by

SIC to allow for a proper comparison.We define SWT as

SWT5 SW
ocean

3 SIC. (A5)

Therefore, SWT represents the shortwave flux into the

ocean surface in the ice-covered regions of the Arctic.

We follow a similar procedure, without the Beer’s Law

contribution in Eq. (A4), to compute the transmitted

fluxes from the other terms in the surface energy budget.

b. Modification of sea ice thickness initial conditions

Here we describe the construction of the SIT initial con-

ditions for the FLORSITpert experiments. Let H(x, y, t) be

the SIT in the ice-covered portion of the grid cell, defined as

H5
�
i

c
i
h
i

�
i

c
i

, (A6)

where hi and ci are the thickness and concentration in

the ith ice-thickness category. Let HFLOR(x, y, t) and

HIC(x, y, t) be the SIT fields from historical runs of

FLOR and ECDA, respectively. Let the overbar

indicate a time averaging performed over the FLOR

hindcast prediction period (1982–2014). We would like

to create a set of perturbed SIT initial conditions ~HIC,

defined at each grid point by

~H
IC
(x, y, t)5H

IC
(x, y, t)1DH(x, y), (A7)

where

DH(x, y)5H
FLOR

(x, y, t)2H
IC
(x, y, t). (A8)

We now compute a multiplicative scaling factor 11 l,

which, when applied to each hi, will yield the desired

perturbation in H. We choose this multiplicative

scaling technique instead of an additive shift because

the multiplicative scaling provides better fidelity to

the ice thickness distribution, which is important

for the simulation of many aspects of polar climate

(Holland et al. 2006). In the present case, DH is typi-

cally 1m in the central Arctic. Therefore, an additive

shift would effectively place all ice into thickness

category 5, which would introduce systematic ther-

modynamic, dynamic, and albedo biases (Holland

et al. 2006). We define l(x, y, t) as

l(x, y, t)5
H

FLOR
(x, y, t)2H

IC
(x, y, t)

H
IC
(x, y, t)

. (A9)

Next we scale the original initial conditions in each

thickness category by a multiplicative factor of 1 1 l:

~H
IC
(x, y, t)5

�
i

c
i
h
i
(11 l)

�
i

c
i

5 (11 l)H
IC
(x, y, t)

5H
IC
(x, y, t)1DH(x, y), (A10)

which yields the desired thickness perturbation.

This methodology can break down when 1) jDHj . 0

and HIC 5 0 (adding ice to an ice-free grid point) or

2) when 1 1 l # 0 (removing ice from an ice-covered

grid point). To avoid model instabilities associated with

these, we incorporate two additional criteria:

1) The SIT correction is only applied to grid points

where HIC $ 0.1m.

2) If 1 1 l , 1, the ice can only be thinned to a

minimum of 0.1m (i.e., ice cannot be completely

removed by this procedure).

These two criteria, which are primarily applied near the

sea ice edge, are sufficient for the model to run stably

with the new SIT initial conditions.
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