Seasonal prediction of Arctic sea ice

Presented by: Mitch Bushuk

With contributions from: M. Winton, R. Msadek, G. Vecchi, A. Rosati, X. Yang, R. Gudgel

Geophysical Fluid Dynamics Laboratory Fall Science Symposium November 2, 2017

Current Seasonal Predictions of Arctic Sea Ice

All target months, leads 0-11 months

- Retrospective seasonal forecasts made with GFDL-FLOR^{1,2} spanning 1980-2017
- Initialized via Ensemble Kalman Filter Coupled Data Assimilation (ECDA^{3,4})

Target: September; Lead: 2

• Msadek et al. (2014) showed this system can skillfully predict detrended pan-Arctic SIE

1: Vecchi et al. 2014, J. Clim.; 2: Delworth et al. 2012, J. Clim.; 3: Zhang et al. 2007 MWR.; 4. Zhang and Rosati (2010), MWR

Regional Prediction Skill For Winter Sea Ice

• Subsurface ocean temperature initialization provides key source of winter prediction skill

r(Observed Barents SIE_{Jan}, Ocean Temperature $IC_{Jan - lead}$)

Target Month

Bushuk et al (2017b), GRL

Regional Prediction Skill For Summer Sea Ice

- Laptev and East Siberian Seas have spring prediction skill barrier: Predictions initialized May 1 and later are skillful; those initialized prior to May 1 are not
- Sea ice thickness initialization provides key source of summer prediction skill

Geophysical Fluid Dynamics Laboratory Fall Science Symposium November 2, 2017

Bushuk et al (2017b), GRL

Summer Enhancement of Arctic Sea-Ice Volume Anomalies

- Thickness anomalies persist for 4-5 years
- Anomalies enhanced over summer via albedo feedbacks

The Sea-Ice Prediction Gap: Comparison of Perfect Model and Operational Skill

Suite of perfect model experiments run with GFDL-FLOR provide direct comparison with initialized predictions

- Large skill gap between perfect model and initialized prediction skill
- Similar regional skill structure
 - Identify key gaps in current prediction system (initial conditions, model physics, etc.)

Geophysical Fluid Dynamics Laboratory Fall Science Symposium November 2, 2017

Summary and Future Outlook

- GFDL-FLOR seasonal predictions skillfully predict pan-Arctic and regional sea-ice extent at lead times of 0-11 months depending on region and target month
- Prediction skill is notably high for (3-11 months) for North Atlantic winter SIE
- Winter SIE skill partially attributable to subsurface ocean temperature initialization and summer skill partially attributable to sea ice thickness initialization
- Perfect model experiments suggest substantial skill improvements are possible

Future Outlook

- Improved Arctic sea-ice predictions depend on:
 - 1. Improved observational data
 - 2. Better data assimilation and initialization
 - 3. Improved model physics and reduced model bias
 - 4. Fundamental work on sea-ice predictability
- Where do we focus our efforts? What are the crucial mechanisms? Our work suggests: subsurface ocean and sea-ice thickness

