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ABSTRACT5

There is a significant gap between the potential predictability of Arctic sea-ice area and6

the current forecast skill of operational prediction systems. One route to closing this gap is7

improving understanding of the physical mechanisms, such as sea-ice reemergence, that un-8

derlie this inherent predictability. Sea-ice reemergence refers to the tendency of melt season9

sea-ice area anomalies to recur the following growth season, and growth season anomalies10

to recur the following melt season. This study builds on earlier work, providing a mode-11

based analysis of the seasonality and interannual variability of three distinct reemergence12

mechanisms. These mechanisms are studied using a common set of coupled modes of vari-13

ability obtained via coupled nonlinear Laplacian spectral analysis, a data analysis technique14

for high-dimensional multivariate datasets. The coupled modes capture the co-variability15

of sea-ice concentration (SIC), sea-surface temperature (SST), sea-level pressure (SLP), and16

sea-ice thickness (SIT) in a control integration of a global climate model. Using a par-17

simonious reemergence mode family, the spatial characteristics of growth-to-melt season18

reemergence are studied, and an SIT–SIC reemergence mechanism is examined. A set of19

reemergence metrics to quantify the amplitude and phase of growth-to-melt reemergence20

are introduced. Metrics quantifying SST–SIC and SLP–SIC mechanisms for melt-to-growth21

reemergence are also computed. A simultaneous comparison of the three reemergence mech-22

anisms, with focus on their seasonality and interannual variability, is performed. Finally, the23

conclusions are tested in a model hierarchy, consisting of models that share the same sea-ice24

component but differ in their atmospheric and oceanic formulation.25
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1. Introduction26

Arctic sea-ice extent (SIE) has declined precipitously over the satellite era at a rate of27

roughly -14% per decade (Serreze et al. 2007; Stroeve et al. 2014). In addition to this decrease28

in areal coverage, submarine, satellite and in situ measurements indicate that Arctic sea ice29

is becoming thinner (Rothrock et al. 1999; Kwok and Rothrock 2009), transitioning from30

multi-year to first-year ice (Rigor and Wallace 2004; Maslanik et al. 2011), and experiencing31

longer melt seasons (Perovich and Polashenski 2012; Stroeve et al. 2014). Due to the positive32

feedback between sea ice and surface albedo (Budyko 1969; Curry et al. 1995), these changes33

have potential implications for the stability of the Arctic summer sea-ice pack (Lindsay and34

Zhang 2005; Holland et al. 2006b; Winton 2006; Maslanik et al. 2007). The reduction in sea-35

ice thickness (SIT) crucially affects Arctic climate, as it modifies heat and momentum fluxes36

between the atmosphere and the ocean (Maykut 1978), which, in turn, affect the large-scale37

mean state and variability of the atmosphere-ice-ocean system (Holland et al. 2006a). In38

addition to the positive ice-albedo feedback, SIT also plays an important role in negative39

Arctic feedback mechanisms such as the ice thickness–ice growth rate feedback (Bitz and40

Roe 2004) and the ice thickness–ice strength feedback (Owens and Lemke 1990).41

The recent decline in SIE has motivated interest in seasonal prediction and predictability42

of Arctic sea ice. Predictions made with coupled global climate models (GCMs) have skill43

in predicting pan-Arctic SIE at lead times of 2–6 months (Wang et al. 2013; Chevallier et al.44

2013; Sigmond et al. 2013; Merryfield et al. 2013; Msadek et al. 2014; Peterson et al. 2015).45

These lead times are substantially shorter than predictability estimates from “perfect model”46

experiments, which show that Arctic sea-ice area and volume are potentially predictable for47

lead times of 12-24 months and 24-48 months, respectively (Koenigk and Mikolajewicz 2009;48

Holland et al. 2011; Blanchard-Wrigglesworth et al. 2011b; Tietsche et al. 2014; Germe49

et al. 2014). This gap between operational and perfect model prediction skill represents the50

forecast skill improvements potentially achievable via improved model physics and/or initial51

conditions. Achieving these forecast improvements depends crucially on understanding, and52
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accurately initializing and simulating, the physical mechanisms that underlie the inherent53

predictability of Arctic sea ice. In the present study, we focus our attention on sea-ice54

reemergence, one such “predictability mechanism.”55

Owing to its persistence, SIT provides a source of predictability for the Arctic climate56

system (Chevallier and Salas y Mélia 2012). This is a property that could be exploited by57

operational sea-ice prediction systems. Indeed, recent studies have shown improved predic-58

tion skill in model experiments with improved SIT initial conditions (Lindsay et al. 2012;59

Yang et al. 2014; Day et al. 2014a; Collow et al. 2015; Guemas et al. 2016). The SIT state60

also has important implications for inherent sea-ice predictability, as GCM studies show that61

thin sea-ice states are generally less predictable than thick-ice states (Holland et al. 2011;62

Germe et al. 2014). SIT persistence in the central Arctic is also responsible for a reemer-63

gence of sea-ice area anomalies that occurs between the growth season and the following64

melt season, despite a loss of correlation over the intervening winter months (Blanchard-65

Wrigglesworth et al. 2011a; Day et al. 2014b). A similar reemergence occurs between melt66

season and growth season sea-ice area anomalies, which is related to sea-surface temperature67

(SST) persistence in the seasonal-ice zones and large-scale atmospheric regime persistence68

(Blanchard-Wrigglesworth et al. 2011a; Day et al. 2014b; Bushuk et al. 2014, 2015; Bushuk69

and Giannakis 2015). These two lagged correlation phenomena have collectively been termed70

sea-ice reemergence (Blanchard-Wrigglesworth et al. 2011a). Henceforth, we will refer to the71

two varieties of reemergence as growth-to-melt and melt-to-growth reemergence, respectively.72

In this study, we examine sea-ice reemergence in a GCM hierarchy using a mode-based73

perspective. We extract spatiotemporal modes of Arctic co-variability using coupled nonlin-74

ear Laplacian spectral analysis (NLSA; Giannakis and Majda 2012b; Bushuk et al. 2014),75

a high-dimensional multivariate data analysis approach which is independent of physical76

units. Coupled NLSA, as described in Section 2, is applied to Arctic sea-ice concentration77

(SIC), SIT, SST, and SLP, and the resulting modes of variability are used to study sea-ice78

reemergence. We use these modes to construct low-dimensional reemergence mode fami-79

3



lies, which capture the crucial lagged correlation features of reemergence in a parsimonious80

manner. This mode-based approach has a number of appealing features, particularly: (1)81

