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ABSTRACT

There is a significant gap between the potential predictability of Arctic sea ice area and the current forecast

skill of operational prediction systems. One route to closing this gap is improving understanding of the

physical mechanisms, such as sea ice reemergence, which underlie this inherent predictability. Sea ice ree-

mergence refers to the tendency of melt-season sea ice area anomalies to recur the following growth season

and growth-season anomalies to recur the following melt season. This study builds on earlier work,

providing a mode-based analysis of the seasonality and interannual variability of three distinct reemergence

mechanisms. These mechanisms are studied using a common set of coupled modes of variability obtained via

coupled nonlinear Laplacian spectral analysis, a data analysis technique for high-dimensional multivariate

datasets. The coupledmodes capture the covariability of sea ice concentration (SIC), sea surface temperature

(SST), sea level pressure (SLP), and sea ice thickness (SIT) in a control integration of a global climate model.

Using a parsimonious reemergence mode family, the spatial characteristics of growth-to-melt reemergence

are studied, and an SIT–SIC reemergence mechanism is examined. A set of reemergence metrics to quantify

the amplitude and phase of growth-to-melt reemergence are introduced. Metrics quantifying SST–SIC and

SLP–SICmechanisms for melt-to-growth reemergence are also computed. A simultaneous comparison of the

three reemergence mechanisms, with focus on their seasonality and interannual variability, is performed.

Finally, the conclusions are tested in a model hierarchy, consisting of models that share the same sea ice

component but differ in their atmospheric and oceanic formulation.

1. Introduction

Arctic sea ice extent (SIE) has declined precipitously

over the satellite era at a rate of roughly 214%decade21

(Serreze et al. 2007; Stroeve et al. 2014). In addition to this

decrease in areal coverage, submarine, satellite, and in situ

measurements indicate that Arctic sea ice is becoming

thinner (Rothrock et al. 1999; Kwok and Rothrock 2009),

transitioning from multiyear to first-year ice (Rigor and

Wallace 2004; Maslanik et al. 2011) and experiencing lon-

ger melt seasons (Perovich and Polashenski 2012; Stroeve

et al. 2014). Because of the positive feedback between sea

ice and surface albedo (Budyko 1969; Curry et al. 1995),

these changes have potential implications for the stability

of the Arctic summer sea ice pack (Lindsay and Zhang

2005; Holland et al. 2006b; Winton 2006; Maslanik et al.

2007). The reduction in sea ice thickness (SIT) crucially

affects Arctic climate, as it modifies heat and momentum

fluxes between the atmosphere and the ocean (Maykut

1978), which, in turn, affect the large-scale mean state and

variability of the atmosphere–ice–ocean system (Holland

et al. 2006a). In addition to the positive ice-albedo feed-

back, SIT also plays an important role in negative Arctic

feedback mechanisms such as the ice thickness–ice growth

rate feedback (Bitz andRoe 2004) and the ice thickness–ice

strength feedback (Owens and Lemke 1990).

The recent decline in SIE has motivated interest in

seasonal prediction and predictability of Arctic sea ice.

Predictions made with coupled global climate models

(GCMs) have skill in predicting pan-Arctic SIE at lead

times of 2–6 months (Wang et al. 2013; Chevallier et al.

2013; Sigmond et al. 2013;Merryfield et al. 2013;Msadek

et al. 2014; Peterson et al. 2015). These lead times are
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substantially shorter than predictability estimates from

‘‘perfect model’’ experiments, which show that Arctic

sea ice area and volume are potentially predictable for

lead times of 12–24 and 24–48 months, respectively

(Koenigk and Mikolajewicz 2009; Holland et al. 2011;

Blanchard-Wrigglesworth et al. 2011b; Tietsche et al.

2014; Germe et al. 2014). This gap between opera-

tional and perfect model prediction skill represents

the forecast skill improvements potentially achievable

via improved model physics and/or initial conditions.

Achieving these forecast improvements depends cru-

cially on understanding, as well as accurately initializing

and simulating, the physical mechanisms that underlie

the inherent predictability of Arctic sea ice. In the

present study, we focus our attention on sea ice re-

emergence, one such ‘‘predictability mechanism.’’

Owing to its persistence, SIT provides a source of

predictability for the Arctic climate system (Chevallier

and Salas y Mélia 2012). This is a property that could be

exploited by operational sea ice prediction systems. In-

deed, recent studies have shown improved prediction

skill in model experiments with improved SIT initial

conditions (Lindsay et al. 2012; Yang et al. 2014; Day

et al. 2014a; Collow et al. 2015; Guemas et al. 2016). The

SIT state also has important implications for inherent

sea ice predictability, as GCM studies show that thin sea

ice states are generally less predictable than thick ice

states (Holland et al. 2011; Germe et al. 2014). SIT

persistence in the central Arctic is also responsible for a

reemergence of sea ice area anomalies that occurs be-

tween the growth season and the following melt season,

despite a loss of correlation over the intervening winter

months (Blanchard-Wrigglesworth et al. 2011a; Day

et al. 2014b). A similar reemergence occurs between

melt-season and growth-season sea ice area anomalies,

which is related to sea surface temperature (SST) per-

sistence in the seasonal-ice zones and large-scale atmo-

spheric regime persistence (Blanchard-Wrigglesworth

et al. 2011a; Day et al. 2014b; Bushuk et al. 2014, 2015;

Bushuk and Giannakis 2015). These two lagged corre-

lation phenomena have collectively been termed sea ice

reemergence (Blanchard-Wrigglesworth et al. 2011a).

Henceforth, we will refer to the two varieties of re-

emergence as growth-to-melt and melt-to-growth re-

emergence, respectively.

In this study, we examine sea ice reemergence in a

GCM hierarchy using a mode-based perspective. We

extract spatiotemporal modes of Arctic covariability

using coupled nonlinear Laplacian spectral analysis

(NLSA; Giannakis and Majda 2012b; Bushuk et al.

2014), a high-dimensional multivariate data analysis

approach, which is independent of physical units. Cou-

pledNLSA, as described in section 2, is applied toArctic

sea ice concentration (SIC), SIT, SST, and SLP, and the

resulting modes of variability are used to study sea ice

reemergence. We use these modes to construct low-

dimensional reemergence mode families, which capture

the crucial lagged correlation features of reemergence

in a parsimonious manner. This mode-based approach

has a number of appealing features, particularly the

following: 1) the mode time series allow for detailed

analysis of the temporal evolution and variability of

reemergence; 2) the spatiotemporal modes reveal the

spatial patterns and seasonal evolution of reemerging

SIC anomalies and other related physical fields; and

3) the coupled analysis provides a natural connection

between Arctic SIC and large-scale modes of climate

variability. We seek to leverage these strengths in this

study, exploring the seasonality and interannual vari-

ability of sea ice reemergence mechanisms.

