MOM6, SIS2 and OM4

Presented by Alistair Adcroft (Input from MOM6 team and OWG)

Geophysical Fluid Dynamics Laboratory Fall Science Symposium November 2, 2017

Modular Ocean Model, version 6 (MOM6)

- MOM6 unifies the efforts of MOM4/5 and GOLD
 - Open development philosophy
 - Community model
 - Adopted by NCEP, NCAR, Universities, ...
- Arbitrary Lagrangian Eulerian method in the vertical
 - Used for general- & hybrid coordinates
 - Unconditionally stable/accurate
 - Wetting/drying
- Global ice-shelf/ocean coupling
 - Requires ALE for wetting/drying

- Energetically consistent closures
 - Internal wave driven mixing (CPT)
 - Community software (CVmix)
 - Eddies in eddy-permitting models
 - Second order mesoscale closure
- Boundary layer physics
 - Mixed layers
 - Overflows
- Numerics and formulation
 - Transport schemes, Solvers
 - Dynamically integrated sea-ice
 - Reduced cost of bio-tracers

Community model development with MOM6

- Open development
 - Not just open source + releases
 - All activity visible via GitHub
 - Anyone can contribute at anytime
- Good software practices
 - Version control, testing, ...
- Everything is version controlled
 - Source code, input data, tools, tests, configurations, ...
 - Helps others replicate our results

MOM6 capabilities: wetting and drying

- ALE algorithm enables wetting and drying
- Ice shelf cavities simulated with evolving iceshelf model coupled to ocean
 - Moving upper boundary
 - Moving grounding line
- Note ocean squashed between shelfand bedrock
- Used in ¹/₈° coupled ocean-ice-shelf global simulations

MOM6 feature: new boundary layer

- Energetically consistent planetary boundary layer scheme (ePBL)
- Developed to reproduce Large Eddy Simulations (LES)
 - No dimensional parameters
- Includes wind-, buoyancy- and wave-driven (Langmuir turbulence) mixing

MOM6 comprehensive parameterizations: Physically-based, energetically-consistent parameterizations of diapycnal

- NOAA/NSF Internal Wave-Driven Mixing Climate Process Team; MacKinnon et al., BAMS 2017
- Parameterizations of sub-grid-scale mixing which allow mixing to vary spatially and evolve in a changing climate.

MOM6 feature: energizing the "resolved" eddies

- Backscatter of energy from unresolved scales
- Backscatter improves
 some features
 - Sometimes competitive with $1/10^{\circ}$ model
 - Azores front is strengthened
 - ... work in progress

Jansen et al., 2015

Ocean component of CM4: OM4 design

Objectives:

- Build a ¼° ocean model with fidelity of CM2.6 (0.1°)
- Can we build models that are "configured" the same way at all resolutions?
 - scale aware parameterizations

Starting point:

- Coded from scratch
- Parameterizations needed re-writing to work in general coordinates

- What finer resolution might get us
 - Resolve boundary currents ½-⅓°?
 - Meanders (standing eddies) ¼°?
 - Resolve upwelling zones ½°?
 - Overflows $\frac{1}{x}^{\circ}$ + vertical coord.?
 - Mesoscale eddies $1/_{20}$?
- OM4 notionally ¼° horizontal resolution
 - Also ½° for ESMs and other MIPs
 - 1° built in parallel effort
 - ½° already developed for global coupled ocean-ice-shelf

OM4-¼° resolution

- OM4 development focused on shorter time-scales
 - Good surface climate in CM4
 - RMS SST error ~ 0.85°C
 (for 2010 forcing runs)
- Improvements still in the pipe
 - Vertical coordinates
 - Overflows and AABW formation(?)
 - Deep mixing parameterizations
 - Eddy parameterizations in ¹/₄°

Role of vertical coordinate (¼° ocean in CM4)

Salinity (shaded), Vertical grid (lines)

Chassignet et al., 2003; Megann et al., 2010; Ilicak et al., 2012

Sea-Ice Simulator, version 2 (SIS2)

- Improved conservation
- Improved stability
- C-grid for compatibility with ocean
 - Permits single point channels
- Improved thermodynamics and radiative transfer (following CICE)
- Can carry tracers
 - Evolving sea-ice salinity, ice age, ...
 - Bio-geochemistry (future ESMs)

Ice concentration, CM4 2010 forcing

Model - Years 86 to 90

0 10 20 30 40 50 60 70 80 90100

NSIDC - Years 1981 to 2000

0 10 20 30 40 50 60 70 80 90100

Summary

- MOM6/SIS2 continues GFDL tradition of providing a community ocean/ice circulation models
 - Open development is engaging community in the development process
 - Enables productive collaborations, e.g. NCEP, NCAR, Universities, ...
- New features represented in MOM6
 - ALE algorithm permits hybrid (and other) coordinates
 - New parameterizations based on energetics and physical principles
- Comprehensive feature set
 - Always being extended
 - e.g. Regional modeling capability in collaboration with Rutgers