The mode time series’ allow for detailed analysis of the temporal evolution and variability82

of reemergence; (2) The spatiotemporal modes reveal the spatial patterns and seasonal evo-83

lution of reemerging SIC anomalies and other related physical fields; and (3) The coupled84

analysis provides a natural connection between Arctic SIC and large-scale modes of climate85

variability. We seek to leverage these strengths in this study, exploring the seasonality and86

interannual variability of sea-ice reemergence mechanisms.87

The plan of this paper is as follows. In Section 2, we summarize the datasets and data88

analysis techniques used in this study. In Section 3, we examine growth-to-melt reemer-89

gence, focusing on the mechanism proposed by Blanchard-Wrigglesworth et al. (2011a) in90

which growth season (fall) SIC anomalies reemerge the following melt season (spring) due91

to persistent SIT anomalies in the central Arctic. We find that this mechanism is well rep-92

resented by the reemergence family, and we study its spatial patterns, seasonal evolution,93

and interannual variability. This is done in a similar spirit to earlier work on melt-to-growth94

reemergence (Bushuk et al. 2015). In Section 4, we introduce a unified view of growth-to-95

melt and melt-to-growth reemergence mechanisms, exploring their seasonality and interan-96

nual variability using a single mode family. We find that each reemergence mechanism has97

a clear relation to the seasonal cycle and displays distinct periods of activity and quies-98

cence. In Section 5, we explore these results in a hierarchy of coupled models that share the99

same sea-ice component, but differ in their atmospheric and oceanic formulation. Finally,100

conclusions are presented in Section 6.101
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2. Datasets and methods102

a. CCSM4 model experiments and observational datasets103

This study is primarily based on analysis of a fully-coupled 1300-year control run (b40.1850.track1.1deg.006)104

of the Community Climate System Model version 4 (CCSM4; Gent et al. 2011). This run105

is forced with 1850 greenhouse-gas levels and has 1◦ nominal resolution for the ocean and106

sea ice components, and 0.9◦ × 1.25◦ latitude-longitude resolution for the atmospheric com-107

ponent. CCSM4 realistically simulates many aspects of Arctic climate and has a number of108

improvements compared with CCSM3 (Jahn et al. 2012). Of particular note for the present109

study is the significantly improved SIT representation in CCSM4, which motivates the use of110

this model to examine the role of SIT in growth-to-melt sea-ice reemergence. The large-scale111

pattern of climatological SIT in CCSM4 agrees reasonably well with available observations,112

with thickest ice north of Greenland and the Canadian Archipelago. Notably, CCSM4 does113

not display the erroneous secondary SIT maximum in the Chukchi and East Siberian Seas114

that was present in CCSM3 (Holland et al. 2006a). The climatological seasonal cycle of pan-115

Arctic SIE in CCSM4 agrees well with the satellite-observed seasonal cycle. While pan-Arctic116

SIE is well represented, CCSM4 has regional climatological biases in SIC. In particular, the117

largest biases occur in September, where CCSM4 has a negative bias (too little sea ice) in118

the Beaufort and Chukchi Seas and positive biases (too much sea ice) in Baffin Bay, the119

Greenland-Iceland-Norweigan (GIN) Seas, and the Barents Sea.120

We also analyze a CCSM4 climate model hierarchy, consisting of three models with121

identical sea-ice components, but differing atmospheric and oceanic formulations. Specifi-122

cally, the hierarchy consists of the fully-coupled model described above, a slab-ocean model123

(SOM), and an ice-ocean model driven by specified atmospheric forcing fields. The same124

model hierarchy has also been used previously in the study of melt-to-growth reemergence125

of Bushuk and Giannakis (2015). The SOM is the “CCSM4-NEWSOM”, as documented in126

Bitz et al. (2012). This model shares the same formulation as the control run, except for the127
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replacement of a full-depth ocean with a mixed-layer ocean. The mixed-layer depth used128

in the SOM is computed offline using the control run, and is spatially varying but fixed in129

time. The SOM also has a spatiality and seasonally varying “Q-flux” term, also computed130

offline, which accounts for heat flux due to oceanic heat transport convergence, an effect that131

cannot be directly simulated by the mixed-layer ocean dynamics of the SOM. The SOM run132

is 60 years long and uses the same grid as the control run.133

The ice-ocean model uses the same ocean and sea-ice components as the control run134

and is forced by the coordinated ocean-ice reference experiment phase II (CORE-II) forc-135

ing fields (Large and Yeager 2009; Danabasoglu et al. 2014). We henceforth refer to this136

simulation as the “CORE-II run.” The CORE-II forcing consists of interannually varying137

atmospheric surface forcing fields spanning the time period 1948–2007. The forcing fields138

have some state variables that are based on gridded observational products and others based139

on National Centers for Environmental Prediction (NCEP) reanalysis data. As detailed in140

Large and Yeager (2009), corrections are applied to these data in order to provide agree-141

ment with available satellite and in situ data. This time period exhibits trends associated142

with greenhouse-gas forced variability. In order to focus on the internal variability of this143

experiment, the data was detrended by subtracting monthly linear trends from each month.144

We also analyze passive microwave satellite observations of SIC from the National Snow145

and Ice Data Centre (NSIDC). We use the monthly-averaged SIC dataset processed using146

the NASA Team algorithm (Cavalieri et al. 2012), which is provided on a 25km polar stere-147

ographic grid and spans 36 years (1979-2014, inclusive). We detrend the NSIDC data by148

subtracting monthly linear trends from each month.149

All data used in this study is monthly averaged and, crucially, the seasonal cycle has not150

been removed. Retaining the seasonal cycle allows us to extract “intermittent-type” modes151

from the data, which represent the interaction of low-frequency variability with the seasonal152

cycle, in both space and time.153
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b. Data analysis methods154

In this study, we utilize the coupled NLSA algorithm, as developed in Bushuk et al.155

(2014), to investigate the co-variability of SIC, SST, SLP, and SIT in the Arctic sector.156

Coupled NLSA is a multivariate generalization of the NLSA algorithm (Giannakis and Majda157

2012a,b, 2013), a nonlinear data analysis technique for high-dimensional datasets. Coupled158

NLSA merges two key concepts: (1) the use of time-lagged embedding for time-series analysis159

of dynamical systems (Packard et al. 1980; Broomhead and King 1986; Vautard and Ghil160