The plan of this paper is as follows. In section 2, we

summarize the datasets and data analysis techniques

used in this study. In section 3, we examine growth-to-

melt reemergence, focusing on themechanism proposed

by Blanchard-Wrigglesworth et al. (2011a) in which

growth-season (fall) SIC anomalies reemerge the fol-

lowing melt season (spring) as a result of persistent SIT

anomalies in the central Arctic. We find that this

mechanism is well represented by the reemergence

family, and we study its spatial patterns, seasonal evo-

lution, and interannual variability. This is done in a

similar spirit to earlier work on melt-to-growth re-

emergence (Bushuk et al. 2015). In section 4, we

introduce a unified view of growth-to-melt and melt-to-

growth reemergence mechanisms, exploring their sea-

sonality and interannual variability using a single mode

family. We find that each reemergence mechanism has a

clear relation to the seasonal cycle and displays distinct

periods of activity and quiescence. In section 5, we ex-

plore these results in a hierarchy of coupled models that

share the same sea ice component but differ in their

atmospheric and oceanic formulation. Finally, conclu-

sions are presented in section 6.

2. Datasets and methods

a. CCSM4 experiments and observational datasets

This study is primarily based on analysis of a fully

coupled 1300-yr control run (b40.1850.track1.1deg.006)

of the Community Climate System Model, version 4

(CCSM4; Gent et al. 2011). This run is forced with 1850

greenhouse gas levels and has 18 nominal resolution for

the ocean and sea ice components and 0.98 3 1.258
latitude–longitude resolution for the atmospheric com-

ponent. CCSM4 realistically simulates many aspects of
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Arctic climate and has a number of improvements

compared with CCSM3 (Jahn et al. 2012). Of particular

note for the present study is the significantly improved

SIT representation in CCSM4, which motivates the use

of this model to examine the role of SIT in growth-to-

melt sea ice reemergence. The large-scale pattern of

climatological SIT in CCSM4 agrees reasonably well with

available observations, with thickest ice north of Green-

land and the Canadian Archipelago. Notably, CCSM4

does not display the erroneous secondary SIT maximum

in the Chukchi and East Siberian Seas that was present in

CCSM3 (Holland et al. 2006a). The climatological sea-

sonal cycle of pan-Arctic SIE in CCSM4 agrees well with

the satellite-observed seasonal cycle. While pan-Arctic

SIE is well represented, CCSM4 has regional climato-

logical biases in SIC. In particular, the largest biases occur

in September, whereCCSM4has a negative bias (too little

sea ice) in the Beaufort and Chukchi Seas and positive

biases (too much sea ice) in Baffin Bay, the Greenland–

Iceland–Norwegian (GIN) Seas, and the Barents Sea.

We also analyze a CCSM4 climate model hierarchy,

consisting of three models with identical sea ice com-

ponents but differing atmospheric and oceanic formu-

lations. Specifically, the hierarchy consists of the fully

coupled model described above, a slab-ocean model

(SOM), and an ice–ocean model driven by specified at-

mospheric forcing fields. The same model hierarchy has

also been used previously in the study of melt-to-growth

reemergence of Bushuk and Giannakis (2015). The

SOM is the ‘‘CCSM4-NEWSOM,’’ as documented in

Bitz et al. (2012). This model shares the same formula-

tion as the control run, except for the replacement of a

full-depth ocean with a mixed layer ocean. The mixed

layer depth used in the SOM is computed offline using

the control run and is spatially varying but fixed in time.

The SOM also has a spatially and seasonally varying ‘‘Q

flux’’ term, also computed offline, which accounts for

heat flux due to oceanic heat transport convergence, an

effect that cannot be directly simulated by the mixed

layer ocean dynamics of the SOM. The SOM run is 60

years long and uses the same grid as the control run.

The ice–ocean model uses the same ocean and sea ice

components as the control run and is forced by phase II

of the Co-ordinated Ocean–Ice Reference Experiments

(CORE-II) forcing fields (Large and Yeager 2009;

Danabasoglu et al. 2014). We henceforth refer to this

simulation as the ‘‘CORE-II run.’’ The CORE-II forc-

ing consists of interannually varying atmospheric sur-

face forcing fields spanning the time period 1948–2007.

The forcing fields have some state variables that are

based on gridded observational products and others based

on National Centers for Environmental Prediction

(NCEP)–National Center for Atmospheric Research

(NCAR) reanalysis data (Kalnay et al. 1996). As de-

tailed in Large and Yeager (2009), corrections are ap-

plied to these data in order to provide agreement with

available satellite and in situ data. This time period

exhibits trends associated with greenhouse gas–forced

variability. To focus on the internal variability of this

experiment, the data were detrended by subtracting

monthly linear trends from each month.

We also analyze passive microwave satellite obser-

vations of SIC from the National Snow and Ice Data

Center (NSIDC). We use the monthly averaged SIC

dataset processed using the NASA team algorithm

(Cavalieri et al. 2012), which is provided on a 25-km

polar stereographic grid and spans 36 years (1979–2014,

inclusive). We detrend the NSIDC data by subtracting

monthly linear trends from each month.

All data used in this study are monthly averaged, and,

crucially, the seasonal cycle has not been removed.

Retaining the seasonal cycle allows us to extract ‘‘in-

termittent type’’ modes from the data, which represent

the interaction of low-frequency variability with the

seasonal cycle, in both space and time.

b. Data analysis methods

In this study, we utilize the coupled NLSA algorithm,

as developed in Bushuk et al. (2014), to investigate the

covariability of SIC, SST, SLP, and SIT in the Arctic

sector. Coupled NLSA is a multivariate generalization

of the NLSA algorithm (Giannakis and Majda 2012a,b,

2013), a nonlinear data analysis technique for high-

dimensional datasets. Coupled NLSA merges two key

concepts: 1) the use of time-lagged embedding for time

series analysis of dynamical systems (Packard et al. 1980;

Broomhead and King 1986; Vautard and Ghil 1989;

Sauer et al. 1991) and 2) the use of a kernel function to

assess the similarity between samples of nonlinear data

(Belkin and Niyogi 2003; Coifman and Lafon 2006).

Suppose xt is an s-sample time series of a variable defined

over d spatial grid points, with a uniform time step of dt

(here, dt 5 1 month). The first step of coupled NLSA is to

time-lag embed all variables of interest in the higher-

dimensional space R
dq. Each sample in this ‘‘embedding’’

space represents a q-snapshot spatiotemporal pattern of

the input data. The parameter q is chosen by the user and

specifies the length of these spatiotemporal patterns. In this

study, we use a value of q5 24 months. Specifically, time-

lagged embedding is performed via the followingmapping:

x
j
1X

j
5 [x

j
, x

j21
, . . . , x

j2(q21)
],

where the index j represents time tj 5 t1 1 ( j2 1)dt.

