GFDL Land Model LM4

Elena Shevliakova

P.C.D. Milly, S. Malyshev, B. Sulman, D. Ward, N. Chaney, I. Martinez Cano, M. Lee, P. Gauthier, D. Li, P. Phillips, M. H. van Huijgevoort, S. Evans, S. Smolander, P. Ginoux, S. Pacala, and others

Geophysical Fluid Dynamics Laboratory Fall Science Symposium November 2, 2017

LM3 is component of CM3, ESM2M, and ESM2G prognostic atmospheric CO₂ and climate

 Land use emissions contributed ~30 ppm to the current atmospheric CO₂ and increased surface temperature by 0.17±0.06°C;

- Without enhanced vegetation growth :
 - Atmospheric CO₂ would be 85 ppm higher;
 - Global surface temperature would be 0.31±0.06°C higher;

Shevliakova et al, 2013

Improved land modeling capabilities

Perfect Plasticity Approximation (PPA) Vegetation Dynamics: we can see forests and the trees in LM4

•Challenges for global PPA

- capturing plant diversity
- phenology and mortality
- evaluating succession

Willow Creek, WI

Weng et al. , 2015 Strigul et al. 2008

PPA represents age since disturbance

New tiles are created after disturbance

PPA tropical tree simulations capture key patterns

New soil Carbon and Nitrogen model

Plant-soil-microbial interactions in GFDL land model explained contrasting trends at DOE FACE elevated CO₂ sites

Novel LM4 mechanisms: symbiotic fungi controlling nitrogen acquisition by plants

 Future Carbon uptake depends on soil decomposition and vegetation growth under nutrient limitation (e.g. Nitrogen).

LM4: land use, surface heterogeneity, and fire

Geophysical Fluid Dynamics Laboratory Fall Science Symposium November 2, 2017

LM4 simulates multi-day fires

Ward et al, in review

Summary

- LM4 addressed many ecological limitations in current generation of carbon cycle models.
- LM4 captures the response of leaves, plants, forests or the carbon cycle to climate change and rising CO₂ in a mechanistic manner.
- LM4 model includes novel capabilities enabling exploration of key uncertainties about the future carbon cycle and climate, including
 - projected growth and losses of forests and grasslands
 - Nutrient down regulation of C sink
 - Changes in fires and associated emissions
- Ongoing developments of ESM-N, CH₄, interactive biogenic aerosols capabilities based on LM4.