1989; Sauer et al. 1991); and (2) the use of a kernel function to assess the similarity between161

samples of nonlinear data (Belkin and Niyogi 2003; Coifman and Lafon 2006).162

Suppose xt is an s sample timeseries of a variable defined over d spatial gridpoints,163

with a uniform timestep of δt. The first step of coupled NLSA is to time-lag embed all164

variables of interest in the higher-dimensional space Rdq. Each sample in this “embedding”165

space represents a q-snapshot spatiotemporal pattern of the input data. The parameter q is166

chosen by the user, and specifies the length of these spatiotemporal patterns. In this study,167

we use a value of q = 24 months. Specifically, time-lagged embedding is performed via the168

following mapping:169

xj 7→ Xj = (xj, xj−1, ..., xj−(q−1)),

where the index j represents time tj = t1 + (j − 1)δt. Time-lagged embedding allows one170

to study the variability of spatiotemporal patterns and also provides superior time-scale171

separation to Empirical Orthogonal Function (EOF) analysis.172

In this study, we assess the similarity between states using a pairwise kernel function173

defined as:174

Kij = exp

(
−
‖XSIC

i −XSIC
j ‖2

ε‖ξSICi ‖‖ξSICj ‖

)
exp

(
−
‖XSST

i −XSST
j ‖2

ε‖ξSSTi ‖‖ξSSTj ‖

)
exp

(
−
‖XSLP

i −XSLP
j ‖2

ε‖ξSLPi ‖‖ξSLPj ‖

)
,

where,175

ξSICi = XSIC
i −XSIC

i−1 , ξSSTi = XSST
i −XSST

i−1 , ξSLPi = XSLP
i −XSLP

i−1
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are the velocities of each variable in lagged embedding space, and ‖ · ‖ is the Euclidean176

norm. The kernel function K can be thought of as a local version of the temporal covariance177

matrix, which decays to zero outside of a given neighborhood. Kij provides a measure of178

similarity between the SIC, SST, and SLP states at times ti and tj. The locality of the179

kernel is determined by the user-selected scale parameter ε. For typical climate datasets ε is180

roughly 1, and smaller values of ε can be chosen as the number of samples increases.181

The kernel function has two key features, which make it well-suited for multivariate data182

analysis: (1) The kernel is independent of physical units, by virtue of the division by ‖ξi‖;183

and (2) the product form of this kernel emphasizes co-variability between the different input184

fields. In particular, obtaining a large value of Kij requires a simultaneous high degree of185

similarity between XSIC
i and XSIC

j , XSST
i and XSST

j , and XSLP
i and XSLP

j . If any of these186

fields have low similarity, the value of Kij will be substantially reduced.187

Coupled NLSA uses these kernel values to extract coupled modes of spatiotemporal188

variability from the input data. Using K, a graph Laplacian matrix is computed, and an189

eigenvalue problem is solved, yielding a set of Laplacian eigenfuctions. These eigenfunctions190

are orthonormal with respect to µ, the invariant measure corresponding to the kernel K. The191

data for each variable of interest is projected onto the leading l eigenfunctions, and a singular192

value decomposition (SVD) of the resulting “filtered” dataset is performed, yielding a set of l193

modes of variability. Each mode consists of a q-snapshot spatiotemporal pattern (analogous194

to an extended EOF) and an associated time series (analogous to a principal component).195

The modes for different variables of interest are inherently coupled because the data for each196

variable is projected onto a common set of coupled eigenfunctions. These eigenfunctions,197

which are “learned” directly from the multivariate data, act as a temporal filter for the data.198

Note that the temporal modes are orthonormal with respect to the invariant measure µ.199

The standard deviation of these modes is equal to one in the case of uniform measure and is200

slightly different from one in most climate applications. For example, in the present study,201

the standard deviation of the temporal modes ranges between 1.00 and 1.07. Therefore, the202

8



temporal modes from NLSA can be interpreted analogously to principal components in EOF203

analysis, which have unit standard deviation. We refer the reader to Bushuk et al. (2014)204

and Bushuk et al. (2015) for a more detailed description of the coupled NLSA algorithm.205

c. Coupled modes of variability and reemergence families206

For each of the model experiments above, we use coupled NLSA to extract modes of207

co-variability for SIC, SST, SLP, and SIT. We compute the coupled NLSA kernel using SIC,208

SST, and SLP as input variables. Note that the SIT modes are obtained by projecting the209

SIT data onto these eigenfunctions, and performing an SVD of the projected SIT data. This210

is analogous to our method for finding modes for the other variables. SIT was not included211

in the kernel, as we found that it dominated the kernel values over other variables. Coupled212

NLSA produces modes in three distinct “flavors”: (1) periodic modes, which reflect the213

seasonal cycle; (2) low-frequency modes that capture the interannual-to-decadal variability214

of the system; and (3) intermittent modes, which represent the interaction of low-frequency215

and periodic variability, in both time and space. These intermittent modes are crucial to216

the present study, as they encode the seasonal characteristics of sea-ice reemergence. The217

periodic and intermittent modes come in degenerate pairs (same singular value) and evolve218

in temporal quadrature.219

Computing the coupled NLSA kernel values and spatiotemporal modes requires choices of220

the Gaussian locality parameter ε and the spectral truncation level l. We use values of ε = 0.8221

and l = 21, ε = 1 and l = 23, and ε = 1 and l = 24 for the control, SOM, and CORE-222

II runs, respectively. The ε parameter is chosen empirically using the guiding principle223

that the coupled NLSA kernel should be as local as possible, while retaining timescale224

separation in the Laplacian eigenfunctions. In particular, when ε is too small, the Laplacian225

matrix becomes ill-conditioned and the eigenfunctions become noisy and mix timescales.226

The truncation level l is also determined empirically. In this work, l was chosen in order to227

retain two low-frequency modes and to retain the mode-pair structure of the periodic and228
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intermittent modes.229

We employ the methodology of Bushuk et al. (2015) to construct “reemergence families”230

of NLSA modes, which are the minimal subset of SIC modes able to reproduce the lagged231

correlation structure of the raw SIC data. For each model in this study, we identify a232

five-mode reemergence family consisting of a low-frequency mode and degenerate pairs of233

annual and semiannual intermittent modes. Lagged correlations computed using this family234

display both a melt-to-growth and a growth-to-melt reemergence of correlation. We identify235

associated SST, SLP, and SIT modes based on correlations with the SIC temporal modes236

that make up the reemergence family. This joint set of SIC, SST, SLP, and SIT modes is237

referred to as the reemergence family.238

3. Growth-to-melt reemergence239

Earlier work has studied low-dimensional representations of Arctic melt-to-growth reemer-240

gence and the associated physical mechanisms involving SST and SLP (Bushuk et al. 2015;241

Bushuk and Giannakis 2015). In this study, we use a low-dimensional description of reemer-242

gence obtained via coupled NLSA to examine Arctic growth-to-melt reemergence of SIC243

anomalies.244

a. Lagged correlation analysis245

Sea-ice reemergence is a lagged-correlation phenomenon, which has been characterized246

via time-lagged correlation of pan-Arctic sea-ice extent and area (Blanchard-Wrigglesworth247

et al. 2011a; Day et al. 2014b) and via time-lagged pattern correlation of Arctic SIC (Bushuk248

et al. 2014, 2015; Bushuk and Giannakis 2015). Here, we use the pattern correlation ap-249

proach, computing time-lagged pattern correlations of the raw SIC anomaly field for all250

initial months (Jan–Dec) and for all lags from 0–23 months. Specifically, we compute an251

uncentered pattern correlation value for all (initial month, initial month+lag) pairs in the252
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time series. We report the time mean of these pattern correlations in Figure 1. This fig-253

ure shows correlations computed over a pan-Arctic domain (0◦–360◦ and 45◦N–90◦N) using254

both NSIDC observations and the CCSM4 control run. The observations (Fig. 1a) show255

both a melt-to-growth reemergence, corresponding to melt-season SIC anomalies recurring256

the following growth season, and a growth-to-melt reemergence, corresponding to growth257

season SIC anomalies recurring the following melt season. The melt-to-growth reemergence258

is centered around September, with anomalies from n months before September tending to259

reemerge n months after September when the ice edge is collocated with the initial anomaly260