Time-lagged embedding allows one to study the var-

iability of spatiotemporal patterns and also provides
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superior time-scale separation to empirical orthogo-

nal function (EOF) analysis.

In this study, we assess the similarity between states

using a pairwise kernel function defined as follows:

K
ij
5 exp

 
2
kXSIC

i 2XSIC
j k2

�kjSICi kkjSICj k

!
exp

 
2
kXSST

i 2XSST
j k2

�kjSSTi kkjSSTj k

!
exp

 
2
kXSLP

i 2XSLP
j k2

�kjSLPi kkjSLPj k

!

where

jSICi 5XSIC
i 2XSIC

i21 ,

jSSTi 5XSST
i 2XSST

i21 , and

jSLPi 5XSLP
i 2XSLP

i21

are the velocities of each variable in lagged embedding

space, and k�k is the Euclidean norm. The kernel func-

tion K can be thought of as a local version of the tem-

poral covariance matrix, which decays to zero outside

of a given neighborhood. The term Kij provides a mea-

sure of similarity between the SIC, SST, and SLP states

at times ti and tj. The locality of the kernel is determined

by the user-selected scale parameter �. For typical cli-

mate datasets � is roughly 1, and smaller values of � can

be chosen as the number of samples increases.

The kernel function has two key features, which make

it well suited for multivariate data analysis: 1) the kernel

is independent of physical units, by virtue of the division

by ji, and 2) the product form of this kernel emphasizes

covariability between the different input fields. In par-

ticular, obtaining a large value of Kij requires a simul-

taneous high degree of similarity between XSIC
i and

XSIC
j , XSST

i and XSST
j , and XSLP

i and XSLP
j . If any of these

fields have low similarity, the value of Kij will be sub-

stantially reduced.

Coupled NLSA uses these kernel values to extract

coupled modes of spatiotemporal variability from the

input data. Using K, a graph Laplacian matrix is com-

puted, and an eigenvalue problem is solved, yielding a

set of Laplacian eigenfunctions. These eigenfunctions

are orthonormal with respect to m, the invariant mea-

sure corresponding to the kernel K. The data for each

variable of interest are projected onto the leading l ei-

genfunctions, and a singular value decomposition

(SVD) of the resulting ‘‘filtered’’ dataset is performed,

yielding a set of l modes of variability. Each mode

consists of a q-snapshot spatiotemporal pattern (analo-

gous to an extended EOF) and an associated time series

(analogous to a principal component). The modes for

different variables of interest are inherently coupled

because the data for each variable are projected onto a

common set of coupled eigenfunctions. These ei-

genfunctions, which are ‘‘learned’’ directly from the

multivariate data, act as a temporal filter for the data.

Note that the temporal modes are orthonormal with

respect to the invariant measure m. The standard de-

viation of these modes is equal to one in the case of

uniform measure and is slightly different from one in

most climate applications. For example, in the present

study, the standard deviation of the temporal modes

ranges between 1.00 and 1.07. Therefore, the temporal

modes from NLSA can be interpreted analogously to

principal components in EOF analysis, which have unit

standard deviation. We refer the reader to Bushuk et al.

(2014) and Bushuk et al. (2015) for a more detailed

description of the coupled NLSA algorithm.

c. Coupled modes of variability and reemergence
families

For each of the model experiments above, we use

coupled NLSA to extract modes of covariability for SIC,

SST, SLP, and SIT. We compute the coupled NLSA

kernel using SIC, SST, and SLP as input variables. Note

that the SIT modes are obtained by projecting the SIT

data onto these eigenfunctions and performing an SVD

of the projected SIT data. This is analogous to our

method for finding modes for the other variables. SIT

was not included in the kernel, as we found that it

dominated the kernel values over other variables. Cou-

pled NLSA produces modes in three distinct ‘‘flavors’’:

1) periodic modes, which reflect the seasonal cycle;

2) low-frequency modes that capture the interannual-to-

decadal variability of the system; and 3) intermittent

modes, which represent the interaction of low-frequency

and periodic variability, in both time and space. These

intermittent modes are crucial to the present study, as

they encode the seasonal characteristics of sea ice re-

emergence. The periodic and intermittent modes come in

degenerate pairs (same singular value) and evolve in

temporal quadrature.

Computing the coupled NLSA kernel values and

spatiotemporal modes requires choices of the Gaussian

locality parameter � and the spectral truncation level l.

We use values of �5 0.8 and l5 21, �5 1 and l5 23, and

� 5 1 and l 5 24 for the control, SOM, and CORE-II

runs, respectively. The � parameter is chosen empirically

using the guiding principle that the coupled NLSA

kernel should be as local as possible, while retaining
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time-scale separation in the Laplacian eigenfunctions.

In particular, when � is too small, the Laplacian matrix

becomes ill conditioned and the eigenfunctions become

noisy and mix time scales. The truncation level l is also

determined empirically. In this work, l was chosen in

order to retain two low-frequency modes and to retain

the mode pair structure of the periodic and intermittent

modes.

We employ the methodology of Bushuk et al. (2015)

to construct ‘‘reemergence families’’ of NLSA modes,

which are the minimal subset of SIC modes able to re-

produce the lagged correlation structure of the raw SIC

data. For each model in this study, we identify a five-

mode reemergence family consisting of a low-frequency

mode and degenerate pairs of annual and semiannual

intermittent modes. Lagged correlations computed us-

ing this family display both a melt-to-growth and a

growth-to-melt reemergence of correlation. We identify

associated SST, SLP, and SIT modes based on correla-

tions with the SIC temporal modes that make up the

reemergence family. This joint set of SIC, SST, SLP, and

SIT modes is referred to as the reemergence family.

3. Growth-to-melt reemergence

Earlier work has studied low-dimensional represen-

tations of Arctic melt-to-growth reemergence and the

associated physical mechanisms involving SST and SLP

(Bushuk et al. 2015; Bushuk andGiannakis 2015). In this

study, we use a low-dimensional description of re-

emergence obtained via coupled NLSA to examine

Arctic growth-to-melt reemergence of SIC anomalies.

a. Lagged correlation analysis

Sea ice reemergence is a lagged correlation phenom-

enon, which has been characterized via time-lagged

correlation of pan-Arctic sea ice extent and area

(Blanchard-Wrigglesworth et al. 2011a; Day et al.

