Seasonal Prediction of Tropical Cyclones

Hiroyuki Murakami, and Climate Variation & Predictability Group

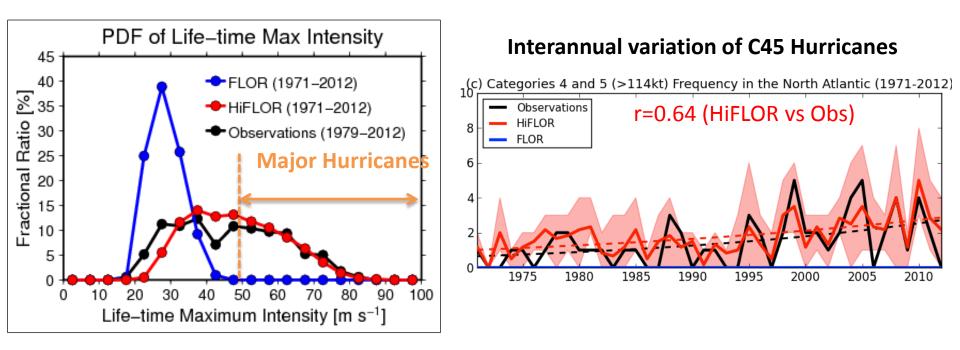
Murakami, H., G. A. Vecchi, G. Villarini, T. L. Delworth, R. Gudgel, S. Underwood, X. Yang, W. Zhang, and S. Lin, 2016: Seasonal forecasts of major hurricanes and landfalling tropical cyclones using a high-resolution GFDL coupled climate model. *J. Climate*, **29**, 7977-7989.

Geophysical Fluid Dynamics Laboratory Fall Science Symposium November 2, 2017

Motivation

 Developing a dynamical model that has skill in predicting major hurricanes is central to NOAA's mission and highly relevant to society.

Damage cost from U.S. Billion-dollar disaster events (1980–2013)

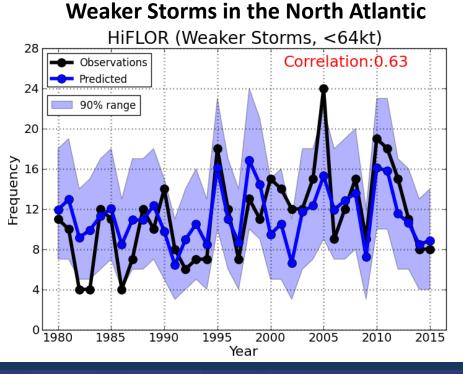

Disaster Type	Number of Events	Percent Frequency	CPI-adjusted Losses (\$ billions)	Percent of Total Loss	Average Event Cost (\$ billions)
Drought	21	12.4	199	19.1	9.5
Flooding	19	11.2	86	8.3	4.5
Freeze	7	4.1	25	2.4	3.6
Severe Storm	65	38.2	143	13.7	2.2
Tropical Cyclone	34	20.0	530	50.9	15.6
Wildfire	12	7.1	26	2.5	2.2
Winter Storm	12	7.1	35	3.4	2.9

Smith and Matthes (2015, Natural Hazards)

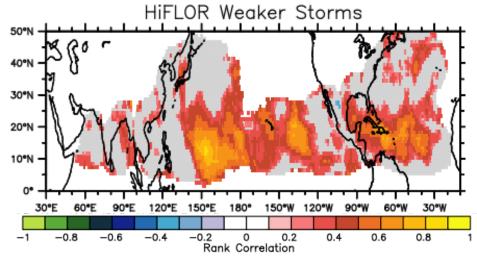
We developed a new high-resolution coupled model, HiFLOR Model
to improve prediction of major hurricanes.

Model	Resolution		
FLOR	Atmosphere : <mark>50 km</mark> , L32 Ocean: 100 km, L50		
Hiflor	Atmosphere : <mark>25 km</mark> , L32 Ocean: 100 km, L50		

Prescribed SST Experiment (1971–2012)



- HiFLOR can simulate intense hurricanes as observed.
- It is for the first time that a global coupled model could simulate observed interannual variation of major hurricanes given the observed SST.