(see solid line in Fig. 1a). Similarly, the growth-to-melt reemergence is centered around261

March, with anomalies n months before March tending to reemerge n months after March262

(see dashed lines in Fig. 1a). The lagged correlations also show increased correlation at263

12-month lag, when the ice edge is collocated with the initial anomaly. Both forms of264

reemergence may contribute to this correlation feature. For example, July anomalies tend265

to reemerge in November due to melt-to-growth reemergence, and November anomalies tend266

to reemerge the following July due to growth-to-melt reemergence. This contributes to a267

positive correlation at 12-month lag. It is important to note that the growth-to-melt reemer-268

gence limb strength is dependent on the observational dataset used. In particular, lagged269

pattern correlations computed using the Met Office Hadley Center Sea-Ice and Sea Surface270

Temperature (HadISST) dataset do not show a clear growth-to-melt limb, but do display271

this limb during certain time periods of the record (see Figs. 12b and 12f of Bushuk et al.272

(2015)).273

The CCSM4 lagged correlations (Fig. 1b) show a clear melt-to-growth reemergence,274

which qualitatively matches the NSIDC melt-to-growth reemergence signal, and a relatively275

weak growth-to-melt reemergence. In CCSM4, there is a strong temporal variability to the276

strength of reemergence events: during certain time periods the melt-to-growth and growth-277

to-melt reemergence signals are substantially enhanced. We examine this effect through278

additional pattern correlation analysis of CCSM4. Specifically, this enhancement occurs279
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when the low-frequency mode of the reemergence family, which we denote by LSIC
1 , is active.280

LSIC
1 is the time series corresponding to the leading low-frequency SIC mode obtained via281

coupled NLSA. We consider this mode to be “active” when
∣∣LSIC

1

∣∣ > 2 (this corresponds to282 ∣∣LSIC
1

∣∣ > 1.9σ). Figure 3 shows correlations for pan-Arctic and regional domains computed283

using the raw SIC data, as well as the corresponding conditional correlations computed dur-284

ing times in which LSIC
1 is active. Figures 3a and 3b show correlations computed over the285

pan-Arctic domain, which display a clear enhancement of both reemergence limbs when the286

low-frequency mode is active. The strength of the conditional growth-to-melt reemergence287

signal (dashed line in Fig. 3b) is comparable to the melt-to-growth reemergence signal of the288

raw data (solid line in Fig. 3a).289

The growth-to-melt reemergence predominantly occurs in regions of the central Arctic290

that are fully sea-ice covered, and hence sea-ice anomaly free, during the winter months.291

In Figs. 3c-3f we compute time-lagged pattern correlations for two regions of the central292

Arctic: the Chukchi, East Siberian and Laptev (CEL) Seas and the northern Barents-Kara293

(BK) Seas. These regions will be focussed on throughout this study. We define the CEL294

domain as 105◦E–160◦W and 65◦N–80◦N and define the northern BK domain as 10◦E–90◦E295

and 78◦N–85◦N (see Fig. 2). In each of these regions, we find that the growth-to-melt296

reemergence is stronger than the melt-to-growth reemergence in both the raw data and297

the conditional correlations. This is distinct from the pan-Arctic domain, in which melt-to-298

growth reemergence is decidedly stronger than growth-to-melt reemergence. The emphasized299

growth-to-melt reemergence in the CEL and northern BK domains motivates us to focus300

on them in this study. Note that selecting other regions in the seasonal-ice zones would301

alternatively emphasize the melt-to-growth reemergence signal (Bushuk et al. 2014).302

b. SIT–SIC reemergence mechanism303

We next examine the spatiotemporal evolution of the NLSA reemergence family for the304

CCSM4 control run, with particular focus on the role of SIT in growth-to-melt reemergence.305
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Figure 4 shows reconstructed SIC and SIT fields from the reemergence family for different306

months of the year. These are composite patterns, obtained by averaging over all times in307

which the low-frequency SIC mode of the reemergence family is active, in positive phase308

(LSIC
1 > 2). The yearly evolution and interplay of these fields reveals an SIT–SIC growth-309

to-melt reemergence mechanism, in which the memory of growth season SIC anomalies is310

retained by SIT anomalies in the central Arctic over the winter months.311

In September, we observe negative SIC anomalies in the CEL Seas and positive SIC312

anomalies in the northern BK and Greenland Seas. Roughly spatially coincident with these313

anomalies are like-signed SIT anomalies. After reaching its minimum extent in September,314

the sea-ice cover enters the growth season, characterized by southward migration of the sea-315

ice edge and increasing SIC in the central Arctic. The SIC anomalies tend to move with316

the sea-ice edge, eventually vacating the CEL and northern BK domains, whereas the SIT317

anomalies are spatially persistent and insensitive to the sea-ice edge position. By March,318

the growth season SIC anomalies of the CEL and northern BK seas have been lost, as these319

seas are fully ice covered, and hence SIC anomaly free, during winter. Conversely, the SIT320

anomalies have persisted, retaining anomalies that are spatially coincident with the original321

September anomalies. The melt season begins in April, and during this season the SIC322

anomalies begin to retreat northward, vacating the Bering Sea and the southern portion323

of the Barents Sea. Eventually, the SIC anomalies move far enough northward that they324

begin to interact with the SIT anomalies which have been retained from the previous growth325

season. In the CEL domain, the ice is anomalously thin, and melts out faster than normal,326

creating a negative SIC anomaly in this region. Conversely, the northern BK Seas have327

anomalously thick ice, meaning that the ice melts out more slowly than normal, creating a328

positive SIC anomaly. By this mechanism, growth season SIC anomalies tend to reemerge the329

following melt season. After reemerging, the anomalies are maintained up to the September330

sea-ice minimum. This cycle roughly repeats again the following year, and, as we find in the331

following subsection, these “reemergence events” tend to recur over 3–10 year time periods.332
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Sea-ice reemergence requires both a source of variability, which sets up the initial SIC333

anomaly pattern, and a source of memory, which acts to retain the anomaly between the334

growth and melt seasons. In the SIT–SIC mechanism above, persistent SIT anomalies act335

as the source of memory, but this does not preclude an oceanic or atmospheric role in336

driving the patterns of SIT–SIC covariability shown in Fig. 4. In particular, earlier work337

has shown that large-scale modes of SLP variability provide a dynamical linkage which338

sets the spatial patterns of SIC reemergence (Bushuk and Giannakis 2015). In Fig. 5, we339

consider oceanic and atmospheric contributions to reemergence, plotting the reconstructed340