2014b) and via time-lagged pattern correlation of Arctic

SIC (Bushuk et al. 2014, 2015; Bushuk and Giannakis

2015). Here, we use the pattern correlation approach,

computing time-lagged pattern correlations of the raw

SIC anomaly field for all initial months (January–

December) and for all lags from 0 to 23 months. Spe-

cifically, we compute an uncentered pattern correlation

value for all (initial month, initial month plus lag) pairs

in the time series. We report the time mean of these

pattern correlations in Fig. 1. This figure shows corre-

lations computed over a pan-Arctic domain (458–908N
and 08–3608) using both NSIDC observations and the

CCSM4 control run. The observations (Fig. 1a) show

both a melt-to-growth reemergence, corresponding to

melt-season SIC anomalies recurring the following

growth season, and a growth-to-melt reemergence,

corresponding to growth-season SIC anomalies re-

curring the following melt season. The melt-to-growth

reemergence is centered around September, with

anomalies from n months before September tending to

reemerge nmonths after September when the ice edge is

collocated with the initial anomaly (see solid line in

Fig. 1a). Similarly, the growth-to-melt reemergence is

centered around March, with anomalies n months be-

fore March tending to reemerge n months after March

(see dashed lines in Fig. 1a). The lagged correlations also

show increased correlation at 12-month lag, when the ice

edge is collocated with the initial anomaly. Both forms

of reemergence may contribute to this correlation fea-

ture. For example, July anomalies tend to reemerge in

November owing to melt-to-growth reemergence, and

November anomalies tend to reemerge the following

July owing to growth-to-melt reemergence. This con-

tributes to a positive correlation at 12-month lag. It is

important to note that the growth-to-melt reemergence

limb strength is dependent on the observational dataset

FIG. 1. Time-lagged pattern correlations of SIC anomalies from

(a)NSIDCobservations and (b) theCCSM4 control run, computed

over a pan-Arctic domain. The solid lines indicate months with

increased correlation due to melt-to-growth reemergence. The

dashed lines indicate months with increased correlation due to

growth-to-melt reemergence.
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used. In particular, lagged pattern correlations com-

puted using the Met Office Hadley Centre Sea Ice and

Sea Surface Temperature dataset (HadISST) do not

show a clear growth-to-melt limb but do display this

limb during certain time periods of the record [see

Figs. 12b,f of Bushuk et al. (2015)].

The CCSM4 lagged correlations (Fig. 1b) show a

clear melt-to-growth reemergence, which qualitatively

matches theNSIDCmelt-to-growth reemergence signal,

and a relatively weak growth-to-melt reemergence. In

CCSM4, there is a strong temporal variability to the

strength of reemergence events: during certain time pe-

riods the melt-to-growth and growth-to-melt reemergence

signals are substantially enhanced. We examine this effect

through additional pattern correlation analysis of CCSM4.

Specifically, this enhancement occurs when the low-

frequency mode of the reemergence family, which we de-

note by LSIC
1 , is active. The term LSIC

1 is the time series

corresponding to the leading low-frequency SIC mode

obtained via coupled NLSA. We consider this mode to be

‘‘active’’ when jLSIC
1 j . 2 (this corresponds to

jLSIC
1 j. 1.9s, where s is the standard deviation). Figure 2

shows correlations for pan-Arctic and regional domains

computed using the raw SIC data, as well as the corre-

sponding conditional correlations computed during times

in whichLSIC
1 is active. Figures 2a and 2b show correlations

computed over the pan-Arctic domain, which display a

clear enhancement of both reemergence limbs when the

low-frequency mode is active. The strength of the condi-

tional growth-to-melt reemergence signal (dashed line in

FIG. 2. Time-lagged pattern correlations of SIC anomalies from the CCSM4 control run, computed over (a),(b) a

pan-Arctic domain; (c),(d) the CEL Seas; and (e),(f) the NBK Seas. Correlations are computed using the raw SIC

data (left) and conditional correlations are computed over all times in which jLSIC
1 j. 2 (right). All correlations are

significant at the 95% level, based on a Student’s t test. The solid lines indicate months with increased correlation

due to melt-to-growth reemergence. The dashed lines indicate months with increased correlation due to growth-to-

melt reemergence.
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Fig. 2b) is comparable to the melt-to-growth reemergence

signal of the raw data (solid line in Fig. 2a).

The growth-to-melt reemergence predominantly oc-

curs in regions of the central Arctic that are fully sea ice

covered, and hence sea ice anomaly free, during the

winter months. In Figs. 2c–f we compute time-lagged

pattern correlations for two regions of the central Arc-

tic: the Chukchi, East Siberian, and Laptev (CEL) Seas

and the northern Barents and Kara (NBK) Seas. These

regions will be focused on throughout this study. We

define the CEL domain as 658–808N and 1058E–1608W
and define the NBK domain as 788–858N and 108–908E
(see Fig. 3). In each of these regions, we find that the

growth-to-melt reemergence is stronger than the melt-

to-growth reemergence in both the raw data and the

conditional correlations. This is distinct from the pan-

Arctic domain, in which melt-to-growth reemergence is

decidedly stronger than growth-to-melt reemergence.

The emphasized growth-to-melt reemergence in the

CEL andNBKdomainsmotivates us to focus on them in

this study. Note that selecting other regions in the

seasonal-ice zones would alternatively emphasize the

melt-to-growth reemergence signal (Bushuk et al. 2014).

b. SIT–SIC reemergence mechanism

We next examine the spatiotemporal evolution of the

NLSA reemergence family for the CCSM4 control run,

with particular focus on the role of SIT in growth-to-

melt reemergence. Figure 4 shows reconstructed SIC

and SIT fields from the reemergence family for different

months of the year. These are composite patterns, ob-

tained by averaging over all times in which the low-

frequency SICmode of the reemergence family is active,

in positive phase (LSIC
1 . 2). The yearly evolution and

interplay of these fields reveals an SIT–SIC growth-to-

melt reemergence mechanism, in which the memory of

growth-season SIC anomalies is retained by SIT anom-

alies in the central Arctic over the winter months.

In September, we observe negative SIC anomalies in

the CEL Seas and positive SIC anomalies in the NBK

and Greenland Seas. Roughly spatially coincident with

these anomalies are like-signed SIT anomalies. After

reaching its minimum extent in September, the sea ice

cover enters the growth season, characterized by

southward migration of the sea ice edge and increasing

SIC in the central Arctic. The SIC anomalies tend to

move with the sea ice edge, eventually vacating the CEL

and NBK domains, whereas the SIT anomalies are

spatially persistent and insensitive to the sea ice edge

position. ByMarch, the growth-season SIC anomalies of

the CEL and NBK Seas have been lost, as these seas are

fully ice covered, and hence SIC anomaly free, during

winter. Conversely, the SIT anomalies have persisted,

retaining anomalies that are spatially coincident with

the original September anomalies. The melt season be-

gins in April, and during this season the SIC anomalies

begin to retreat northward, vacating the Bering Sea and

the southern portion of the Barents Sea. Eventually, the

SIC anomalies move far enough northward that they

begin to interact with the SIT anomalies that have been

retained from the previous growth season. In the CEL

domain, the ice is anomalously thin and melts out faster

than normal, creating a negative SIC anomaly in this

region. Conversely, the NBK Seas have anomalously

thick ice, meaning that the ice melts out more slowly

than normal, creating a positive SIC anomaly. By this

mechanism, growth-season SIC anomalies tend to ree-

merge the following melt season. After reemerging, the

anomalies are maintained up to the September sea ice

minimum. This cycle roughly repeats again the following

year, and, as we find in the following subsection, these

‘‘reemergence events’’ tend to recur over 3–10-yr time

periods.

