Atmospheric dynamical core (FV3) and NOAA Next Generation Global Prediction System

Presented by

Shian-Jiann Lin Weather and Climate Dynamics Group

Geophysical Fluid Dynamics Laboratory Fall Science Symposium November 2, 2017

The Next Generation Global Prediction System (NGGPS)

- The FV3 development started at NASA in early 90s and significantly improved and enhanced at GFDL
- NOAA in 2016 selected (via competition) GFDL Finite-Volume Dynamical Core on the Cubed-Sphere (FV3) as the foundation for building the nation's unified weather-climate prediction system for the next 10-20 years
- The New FV3 (nu-FV3) will be breaking the traditional boundary between "dynamics" and "physics"

Geophysical Fluid Dynamics Laboratory Fall Science Symposium November 2, 2017

Kinetic Energy Spectra are the *fingerprints* of the dynamics

(determined mostly by "total diffusion")

Total diffusion = implicit + explicit diffusion

- FV3 at C1152 (9km, roughly the same as "Euro" IFS) resolves the "-5/3" meso-beta (20-200 km) spectrum
- The "Euro" IFS has much lower energy in the meso-scale; but it does follow "-3" spectrum (synoptic scale) well
- The GFS has the least amount of energy in the meso-scale (3 orders of magnitude smaller than FV3 and the theoretical value)

Higher ACC 🖝 more accurate hurricane tracks

Performance of fvGFS in real-time forecasts of global tropical cyclones during 2017 (up to Oct 23)

- For all basins, FV3 is comparable in "track errors" to the best operational model in the world (the "Euro" IFS)
- For all basins, FV3 is comparable in "intensity errors" to the best intensity model in the world (HWRF)

Performance of fvGFS in experimental real-time forecasts hurricanes Harvey & Irma

Comparisons of track errors with operational global models

Harvey

Irma

FV3 is the best for Harvey

IFS is THE BEST for Irma

Hurricane Harvey: flooding produced the most damage

Precipitation Verifications in Inches

INIT: 2017082412

OBSERVED 72h PRECIPITATION TOTALS

Hurricane Irma: 3-km fvGFS vs. Radar

The Next Generation Hurricane Prediction System – a global model with regional resolution

Observed radar image (Brian McNoldy)

Nested FV3 forecast from 0906 (Andrew.Hazelton@GFDL)

"The remarkable predictability of the interannual variability of Atlantic hurricane activity during the past decade" (Chen and Lin 2011, GRL)"

model-observed correlation > 0.94

Periods	HY	NH
2000-2010	0.94	0.96
1990-2014	0.72	0.76

The non-hydrostatic FV3-based HiRAM provided improvements over the hydrostatic (HY) HiRAM (Chen & Lin 2011)

Seasonal hurricane predictions with GFDL HiRAM

Impact of MJO on Gulf of Mexico tropical cyclones

Long-range prediction of Irma with GFDL HiRAM: 8 Day Lead

Physically based ensemble by time-lag and perturbed physics (Gao & Chen)

The next generation FV3 for long-range predictions: challenge and path forward

The Challenge:

Building a GFDL global-regional prediction system with resolution high enough to resolve hurricanes & thunderstorms (via 2-way nest, next talk) and efficient enough for ensemble seasonal predictions

Path forward: the next generation "new" FV3

- Embedding Sub-Grid Orography (SGO) processes and cloud micro-physics (MP) within the FV3 – the next evolution of the "dynamical core"
 - Precise FV integration of SGO "mountain blocking" and SGO-forced "3D gravity waves" (via bottom BC in the non-hydrostatic solver of the *nu-FV3*)
 - Explicit consideration of SGO within the cloud MP (e.g., precip from subgrid mountain lifting)

Geophysical Fluid Dynamics Laboratory Fall Science Symposium November 2, 2017

Performance of fvGFS in retrospective forecasts of all tropical cyclones during 2015-2016

- Track errors are slightly improved over operational GFS; IFS is THE best for track prediction
- Intensity skill is as good as the best intensity model in the world (HWRF);
 IFS is worst in intensity

(analysed by Morris Bender)

An alternative approach to ultra-high resolution (convection permitting over CONUS)

CONUS precipitation (2015–2016, clock-wise, from upper left)

- Observation
- 13-km operational GFS
- 13-km fvGFS
- 4-40 km variableresolution fvGFS