SST and SLP fields from the control run reemergence family. The SLP patterns of the341

reemergence family closely resemble the Arctic dipole anomaly pattern of SLP variability342

(Wu et al. 2006). In their positive phase, these SLP patterns drive geostrophic winds which343

blow meridionally from the North Pacific sector to the North Atlantic sector. These winds344

influence sea ice dynamically, exporting ice from the CEL domain into the NBK domain,345

and thermodynamically, advecting warm air into the CEL domain and cold air into the NBK346

domain. These factors contribute to anomalous melting and export in the CEL domain and347

anomalous freezing and import in the NBK domain, consistent with the ice anomalies in348

Fig. 4. This suggests that the dipole anomaly SLP pattern plays a role in setting the spatial349

pattern of sea-ice reemergence in two related ways: (1) driving SIC anomalies near the ice350

edge; and (2) driving SIT anomalies in the central Arctic. The SLP anomalies are strongest351

in the ice growth season of October–March, encoding the spatial pattern of future melt352

season anomalies. While atmospheric variability provides an important control on SIC and353

SIT variability, the atmosphere cannot provide a stand-alone reemergence mechanism due354

to its low autocorrelation on timescales beyond one month. Rather, the atmosphere sets up355

initial SIT and SIC anomalies and this signal is persisted via central Arctic SIT anomalies.356

This SIT memory allows for reemergence of SIC between the growth season and the melt357

season.358

Aside from anomalies adjacent to the summer sea-ice edge, there is no clear SST signal359
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in the central Arctic due to the fact that these gridpoints are primarily covered by sea ice.360

This indicates that mixed-layer ocean temperatures in the central Arctic do not provide a361

source of memory for growth-to-melt reemergence. We will return to the role of the ocean362

in growth-to-melt reemergence in Section 5, ahead, when we investigate sea-ice reemergence363

in a model hierarchy.364

c. Metrics for growth-to-melt reemergence365

Next, we introduce a set of reemergence metrics, by which one can judge the amplitude366

and phase of reemergence events, and assess the activity of the SIT–SIC reemergence mech-367

anism. These metrics shed light on the temporal behavior of sea-ice reemergence. We define368

SIC and SIT metrics as the integrated SIC and SIT anomalies, respectively, over a region of369

interest. These metrics, computed over the CEL and northern BK domains using the control370

run reemergence family, are shown in Fig. 6. Note that the metrics have been normalized371

by their standard deviation.372

Growth-to-melt reemergence events can be identified as periods of time during which the373

SIC reemergence metrics (Fig. 6a) have large amplitude and consistent sign over a number374

of consecutive years. The SIC metrics pulse with an annual cycle, with large amplitude in375

summer months and small amplitude in winter months. These metrics also display a clear376

anti-phase relationship between the SIC anomalies of the CEL and northern BK domains.377

The SIT reemergence metrics (Fig. 6b) have the same sign as the SIC metrics, but do not378

display an annual pulsing. Rather, the SIT metrics persist with the same sign for a number379

of years and closely resemble modulating envelopes for the SIC metrics. This relationship380

reflects the SIT–SIC reemergence mechanism described above, with SIT retaining memory381

that allows SIC anomalies to reemerge in successive summers. Figures 6c and 6d display a382

zoom-in of these metric values for a four-year period of active reemergence. We observe that383

the SIC metric is small over the winter months and large over summer months. The SIT384

metric maintains a persistent sign over this four-year time period, matching the sign of the385
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SIC anomalies.386

It is important to note that the SIC metrics show more than simply the seasonal cycle387

in SIC variability in these regions. The amplitude of the SIC metrics have a seasonal cycle,388

as the CEL and northern BK domains have low SIC variability in the ice-covered winter389

months and high variability in the summer months (See Fig. 8a, ahead). The crucial point390

shown in Fig. 6 is that the SIC metrics tend to have a repeated sign in successive years,391

indicating a reemergence of SIC anomalies.392

4. Seasonality and interannual variability of sea-ice reemer-393

gence mechanisms394

The control run reemergence family captures both growth-to-melt as well as melt-to-395

growth reemergence of SIC anomalies (see Fig. 3b). In the previous section, we have demon-396

strated that the family displays an SIT–SIC mechanism for growth-to-melt reemergence.397

Additionally, the SST and SLP patterns of this family reflect the SST–SIC and SLP–SIC398

mechanisms for melt-to-growth reemergence presented in earlier work (See Figs. 4 and 5;399

Bushuk and Giannakis 2015). This motivates a simultaneous comparison of all four fields400

of the reemergence family. In Fig. 7, we investigate the seasonality and phase relationships401

of these three reemergence mechanisms. We find that each reemergence mechanism displays402

a clear relation to the seasonal cycle, involving interaction between SIC anomalies and a403

second physical variable of the ice-ocean-atmosphere system.404

The left column of Fig. 7 shows reemergence metrics plotted for a four-year time period405

of active reemergence (the same four-year period as used in Fig. 6). In all panels, SIC406

metrics are plotted as solid lines, and the metrics for the field that participates in the407

reemergence mechanism are plotted as dashed lines. The two right columns show the phase408

evolution of these metrics with respect to the seasonal cycle. Specifically, for each metric409

M(t), the phase evolution is given by (x(t), y(t)) = (|M(t)| cos(2πt
12

), |M(t)| sin(2πt
12

)), where410
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t is the time measured in months. We plot these values for an 80-year portion of the411

time series. The phase plots are qualitatively similar for other 80-year portions of the412

1300-year timeseries. As stated in Section 3c, the SIC and SIT metrics are defined as the413

integrated SIC and SIT anomalies over a region of interest. Following Bushuk et al. (2015),414

the SST metric is defined as the integrated SST anomaly computed over the region that415

experiences summer imprinting of SST anomalies, and the SLP metric as the mean value of416

the meridional geostrophic wind computed over the region of interest. Each row of Fig. 7417

focuses on a particular reemergence mechanism. The time series and phase diagrams should418

be considered in concert. In particular, the phase diagrams illustrate the seasonality and419

interannual variability of the reemergence mechanism (but do not contain information about420

the sign of the metrics), whereas the time series’ illustrate the metrics and their sign during421

a particular four-year period of active reemergence. Taken together, these plots describe the422

temporal behavior of these mechanisms over an 80-year time period.423

Figure 7a shows the SIT and SIC metrics computed for the CEL and northern BK424

domains. The four-year snapshot is that of Figs. 6c and 6d, illustrating the SIT–SIC reemer-425

gence mechanism with persistent SIT anomalies providing the memory for growth season426