Sea ice reemergence requires both a source of vari-

ability, which sets up the initial SIC anomaly pattern,

and a source of memory, which acts to retain the

anomaly between the growth and melt seasons. In the

SIT–SIC mechanism above, persistent SIT anomalies

act as the source of memory, but this does not preclude

an oceanic or atmospheric role in driving the patterns of

SIT–SIC covariability shown in Fig. 4. In particular,

earlier work has shown that large-scale modes of SLP

FIG. 3. Regional domains considered in this study: the CEL Seas,

the NBK Seas, the Bering (BER) Sea, and the southern Barents

and Kara (SBK) Seas.

15 JUNE 2017 BU SHUK AND G IANNAK I S 4663



FIG. 4. Spatial pattern composites of SIC (%) and SIT (m), computed using the NLSA reemergence family of the control run. These

composites are computed over all times in which the leading low-frequency SIC mode is active in positive phase (LSIC
1 . 2).
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variability provide a dynamical linkage, which sets the

spatial patterns of SIC reemergence (Bushuk and

Giannakis 2015). In Fig. 5, we consider oceanic and at-

mospheric contributions to reemergence, plotting the

reconstructed SST and SLP fields from the control run

reemergence family. The SLP patterns of the re-

emergence family closely resemble the Arctic dipole

anomaly pattern of SLP variability (Wu et al. 2006). The

SLP modes from coupled NLSA capture low-frequency

atmospheric regimes and represent a temporally low-

pass-filtered version of the atmospheric state [see Fig. 8

of Bushuk et al. (2015)]. By virtue of filtering out high

frequencies, these modes have substantially more per-

sistence than the full SLP field, which has little auto-

correlation beyond one month. In their positive phase,

these SLP patterns drive geostrophic winds that blow

meridionally from the North Pacific sector to the North

Atlantic sector. These winds influence sea ice dynami-

cally, exporting ice from the CEL domain into the NBK

domain, and thermodynamically, via the advection of

warm air into the CEL domain and cold air into the

NBK domain. These factors contribute to anomalous

melting and export in the CEL domain and anomalous

freezing and import in the NBK domain, consistent with

the ice anomalies in Fig. 4. This suggests that the dipole

anomaly SLP pattern plays a role in setting the spatial

pattern of sea ice reemergence in two related ways:

1) driving SIC anomalies near the ice edge and 2) driving

SIT anomalies in the central Arctic. The SLP anomalies

are strongest in the ice growth season of October–

March, encoding the spatial pattern of future melt-

season anomalies. While atmospheric variability provides

an important control on SIC and SIT variability, the

atmosphere cannot provide a stand-alone reemergence

mechanism because of its low autocorrelation on time

scales beyond one month. Rather, the atmosphere sets up

initial SIT and SIC anomalies, and this signal is persisted

via central Arctic SIT anomalies. This SIT memory allows

for reemergence of SICbetween the growth season and the

melt season.

Aside from anomalies adjacent to the summer sea ice

edge, there is no clear SST signal in the central Arctic

owing to the fact that these grid points are primarily

covered by sea ice. This indicates that mixed layer ocean

temperatures in the central Arctic do not provide a

source of memory for growth-to-melt reemergence. We

will return to the role of the ocean in growth-to-melt

reemergence in section 5, when we investigate sea ice

reemergence in a model hierarchy.

c. Metrics for growth-to-melt reemergence

Next, we introduce a set of reemergence metrics, by

which one can judge the amplitude and phase of

reemergence events, and assess the activity of the SIT–

SIC reemergence mechanism. These metrics shed light

on the temporal behavior of sea ice reemergence. We

define SIC and SIT metrics as the integrated SIC and

SIT anomalies, respectively, over a region of interest.

These metrics, computed over the CEL and NBK do-

mains using the control run reemergence family, are

shown in Fig. 6. Note that the metrics have been nor-

malized by their standard deviation.

Growth-to-melt reemergence events can be identified

as periods of time during which the SIC reemergence

metrics (Fig. 6a) have large amplitude and consistent

sign over a number of consecutive years. The SICmetrics

pulse with an annual cycle, with large amplitude in

summer months and small amplitude in winter months.

These metrics also display a clear antiphase relationship

between the SIC anomalies of the CEL and NBK do-

mains. The SIT reemergence metrics (Fig. 6b) have the

same sign as the SICmetrics but do not display an annual

pulsing. Rather, the SIT metrics persist with the same

sign for a number of years and closely resemble modu-

lating envelopes for the SIC metrics. This relationship

reflects the SIT–SIC reemergence mechanism described

above, with SIT retaining memory that allows SIC

anomalies to reemerge in successive summers. Figures 6c

and 6d display a zoom-in of these metric values for a 4-yr

period of active reemergence. We observe that the SIC

metric is small over the winter months and large over

summer months. The SIT metric maintains a persistent

sign over this 4-yr time period, matching the sign of the

SIC anomalies.

It is important to note that the SIC metrics show more

than simply the seasonal cycle in SIC variability in these

regions. The amplitude of the SIC metrics have a seasonal

cycle, as the CEL and NBK domains have low SIC vari-

ability in the ice-coveredwintermonths andhigh variability

in the summer months (see Fig. 8a, described in greater

detail below). The crucial point shown in Fig. 6 is that the

SIC metrics tend to have a repeated sign in successive

years, indicating a reemergence of SIC anomalies.

4. Seasonality and interannual variability of sea ice
reemergence mechanisms

The control run reemergence family captures both

growth-to-melt as well as melt-to-growth reemergence of

SIC anomalies (see Fig. 2b). In the previous section, we

have demonstrated that the family displays an SIT–SIC

mechanism for growth-to-melt reemergence. Additionally,

the SST and SLP patterns of this family reflect the SST–SIC

and SLP–SICmechanisms for melt-to-growth reemergence

presented in earlier work (see Figs. 4 and 5; Bushuk

and Giannakis 2015). This motivates a simultaneous
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FIG. 5. Spatial pattern composites of SST (K) and SLP (Pa), computed using the NLSA reemergence family of the control run. SLP

contours are plotted in black. These composites are computed over all times in which the leading low-frequency SIC mode is active in

positive phase (LSIC
1 . 2).
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comparison of all four fields of the reemergence family.

In Fig. 7, we investigate the seasonality and phase re-

lationships of these three reemergence mechanisms.

We find that each reemergence mechanism displays a

clear relation to the seasonal cycle, involving in-

teraction between SIC anomalies and a second physical

variable of the ice–ocean–atmosphere system.

