Tropospheric chemistry and air quality

Advances in understanding air pollution trends and extremes with GFDL models

Presented by Meiyun Lin

Geophysical Fluid Dynamics Laboratory Fall Science Symposium November 2, 2017

Model challenges in simulating pollutant trends and extremes

Air quality at given locations responds to varying global-to-regional precursor **emissions+chemistry, biosphere-atmosphere couplings, climate+extreme weather.**

Figure c/o Parrish et al., 2014; see also Lamarque 2010; Koumoutsaris2012; Wild2012; Strode et al., 2015

How robust are inferred trends in tropospheric ozone?

• Interannual to decadal climate variability modulates trop. O₃ distribution (*Lin M. et al., Nature Geosci., 2014; Lin M. et al., Nature Commun., 2015*)

Western N. American FT (3-8 km altitude)

Lin, M.; Horowitz, LW; Cooper, OR et al. [GRL, 2015]

Competing effects of domestic emission controls versus rising Asian emissions

Lin M., Horowitz LW, Payton R., et al. [Atmos. Chem. Phys., 2017]

Heat waves and droughts worsen regional ozone pollution

Chemistry is delaying improvements in U.S. wintertime PM air quality

Sulfate aerosols are decreasing more slowly in winter than in summer in response to SO₂ controls

- \bullet Decrease in SO_2 emissions cancelled by \uparrow in the conversion efficiency of SO_2 to SO_4
- ↑ from ozone + SO₂ pathway favored by ↓ fossil fuel (NO,SO₂) and ↑ agriculture emissions (NH₃) ➡ chemistry not represented in many GCMs.

Paulot, Fan, Horowitz [GRL, 2017]

Improved simulation of PM and ozone in GFDL-AM4

95th percentile PM_{2.5}, 2015-16 winter March mean O_3 vertical profile above Colorado, 1995-2014 100 **GFDL-AM4** - 35N OBS 200 Pressure (hPa) 00 000 00 000 - 30N GFDL-AM3 - 25N GFDL-AM4 OBS 700 - 20N 800 150 100 50 200 80E (ug m⁻³) 90E Ozone (ppbv) 220 40 100 160 280 340 400 Figure by Alex Zhang and M. Lin Figure by J. Schnell

Take-Home Message

Unified earth system modelling with interactive chemistry enables us to integrate information across scientific disciplines to understand air quality and climate.