SIC anomalies to reemerge the following melt season. The phase evolution of these metrics427

clearly illustrates the persistence of the SIT anomalies and the seasonality of the SIC anoma-428

lies. The SIT metric tends to be active during all months of the year, with relatively circular429

trajectories in phase space, whereas the SIC metric tends to be strongly active in summer,430

peaking in September, and weakly active during the winter months. The radial variations431

in these phase plots illustrate the substantial interannual variability in the magnitude of432

reemergence events.433

In Fig. 7b, we plot SST and SIC metric values for the Bering Sea, a region with par-434

ticularly strong melt-to-growth reemergence in this model (See Figs. 4 and 5). The Bering435

SIC metrics are computed over 165◦E–160◦W and 55◦N–65◦N and the Bering SST metrics436

are computed over 165◦E–160◦W and 60◦N–65◦N. For visual clarity we do not plot metrics437
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from the southern Barents-Kara Seas, which display similar qualitative behavior and are438

out-of-phase with the Bering Sea metrics. The four-year snapshot shows that the SIC metric439

is large in winter and small in summer. The SST metric has opposite sign to the SIC metric,440

and is large in summer and small in winter. These metrics illustrate a trade-off between SST441

and SIC, in which summer SST anomalies store the memory of winter SIC anomalies. This442

SST memory allows for SIC anomalies to reemerge the following growth season, as displayed443

by the metrics. The phase evolution clearly demonstrates this SST–SIC trade-off, as the SIC444

metric is strongly active in winter months and the SST metric is strongly active in summer445

months. Indeed, the sum of these two phase portraits would yield a result with relatively446

circular trajectories in phase space.447

Finally, in Fig. 7c, we plot SLP and SIC metrics for the Bering Sea. Again, the southern448

Barents-Kara metrics display similar behavior, which we choose not to plot for visual clarity.449

The meridional winds have opposite sign to the SIC anomalies, and have largest amplitude450

during the winter months. This anti-correlation suggests a physical SLP–SIC interaction,451

as positive (i.e., warm) meridional winds correspond to negative SIC anomalies, and vice452

versa. The physical consistency of the SIC and SLP fields, along with the winter-to-winter453

persistence of the SLP patterns provides an SLP–SIC mechanism for reemergence. Note that454

earlier work has shown that SST provides the dominant source of memory for melt-to-growth455

reemergence and that the SLP mechanism does not operate as a stand-alone process (Bushuk456

et al. 2015). The SLP mechanism plays a key role, however, in setting the spatial patterns457

of melt-to-growth SIC reemergence. The phase diagrams illustrate that the wind anomalies458

generally lead the SIC anomalies, as the winds are maximal in January and February, whereas459

the SIC anomalies peak in March. This relationship, with wind anomalies leading and SIC460

anomalies lagging, is consistent with the physical expectation that these SIC anomalies are461

forced by atmospheric circulation anomalies. Additional work, investigating the causality of462

this SLP–SIC lead-lag relationship, is required.463

Note that the same time period is used for the three mechanisms shown Fig. 7. This indi-464
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cates that, for the NLSA reemergence family, periods of active melt-to-growth reemergence465

coincide with periods of active growth-to-melt reemergence. This tendency is also displayed466

by the raw data, as certain time periods are characterized by both enhanced melt-to-growth467

and growth-to-melt reemergence (see Figs. 3a,b).468

Next, building on Fig. 7, we consider the interannual variability of the three sea-ice469

reemergence mechanisms. The left column of Fig. 8 shows the mean absolute value of each470

reemergence metric for each month of the year. These metrics are computed over the same471

domains as Fig. 7 (the SIT metric values are shown for the CEL domain). Panels 8a, 8c,472

and 8e show the same seasonal relationships discussed above: (a) persistent SIT anomalies473

with SIC anomalies that peak in September and decay to zero over the winter months; (c)474

summer SST anomalies that trade-off with winter SIC anomalies; and (e) SLP anomalies475

that lead winter SIC anomalies by roughly 1 month. We next compute analogous quantities476

for time periods of active reemergence. Specifically, we compute the mean absolute value477

of each reemergence metric, conditional on times in which
∣∣LSIC

1

∣∣ > 2. These conditional478

means are plotted in panels 8b, 8d, and 8f. The periods of active reemergence display a479

similar seasonality to the time mean, but the strength of each reemergence mechanism is480

significantly enhanced during these time periods. The enhancement is clear both in the481

SIC metrics and in the second variable that participates in the reemergence mechanism.482

The anomaly magnitudes increase by nearly a factor of two for all variables during these483

periods of active reemergence. This fact may have implications for seasonal to interannual484

predictability of Arctic sea ice, since any reemergence-based predictability will be enhanced485

during these active periods and reduced during inactive periods.486

5. Investigation using a model hierarchy487

We now further explore the results presented above by examining sea-ice reemergence488

in a CCSM4 model hierarchy. The model hierarchy, as described in Section 2, consists of489
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the fully-coupled control run, a mixed-layer ocean model (the SOM run), and an ice-ocean490

model forced by CORE-II surface fields (the CORE-II run). The growth-to-melt reemer-491

gence is similar in all three models, whereas the control and CORE-II runs have a stronger492

melt-to-growth reemergence than the SOM (see Fig. 3 of Bushuk and Giannakis (2015)).493

The representation of melt-to-growth reemergence in this hierarchy has been explored in494

earlier work (Bushuk and Giannakis 2015), so we focus our attention here on growth-to-melt495

reemergence and the seasonality of reemergence mechanisms across the models.496

a. Growth-to-melt reemergence497

Figure 9 shows reconstructed summer (July-August-September) patterns of SIC and SIT,498

computed using the reemergence mode families of each model. These patterns are compos-499

ites, computed over all times in which LSIC
1 of each reemergence family is active, in positive500

phase. The thresholds used to define “active” are LSIC
1 > 2 for the control run and LSIC

1 > 1.5501

for the shorter SOM and CORE-II runs. We find that the summer patterns of SIC and SIT502

are similar between the control and the SOM, both in terms of spatial distribution and503

anomaly magnitude. In both models, the summer SIT anomalies extend further northward504

than the SIC anomalies, indicating the presence of anomalous SIT in the perennially ice-505

covered regions of the central Arctic. The similarity of the SOM and the control suggests506

that the dynamics represented by a full-depth ocean model are not critical in accurately cap-507

turing summer SIT–SIC co-variability. This is consistent with the expectation that vertical508

mixing in the strongly-stratified Arctic upper ocean should not play a leading-order role in509

driving summer sea-ice variability. This similarity suggests that SOM-based seasonal fore-510

casts of summer sea ice could offer a computationally-efficient alternative to fully-coupled511

dynamical forecast systems.512

The CORE-II run has very different patterns of summer SIC and SIT variability than513

the control, characterized by SIC anomalies spanning most of the central Arctic, and an514