Figure 7 (left) shows reemergence metrics plotted for a

4-yr time period of active reemergence (the same 4-yr

period as used in Fig. 6). In all panels, SIC metrics are

plotted as solid lines, and the metrics for the field that

participates in the reemergence mechanism are plotted

as dashed lines. Figures 7 (center and right) show the

phase evolution of these metrics with respect to the sea-

sonal cycle. Specifically, for each metric M(t), the phase

evolution is given by (x[t], y[t])5 (jM[t]jcos[2pt/12],
jM[t]jsin[2pt/12]), where parentheses are used to indicate
coordinate pairs and where t is the time measured in

months. We plot these values for an 80-yr portion of the

time series. The phase plots are qualitatively similar for

other 80-yr portions of the 1300-yr time series.As stated in

section 3c, the SIC and SIT metrics are defined as the

integrated SIC and SIT anomalies over a region of in-

terest. Following Bushuk et al. (2015), the SST metric is

defined as the integrated SST anomaly computed over

the region that experiences summer imprinting of SST

anomalies and the SLP metric as the mean value of the

meridional geostrophic wind computed over the region

of interest. Figures 7a–c each focus on a particular re-

emergence mechanism. The time series and phase dia-

grams should be considered in concert. In particular, the

phase diagrams illustrate the seasonality and interannual

variability of the reemergence mechanism (but do not

contain information about the sign of themetrics), whereas

the time series illustrate the metrics and their sign during a

particular 4-yr period of active reemergence. Taken to-

gether, these plots describe the temporal behavior of these

mechanisms over an 80-yr time period.

Figure 7a shows the SIT and SICmetrics computed for

the CEL and NBK domains. The 4-yr snapshot is that of

Figs. 6c and 6d, illustrating the SIT–SIC reemergence

mechanism with persistent SIT anomalies providing the

FIG. 6. SIC and SIT reemergence metrics computed using the control run NLSA re-

emergence family for the CEL and NBK domains. The metrics are normalized by their std dev.

(a),(b) A 100-yr portion of the time series; (c),(d) a 4-yr portion.
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memory for growth-season SIC anomalies to reemerge

the following melt season. The phase evolution of these

metrics clearly illustrates the persistence of the SIT

anomalies and the seasonality of the SIC anomalies. The

SIT metric tends to be active during all months of the

year, with relatively circular trajectories in phase space,

whereas the SIC metric tends to be strongly active in

summer, peaking in September, and weakly active dur-

ing the winter months. The radial variations in these

phase plots illustrate the substantial interannual vari-

ability in the magnitude of reemergence events.

In Fig. 7b, we plot SST and SIC metric values for the

Bering Sea, a region with particularly strong melt-to-

growth reemergence in this model (see Figs. 4 and 5).

The Bering SIC metrics are computed over 558–658N
and 1658E–1608W and the Bering SST metrics are

computed over 608–658N and 1658E–1608W. For visual

clarity we do not plot metrics from the southern Barents

and Kara Seas, which display similar qualitative be-

havior and are out of phase with the Bering Sea metrics.

The 4-yr snapshot shows that the SIC metric is large in

winter and small in summer. The SST metric has oppo-

site sign to the SIC metric and is large in summer and

small in winter. These metrics illustrate a trade-off be-

tween SST and SIC, in which summer SST anomalies

store the memory of winter SIC anomalies. This SST

memory allows for SIC anomalies to reemerge the fol-

lowing growth season, as displayed by the metrics. The

phase evolution clearly demonstrates this SST–SIC

trade-off, as the SIC metric is strongly active in winter

months and the SSTmetric is strongly active in summer

months. Indeed, the sum of these two phase portraits

FIG. 7. Time series and phase evolution of reemergence metrics for SIC, SST, SLP, and SIT, computed using the control run NLSA

reemergence family over the CEL, NBK, and BER domains. Each row highlights an individual reemergencemechanism: (a) the SIT–SIC

mechanism for growth-to-melt reemergence, (b) the SST–SIC mechanism for melt-to-growth reemergence, and (c) the SLP–SIC

mechanism for melt-to-growth reemergence. (left) Time series during a 4-yr period of active reemergence, with SIC metrics plotted as

solid lines and metrics for the other variables participating in the mechanism plotted as dashed lines. (center),(right) The seasonal phase

evolution of the absolute values of the metrics, plotted for an 80-yr portion of the time series.
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would yield a result with relatively circular trajectories

in phase space.

Finally, in Fig. 7c, we plot SLP and SIC metrics for the

Bering Sea. Again, the southern Barents–Kara metrics

display similar behavior, which we choose not to plot for

visual clarity. Themeridional winds have opposite sign to

the SIC anomalies and have largest amplitude during the

winter months. This anticorrelation suggests a physical

SLP–SIC interaction, as positive (i.e., warm) meridional

winds correspond to negative SIC anomalies, and vice

versa. The physical consistency of the SIC and SLP

fields, along with the winter-to-winter persistence of

the SLP patterns, provides an SLP–SIC mechanism for

reemergence. Note that earlier work has shown that

SST provides the dominant source of memory for

melt-to-growth reemergence and that the SLP mecha-

nism does not operate as a stand-alone process (Bushuk

et al. 2015). The SLP mechanism plays a key role,

however, in setting the spatial patterns of melt-to-growth

SIC reemergence. The phase diagrams illustrate that the

wind anomalies generally lead the SIC anomalies, as the

winds are maximal in January and February, whereas

the SIC anomalies peak in March. This relationship, with

wind anomalies leading and SIC anomalies lagging, is

consistent with the physical expectation that these SIC

anomalies are forced by atmospheric circulation anoma-

lies. Additional work, investigating the causality of this

SLP–SIC lead–lag relationship, is required.

Note that the same time period is used for the three

mechanisms shown in Fig. 7. This indicates that, for the

NLSA reemergence family, periods of active melt-to-

growth reemergence coincide with periods of active

growth-to-melt reemergence. This tendency is also

displayed by the raw data, as certain time periods are

characterized by both enhanced melt-to-growth and

growth-to-melt reemergence (see Figs. 2a,b).

FIG. 8. Time-mean amplitude of reemergence metrics for SIC, SST, SLP, and SIT, for different months of the

year, computed using the full time series and during periods of active reemergence. These metrics are computed

using the NLSA reemergence family, over the same domains as Fig. 7.
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Next, building on Fig. 7, we consider the interannual

variability of the three sea ice reemergence mechanisms.

Figure 8 (left) shows the mean absolute value of each re-

emergence metric for each month of the year. These

metrics are computed over the same domains as Fig. 8 (the

SIT metric values are shown for the CEL domain).