Retrospective Seasonal Forecasts (Weaker Storms)

Model	HIFLOR
Period	1980–2015, mainly focus on TC prediction for July–November
Initial	July (Leal Month=0–4), Ocean is initialized, but atmosphere is not initialized.
Ensemble	24 Ensemble Members

Skill in Predicting TC Density

HiFLOR shows skillful prediction for weaker storms

Retrospective Seasonal Forecasts (Major Hurricane)

HiFLOR (Major Hurricane, >64kt)

Correlation:0.72

2005

2010

2000

12

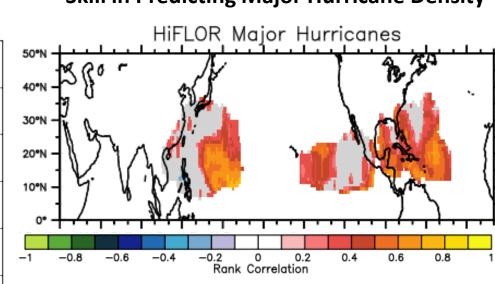
10

8

requency-م Observations

90% range

1985


1990

T995

Year

1980

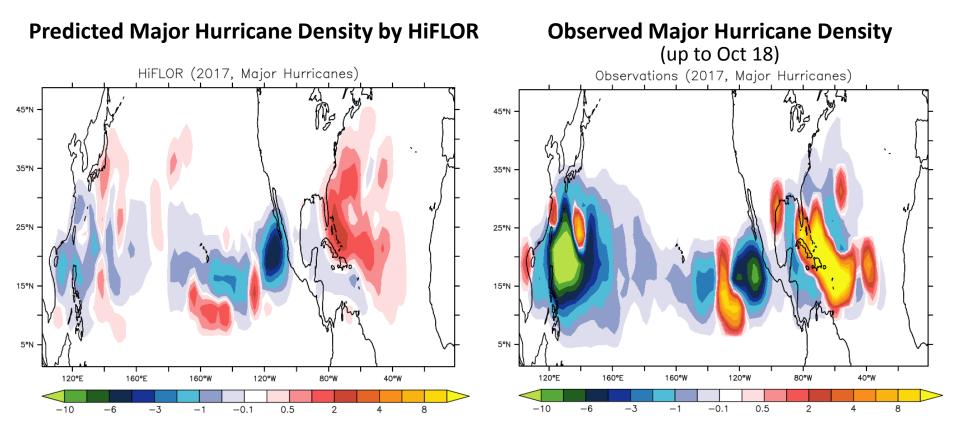
Predicted

Skill in Predicting Major Hurricane Density

- HiFLOR shows skillful prediction for frequency of major hurricanes a few months in advance (r=0.72).
- HiFLOR has skill in predicting major hurricanes at regional scale.

2015

5


Real-Time Prediction for 2017 Summer Season (July Initial Prediction)

Predicted SST anomaly SST anomaly during JASON Initialized 40°N 20°N Latitude 20°5 C345 frequency 40°S 110°W Neutral or La Nińa was predicted Predicted Vertical Wind Shear VWS pnomaly during JASON Initialized in Ju 60°N 50°N 40°N Latitude %05 20°N 10°N 20°W ongitude -7.5-3.5 -1.5 0.5 2.5 Weaker Shear was predicted

Predicted Major Hurricane Frequency HiFLOR (Major Hurricanes) 12 90% range (Hindcast) Hindcast (cor=0.73) 90% range (Real-time) Real-time Forecast Observations (1980-2016) 10 2017 Observed (Up to Oct 18) Predicted 1σ Observed 1σ 8 6 -1.4σ 4 2 01980 1985 1990 1995 2000 2005 2010 2015 Year HiFLOR predicted the active major-hurricane season in this summer.

Geophysical Fluid Dynamics Laboratory Fall Science Symposium November 2, 2017

Real-Time Prediction for 2017 Summer Season

HiFLOR could predict locations of major hurricanes for the 2017 summer.

Summary

- We developed a new high-resolution coupled model, HiFLOR that can simulate/predict major hurricanes.
- HiFLOR has skill (r=0.7) in predicting frequency of major hurricanes in the North Atlantic a few month in advance.
- HiFLOR not only predicted active hurricane season in 2017, but also predicted locations of major hurricanes.
- In our continuing efforts to improve seasonal prediction skill, a new seasonal forecast model (SPEAR; AM4 and MOM6) will be tested in our future plan.