SIT pattern dominated by anomalies north of the Canadian Archipelago and Greenland.515

20



These anomalies lack the dipole structure of the control and SOM runs. Earlier work has516

suggested that this difference results from the lack of ocean-to-atmosphere coupling in the517

CORE-II run (Bushuk and Giannakis 2015). This difference may also be related to the518

relatively short (60 year) reanalysis-based dataset which is used to force this simulation.519

The SIT–SIC co-variability is also degraded in this model: the pattern correlation between520

the SIT and SIC fields in Fig. 9 is 0.62 for the CORE-II run, compared with 0.84 for521

the control and 0.75 for the SOM. We also find that the magnitude of the CORE-II SIT522

anomalies is substantially smaller than the other models, which is likely related to the model’s523

thin bias (Blanchard-Wrigglesworth and Bitz 2014). This thin bias also contributes to the524

presence of SIC anomalies at central Arctic gridpoints that are perennially ice-covered in525

the control and SOM runs. These SIT and SIC patterns demonstrate that forced ice-ocean526

models can exhibit vastly different patterns of SIT–SIC co-variability than their fully-coupled527

counterparts.528

b. Seasonality of reemergence529

Next, using the SOM and CORE-II reemergence mode families, we compute reemergence530

metrics and study their seasonal evolution. Figures 10 and 11 are analogs to Fig. 7, showing531

reemergence metrics for four-year periods of active reemergence and the phase evolution of532

these metrics, for the SOM and CORE-II runs, respectively. The SOM displays a clear SIT–533

SIC growth-to-melt reemergence mechanism, which closely resembles that of the control run.534

The seasonal phase evolution is also similar to the control run, characterized by persistent535

central Arctic SIT anomalies and SIC anomalies that are large in the summer and small in536

the winter. The SOM also displays the SST–SIC and SLP–SIC melt-to-growth reemergence537

mechanisms. Each of these mechanisms has similar seasonal relationships to those observed538

in the control run. In particular, the SOM summer SST anomalies trade off with winter539

SIC anomalies and the SOM SLP anomalies tend to lead the SIC anomalies by roughly 1540

month. Note that the metrics here are plotted for a Bering Sea domain; in other regions,541
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such as the Barents Sea, the SST–SIC mechanism fidelity is degraded in the SOM (Bushuk542

and Giannakis 2015).543

The seasonality of the CORE-II reemergence metrics display a coarse-level agreement544

with the control and SOM runs, however, they also display a number of notable differences.545

As noted earlier, the CEL and NBK SIT anomalies do not display the dipole pattern seen in546

the control run and the SOM. The phase evolution in Fig. 11 reveals interannaully persistent547

SIT anomalies in these regions, and SIC anomalies that are large in summer months and548

negligible in winter months. While the seasonality of the SIT–SIC mechanism is similar to549

the other models, it is important to note that the CORE-II SIT metric values tend to cluster550

more closely to zero, compared to the SOM and control SIT metrics, which display a more551

uniform foliation of phase space.552

The CORE-II reemergence metrics for the SST and SLP mechanisms were computed over553

the southern Barents-Kara domain, since this model has very little winter SIC variability554

in the Bering Sea. Specifically, the SIC and SLP metrics are computed over the region555

defined by 10◦E–90◦E and 65◦N–75◦N, and the SST metric is computed over 60◦E–90◦E and556

65◦N–75◦N, the region imprinted with summer SST anomalies. The CORE-II SIC and SST557

metrics are out-of-phase, exhibiting a trade off between winter SIC anomalies and summer558

SST anomalies. Compared to the Bering SIC anomalies from the control run, the CORE-II559

Barents-Kara SIC anomalies occur slightly later in the season. Correspondingly, the SST560

anomalies in this region are also delayed by roughly one month. The relation between SLP561

and winter SIC is less clear in CORE-II than the other models. The CORE-II SLP metrics562

are noisier and also display substantial anomalies over the summer months. The CORE-563

II SLP anomalies lead the SIC anomalies by roughly 2-3 months, which is a substantially564

longer lead time than the control and SOM runs. In summary, the seasonal relationships565

in CORE-II are consistent with the other models, but the detailed phase information and566

co-variability mechanisms are generally degraded in this model.567
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6. Conclusions568

In this work, we have used a hierarchy of global climate models (GCMs) in the Community569

Climate System Model version 4 (CCSM4) framework to examine the seasonality and inter-570

annual variability of Arctic sea-ice reemergence. We first studied the growth to melt season571

reemergence of Arctic sea-ice concentration (SIC) anomalies in a CCSM4 control integra-572

tion. We employed a mode-based approach for this analysis, utilizing spatiotemporal modes573

of co-variability to form low-dimensional representations of sea-ice reemergence. These spa-574

tiotemporal modes of variability were obtained via coupled nonlinear Laplacian spectral575

analysis (NLSA), a data analysis technique for high-dimensional multivariate time series.576

The coupled NLSA modes capture the co-variability of SIC, sea-surface temperature (SST),577

sea-level pressure (SLP), and sea-ice thickness (SIT). Using these modes, we constructed578

a 5-mode reemergence family, which captures both the growth-to-melt and melt-to-growth579

reemergence of Arctic SIC anomalies. This reemergence family captures the spatiotemporal580

evolution of SIC, SST, SLP, and SIT, allowing us to simultaneously study these fields in581

relation to sea-ice reemergence.582

Time-lagged pattern correlations of raw SIC data from CCSM4 and observations from583

the National Snow and Ice Data Centre (NSIDC) display both melt-to-growth and growth-584

to-melt reemergence of SIC anomalies. The growth-to-melt reemergence is most active in585

regions of the central Arctic, such as the Chukchi-East Siberian-Laptev (CEL) Seas and the586

northern Barents-Kara (BK) Seas. Both types of reemergence are enhanced during periods587

of time in which the low-frequency mode of the reemergence family is active. The low-588

dimensional reemergence family captures an SIT–SIC growth-to-melt reemergence mecha-589

nism, in which growth-season SIC anomalies imprint like-signed SIT anomalies in the central590

Arctic (Blanchard-Wrigglesworth et al. 2011a). These SIT anomalies persist over the winter591

months, when the central Arctic becomes fully ice-covered and loses its growth-season SIC592

anomalies. As ice melts the following melt season, the ice edge moves northwards, interacts593

with the SIT anomalies, and reinherits SIC anomalies of the same sign as the previous growth594
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season. The SLP patterns of the reemergence family resemble the Arctic dipole anomaly595

mode of variability, driving out-of-phase sea-ice variations between the CEL and northern596