Figures 8a, 8c, and 8e show the same seasonal relationships

discussed above: persistent SIT anomalies with SIC

anomalies that peak in September and decay to zero over

the winter months (Fig. 8a), summer SST anomalies that

trade-off with winter SIC anomalies (Fig. 8c), and SLP

anomalies that lead winter SIC anomalies by roughly

1 month (Fig. 8e). We next compute analogous quantities

for time periods of active reemergence. Specifically, we

compute the mean absolute value of each reemergence

metric, conditional on times in which jLSIC
1 j . 2. These

conditional means are plotted in Figs. 8b, 8d, and 8f. The

periods of active reemergence display a similar season-

ality to the time mean, but the strength of each re-

emergence mechanism is significantly enhanced during

these time periods. The enhancement is clear both in the

SICmetrics and in the second variable that participates in

the reemergence mechanism. The anomaly magnitudes

increase by nearly a factor of 2 for all variables during

these periods of active reemergence. This fact may have

implications for seasonal to interannual predictability of

Arctic sea ice since any reemergence-based predictability

will be enhanced during these active periods and reduced

during inactive periods.

5. Investigation using a model hierarchy

We now further explore the results presented above

by examining sea ice reemergence in a CCSM4 hier-

archy. The model hierarchy, as described in section 2,

consists of the fully coupled control run, a mixed layer

ocean model (the SOM run), and an ice–ocean model

forced by CORE-II surface fields (the CORE-II run).

The growth-to-melt reemergence is similar in all three

models, whereas the control and CORE-II runs have a

stronger melt-to-growth reemergence than the SOM

[see Fig. 3 of Bushuk and Giannakis (2015)]. The repre-

sentation of melt-to-growth reemergence in this hierarchy

has been explored in earlier work (Bushuk and Giannakis

2015), so we focus our attention here on growth-to-melt

reemergence and the seasonality of reemergence mecha-

nisms across the models.

a. Growth-to-melt reemergence

Figure 9 shows reconstructed summer (July–September)

patterns of SIC and SIT, computed using the reemergence-

mode families of each model. These patterns are

composites, computed over all times in which LSIC
1 of

each reemergence family is active, in positive phase. The

thresholds used to define active are jLSIC
1 j . 2 for the

control run and jLSIC
1 j . 1.5 for the shorter SOM and

CORE-II runs. We find that the summer patterns of SIC

and SIT are similar between the control and the SOM,

both in terms of spatial distribution and anomaly mag-

nitude. In both models, the summer SIT anomalies ex-

tend farther northward than the SIC anomalies,

indicating the presence of anomalous SIT in the peren-

nially ice-covered regions of the central Arctic. The

similarity of the SOM and the control suggests that the

dynamics represented by a full-depth ocean model are

not critical in accurately capturing summer SIT–SIC co-

variability. This is consistent with the expectation that

vertical mixing in the strongly stratified Arctic upper

ocean should not play a leading-order role in driving

summer sea ice variability. This similarity suggests that

SOM-based seasonal forecasts of summer sea ice could

offer a computationally efficient alternative to fully cou-

pled dynamical forecast systems.

The CORE-II run has very different patterns of

summer SIC and SIT variability than the control, char-

acterized by SIC anomalies spanning most of the central

Arctic, and an SIT pattern dominated by anomalies

north of the Canadian Archipelago and Greenland.

These anomalies lack the dipole structure of the control

and SOM runs. Earlier work has suggested that this

difference results from the lack of ocean-to-atmosphere

coupling in the CORE-II run (Bushuk and Giannakis

2015). This difference may also be related to the rela-

tively short (60 yr) reanalysis-based dataset that is used

to force this simulation. The SIT–SIC covariability is

also degraded in this model: the pattern correlation

between the SIT and SIC fields in Fig. 9 is 0.62 for the

CORE-II run, compared with 0.84 for the control and

0.75 for the SOM.We also find that themagnitude of the

CORE-II SIT anomalies is substantially smaller than the

other models, which is likely related to the model’s thin

bias (Blanchard-Wrigglesworth andBitz 2014). This thin

bias also contributes to the presence of SIC anomalies at

central Arctic grid points that are perennially ice cov-

ered in the control and SOM runs. These SIT and SIC

patterns demonstrate that forced ice–ocean models can

exhibit vastly different patterns of SIT–SIC covariability

than their fully coupled counterparts.

b. Seasonality of reemergence

Next, using the SOM and CORE-II reemergence

mode families, we compute reemergence metrics and

study their seasonal evolution. Figures 10 and 11 are

analogs to Fig. 7, showing reemergence metrics for 4-yr

periods of active reemergence and the phase evolution

of these metrics, for the SOM and CORE-II runs,
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respectively. The SOMdisplays a clear SIT–SIC growth-

to-melt reemergence mechanism, which closely re-

sembles that of the control run. The seasonal phase

evolution is also similar to the control run, characterized

by persistent central Arctic SIT anomalies and SIC

anomalies that are large in the summer and small in the

winter. The SOM also displays the SST–SIC and SLP–

SIC melt-to-growth reemergence mechanisms. Each of

these mechanisms has similar seasonal relationships to

those observed in the control run. In particular, the

SOM summer SST anomalies trade off with winter SIC

anomalies and the SOM SLP anomalies tend to lead the

SIC anomalies by roughly 1 month. Note that the met-

rics here are plotted for a Bering Sea domain; in other

regions, such as the Barents Sea, the SST–SIC mecha-

nism fidelity is degraded in the SOM (Bushuk and

Giannakis 2015).

The seasonality of the CORE-II reemergence metrics

display a coarse-level agreement with the control and

SOM runs; however, they also display a number of no-

table differences. As noted earlier, the CEL and NBK

SIT anomalies do not display the dipole pattern seen in

the control run and the SOM. The phase evolution in

Fig. 11 reveals interannually persistent SIT anomalies

in these regions and SIC anomalies that are large in

summer months and negligible in winter months. While

the seasonality of the SIT–SIC mechanism is similar

to the other models, it is important to note that the

CORE-II SIT metric values tend to cluster more closely

to zero, compared to the SOM and control SIT metrics,

which display a more uniform foliation of phase space.

The CORE-II reemergence metrics for the SST and

SLP mechanisms were computed over the southern

Barents–Kara domain, since this model has very little

FIG. 9. Summer (JAS) composites for (top) SIC (%) and (bottom) SIT (m) computed using the reemergencemode families of the (left)

control run, (middle) SOM run, and (right) CORE-II run. The composites are computed over all times in which LSIC
1 of each family is

active, in positive phase. Note that a different color bar is used for SIT in the CORE-II run.
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winter SIC variability in the Bering Sea. Specifically, the

SIC and SLP metrics are computed over the region de-

fined by 658–758N and 108–908E, and the SST metric is

computed over 658–758N and 608–908E, the region im-

printed with summer SST anomalies. The CORE-II SIC

and SST metrics are out-of-phase, exhibiting a trade-off

between winter SIC anomalies and summer SST

anomalies. Compared to the Bering SIC anomalies from

the control run, the CORE-II Barents–Kara SIC

anomalies occur slightly later in the season. Corre-

spondingly, the SST anomalies in this region are also

delayed by roughly one month. The relation between

SLP and winter SIC is less clear in CORE-II than the

other models. The CORE-II SLPmetrics are noisier and

also display substantial anomalies over the summer

months. The CORE-II SLP anomalies lead the SIC

anomalies by roughly 2–3 months, which is a sub-

stantially longer lead time than the control and SOM

runs. In summary, the seasonal relationships in CORE-II

are consistent with the other models, but the detailed

phase information and covariability mechanisms are

generally degraded in this model.