BK domains. The SLP patterns are strongest in the ice growth season, setting SIC patterns597

that reemerge the subsequent melt season. While atmospheric circulation anomalies are an598

important driver of SIC variability, central Arctic SIT anomalies provide the crucial source599

of memory for growth-to-melt reemergence.600

We have introduced SIC and SIT reemergence metrics, by which one can judge the ampli-601

tude and phase of reemergence events and the SIT–SIC reemergence mechanism. These met-602

rics display interannual-to-decadal variability in the strength, sign, and duration of reemer-603

gence events. They also clearly display the SIT–SIC mechanism described above. Consider-604

ation of SST and SLP reemergence metrics demonstrated that the reemergence family addi-605

tionally captured SST and SLP-based mechanisms for melt-to-growth sea-ice reemergence.606

The SLP mechanism drives the spatial patterns of reemerging SIC anomalies, whereas the607

SST mechanism provides the key source of memory for melt-to-growth reemergence. Sea-608

sonal phase diagrams revealed that each of these mechanisms has a clear relationship to the609

seasonal cycle. In particular, we found that: (1) the SIT–SIC mechanism is characterized610

by interannually persistent SIT anomalies and SIC anomalies that are large in summer and611

small in winter; (2) the SST–SIC mechanism displays a clear trade off between winter SIC612

anomalies and summer SST anomalies; and (3) the SLP–SIC mechanism has large SIC and613

SLP anomalies in winter, with the SLP anomalies leading SIC by roughly one month. We614

have also found that each of these mechanisms exhibit clear periods of active reemergence, in615

which both the SIC anomalies and the related variable that participates in the reemergence616

mechanism are substantially enhanced. The low-frequency mode of the reemergence family617

is a good predictor of these periods of enhanced reemergence. These results complement the618

work of Bushuk and Giannakis (2015) on melt-to-growth reemergence, providing a unified619

description of melt-to-growth and growth-to-melt reemergence in terms of a single family of620

modes.621
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We have also examined sea-ice reemergence in a model hierarchy consisting of the control622

run, a slab-ocean model (SOM) and an ice-ocean model forced by coordinated ocean-ice ref-623

erence experiment phase II (CORE-II) atmospheric fields. Our primary finding was that the624

control and SOM runs have a similar representation of sea-ice reemergence across a number625

of key criteria, including SIT–SIC covariability, the SIT–SIC growth-to-melt reemergence626

mechanism, and the seasonality and interannual variability of the SIT–SIC, SST–SIC and627

SLP–SIC mechanisms. On the other hand, the CORE-II run, while displaying a coarse-628

level agreement with the control and SOM, exhibits a degraded representation of growth-629

to-melt and melt-to-growth reemergence mechanisms. These results suggest that coupled630

ice-ocean-atmosphere models are essential in accurately representing sea-ice reemergence631

and its associated physical mechanisms. A priority for future work is to examine the SIT–632

SIC growth-to-melt reemergence mechanism using available observational data and ice-ocean633

reanalysis products.634

This work has highlighted the seasonality and interannual variability of three physical635

mechanisms that underlie the memory of Arctic sea ice. These mechanisms imply that636

accurate initialization and simulation of SIT is crucial for seasonal predictions of summer637

sea ice, whereas initialization and simulation of SST and SLP is key for winter sea ice638

prediction. This work also suggests that coupled NLSA may be a useful approach for studying639

other climate phenomena that involve interaction between low-frequency variability and the640

seasonal cycle.641
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Fig. 1. Time-lagged pattern correlations of SIC anomalies from (A) NSIDC observations and
(B) the CCSM4 control run, computed over a pan-Arctic domain. The solid lines indicate
months with increased correlation due to melt-to-growth reemergence. The dashed lines
indicate months with increased correlation due to growth-to-melt reemergence.
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Fig. 2. Regional domains considered in this study: the Chukchi, East Siberian and Laptev
(CEL) Seas, the northern Barents-Kara (NBK) Seas, the Bering Sea (BER), and the southern
Barents-Kara Seas (SBK).
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Fig. 3. Time-lagged pattern correlations of SIC anomalies for the CCSM4 control run,
computed over a pan-Arctic domain, the Chukchi, East Siberian and Laptev (CEL) Seas
and the northern Barents-Kara (BK) Seas. (A), (C), and (E) show correlations computed
using the raw SIC data. (B), (D), and (F) show conditional correlations computed over
all times in which

∣∣LSIC
1

∣∣ > 2. All correlations are significant at the 95% level, based on
a t-test. The solid lines indicate months with increased correlation due to melt-to-growth
reemergence. The dashed lines indicate months with increased correlation due to growth-to-
melt reemergence.
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Fig. 4. Spatial pattern composites of SIC (%) and SIT (m), computed using the NLSA
reemergence family of the control run. These composites are computed over all times in
which the leading low-frequency SIC mode is active in positive phase (LSIC

1 > 2).
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Fig. 5. Spatial pattern composites of SST (K) and SLP (Pa), computed using the NLSA
reemergence family of the control run. SLP contours are plotted in black. These composites
are computed over all times in which the leading low-frequency SIC mode is active in positive
phase (LSIC

1 > 2).
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Fig. 6. SIC and SIT reemergence metrics computed using the control run NLSA reemergence
family for the CEL and northern BK domains. The metrics are normalized by their standard
deviation. (A) and (B) show a 100-year portion of the time series; (C) and (D) show a four-
year portion.
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Fig. 7. Time series and phase evolution of reemergence metrics for SIC, SST, SLP, and SIT,
computed using the control run NLSA reemergence family over the CEL, northern BK, and
Bering Sea domains. Each row highlights an individual reemergence mechanism: (A) the
SIT–SIC mechanism for growth-to-melt reemergence; (B) the SST–SIC mechanism for melt-
to-growth reemergence; and (C) the SLP–SIC mechanism for melt-to-growth reemergence.
The left column shows timeseries’ during a four-year period of active reemergence, with
SIC metrics plotted as solid lines and metrics for the other variables participating in the
mechanism plotted as dashed lines. The right columns show the seasonal phase evolution of
the absolute values of the metrics, plotted for an 80-year portion of the timeseries.
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Fig. 8. Time-mean amplitude of reemergence metrics for SIC, SST, SLP, and SIT, for
different months of the year, computed using the full timeseries and during periods of active
reemergence. These metrics are computed using the NLSA reemergence family, over the
same domains as Fig. 7.
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Fig. 9. Summer (JAS) composites for SIC (%; top row) and SIT (m; bottom row) computed
using the reemergence mode families of the control run (left column), SOM run (middle
column), and CORE-II run (right column). The composites are computed over all times in
which LSIC

1 of each family is active, in positive phase. Note that a different colorbar is used
for SIT in the CORE-II run.
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Fig. 10. Time series and phase evolution of reemergence metrics for SIC, SST, SLP, and
SIT. These metrics are computed using the NLSA reemergence family from the SOM run.
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B: SST-SIC Mechanism
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Fig. 11. Time series and phase evolution of reemergence metrics for SIC, SST, SLP, and
SIT. These metrics are computed using the NLSA reemergence family from the CORE-II
run.
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