6. Conclusions

In this work, we have used a hierarchy of global cli-

mate models (GCMs) in the Community Climate Sys-

tem Model, version 4 (CCSM4), framework to examine

the seasonality and interannual variability of Arctic sea

ice reemergence. We first studied the growth-to-melt-

season reemergence of Arctic sea ice concentration

(SIC) anomalies in a CCSM4 control integration. We

employed a mode-based approach for this analysis,

utilizing spatiotemporal modes of covariability to form

low-dimensional representations of sea ice reemergence.

These spatiotemporal modes of variability were ob-

tained via coupled nonlinear Laplacian spectral analysis

(NLSA), a data analysis technique for high-dimensional

FIG. 10. Time series and phase evolution of reemergencemetrics for SIC, SST, SLP, and SIT. Thesemetrics are computed using theNLSA

reemergence family from the SOM run.
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multivariate time series. The coupled NLSA modes

capture the covariability of SIC, sea surface temperature

(SST), sea level pressure (SLP), and sea ice thickness

(SIT). Using these modes, we constructed a five-mode

reemergence family, which captures both the growth-to-

melt and melt-to-growth reemergence of Arctic SIC

anomalies. This reemergence family captures the spa-

tiotemporal evolution of SIC, SST, SLP, and SIT,

allowing us to simultaneously study these fields in re-

lation to sea ice reemergence.

Time-lagged pattern correlations of raw SIC data

from CCSM4 and observations from the National Snow

and Ice Data Center (NSIDC) display both melt-to-

growth and growth-to-melt reemergence of SIC anom-

alies. The growth-to-melt reemergence is most active in

regions of the central Arctic, such as the Chukchi, East

Siberian, and Laptev (CEL) Seas and the northern

Barents and Kara (NBK) Seas. Both types of re-

emergence are enhanced during periods of time in which

the low-frequency mode of the reemergence family

is active. The low-dimensional reemergence family

captures an SIT–SIC growth-to-melt reemergence mech-

anism, in which growth-season SIC anomalies im-

print like-signed SIT anomalies in the central Arctic

(Blanchard-Wrigglesworth et al. 2011a). These SIT

anomalies persist over the winter months, when the

central Arctic becomes fully ice covered and loses its

growth-season SIC anomalies. As icemelts the following

melt season, the ice edge moves northward, interacts

with the SIT anomalies, and reinherits SIC anomalies of

the same sign as the previous growth season. The SLP

patterns of the reemergence family resemble the Arctic

dipole anomalymode of variability, driving out-of-phase

sea ice variations between the CEL and NBK domains.

The SLP patterns are strongest in the ice growth season,

setting SIC patterns that reemerge the subsequent melt

season. While atmospheric circulation anomalies are an

important driver of SIC variability, central Arctic SIT

FIG. 11. Time series and phase evolution of reemergencemetrics for SIC, SST, SLP, and SIT. Thesemetrics are computed using the NLSA

reemergence family from the CORE-II run.
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anomalies provide the crucial source of memory for

growth-to-melt reemergence.

We have introduced SIC and SIT reemergence met-

rics, by which one can judge the amplitude and phase of

reemergence events and the SIT–SIC reemergence

mechanism. These metrics display interannual-to-

decadal variability in the strength, sign, and duration

of reemergence events. They also clearly display the

SIT–SIC mechanism described above. Consideration of

SST and SLP reemergence metrics demonstrated that

the reemergence family additionally captured SST- and

SLP-based mechanisms for melt-to-growth sea ice re-

emergence. The SLP mechanism drives the spatial

patterns of reemerging SIC anomalies, whereas the

SST mechanism provides the key source of memory for

melt-to-growth reemergence. Seasonal phase diagrams

revealed that each of these mechanisms has a clear

relationship to the seasonal cycle. In particular, we

found that 1) the SIT–SIC mechanism is characterized

by interannually persistent SIT anomalies and SIC

anomalies that are large in summer and small in winter,

2) the SST–SIC mechanism displays a clear trade-off

between winter SIC anomalies and summer SST

anomalies, and 3) the SLP–SIC mechanism has large

SIC and SLP anomalies in winter, with the SLP

anomalies leading SIC by roughly one month. We have

also found that each of these mechanisms exhibit clear

periods of active reemergence, in which both the SIC

anomalies and the related variable that participates in

the reemergence mechanism are substantially enhanced.

The low-frequency mode of the reemergence family is

a good predictor of these periods of enhanced re-

emergence. These results complement thework ofBushuk

and Giannakis (2015) on melt-to-growth reemergence,

providing a unified description of melt-to-growth and

growth-to-melt reemergence in terms of a single family

of modes.

We have also examined sea ice reemergence in a

model hierarchy consisting of the control run, a slab-

ocean model (SOM), and an ice–ocean model forced by

phase II of the Co-ordinated Ocean–Ice Reference

Experiments (CORE-II) atmospheric fields. Our pri-

mary finding was that the control and SOM runs have a

similar representation of sea ice reemergence across a

number of key criteria, including SIT–SIC covariability;

the SIT–SIC growth-to-melt reemergence mechanism;

and the seasonality and interannual variability of the

SIT–SIC, SST–SIC, and SLP–SIC mechanisms. On the

other hand, the CORE-II run, while displaying a coarse-

level agreement with the control and SOM, exhibits a

degraded representation of growth-to-melt and melt-

to-growth reemergence mechanisms. These results sug-

gest that coupled ice–ocean–atmosphere models are

essential in accurately representing sea ice reemergence

and its associated physical mechanisms. A priority for

future work is to examine the SIT–SIC growth-to-melt

reemergence mechanism using available observational

data and ice–ocean reanalysis products.

This work has highlighted the seasonality and in-

terannual variability of three physical mechanisms that

underlie the memory of Arctic sea ice. These mecha-

nisms imply that accurate initialization and simulation

of SIT is crucial for seasonal predictions of summer sea

ice, whereas initialization and simulation of SST and

SLP is key for winter sea ice prediction. This work also

suggests that coupled NLSA may be a useful approach

for studying other climate phenomena that involve in-

teraction between low-frequency variability and the

seasonal cycle.
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