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FV3 Design	Philosophy

• Discretization	should	be	guided	by	physical	principles	as	much	as	

possible

• Finite-volume,	integrated	form	of	conservation	laws

• Upstream-biased	fluxes

• Operators	“reverse	engineered”	to	achieve	desired	properties
• Computational	efficiency	is	crucial.	Fast	models	can	be	good	models!	

• Solver	should	be	built	with	vectorization	and	parallelism	in	mind

• Dynamics	isn’t	the	whole	story!	Coupling	to	physics	and	the	ocean	is	

important.



Finite-volume	methodology

• In	FV3,	all	variables	are	3D	cell- or	face-means…not	gridpoint values

• We	solve	not	the	differential	Euler	equations	but	their	cell-integrated	

forms	using	integral	theorems

• Everything	is	a	flux,	including	the	momentum	equation

• Mass	conservation	is	ensured,	to	rounding	error

• C-D	grid:	Vorticity	computed	exactly;	accurate	divergence	computation

• Mimetic:	Physical	properties	recovered	by	discretization,	particularly	

Newton’s	3rd law



Outline	of	the	FV3 solver



Abstract	of	FV3

• Gnomonic	cubed-sphere	grid	for	scalability	and	uniformity

• Fully-compressible	vector-invariant	Euler	equations

• Vertically-Lagrangian dynamics

• C-D	grid	discretization
• Forward-in-time	2D	Lin-Rood	advection	using	PPM	operators

• Fully	nonhydrostatic with	semi-implicit	solver

• Runtime	hydrostatic	switch



FV3 time	integration	sequence

• FV3 is	a	forward-in-time	solver

• Flux-divergence	terms	and	physics	tendencies	evaluated	forward-in-time

• Pressure-gradient	and	sound-wave	terms	evaluated	backward-in-time	for	

stability

• Lagrangian vertical	coordinate:	flow	constrained	along	time-evolving	

Lagrangian surfaces

• Tracers	are	sub-cycled since	their	stability	condition	is	much	less	

restrictive	than	the	sound- or	gravity-wave	modes
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Prognostic	Variables
δp	 Total	air	mass	(including	vapor	and	condensates)

Equal to hydrostatic pressure	depth	of	layer
θv Virtual	potential	temperature

u,	v Horizontal	D-grid	winds	in	local	coordinate

(defined on	cell	faces)

w Vertical	winds

δz Geometric	layer	depth

qi Passive tracers

Cell-mean	pressure,	density,	divergence,	and	specific	heat	are	all	diagnostic quantities
All	variables	are	layer-means	in	the	vertical:	No	vertical	staggering



Lagrangian Dynamics	in	FV3

What	they	are

What	the	equations	are

How	they	are	solved



What	are	Lagrangian Dynamics?

• The	Euler	equations	can	be	written	in	
Lagrangian or	Eulerian	forms…
or	Eulerian	in	the	horizontal,	and	
Lagrangian in	the	vertical

• This	constrains	the	flow	along	quasi-
horizontal	surfaces

• Surfaces	deform	during	the	
integration,	representing	vertical	
motion	and	advection	“for	free”

• Does	require	layer	thickness	to	be	a	
prognostic	variable

5.2. Dependent variables and governing equations

Variable Description
�p

⇤ Vertical difference in hydrostatic pressure, proportional to mass
u D-grid face-mean horizontal x-direction wind
v D-grid face-mean horizontal y-direction wind

⇥

v

Cell-mean virtual potential temperature
w Cell-mean vertical velocity
�z Geometric layer height

Table 5.1: Solution variables in FV3

The continuous Lagrangian equations of motion, in a layer of finite depth
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(w�) for an arbitrary scalar �. The flow is entirely along the
Lagrangian surfaces, including the vertical motion (which deforms the
surfaces as appropriate, an effect included in the semi-implicit solver).
The vertical component of absolute vorticity is given as ⌦ and the ki-
netic energy is given as  =

1
2
(euu + evv), and p is the full nonhydrostatic

pressure. The nonhydrostatic pressure gradient term in the w equation
is computed by the semi-implicit solver described Chapter 7. There is no
projection of the vertical pressure gradient force into the horizontal; sim-
ilarly, there is no projection of the horizontal winds u, v into the vertical,
despite the slopes of the Lagrangian surfaces.
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Lagrangian Dynamics:
Flux-form	advection

• Advection	is	not	just	for	passive	tracers!	
Nearly	everything	in	FV3 is	a	flux

• Even	the	momentum	advection	terms	can	be	expressed	as	scalar	fluxes

• Lin-Rood	(1996)	2D	advection	scheme:

• Reverse-engineered	scheme	devised	from	1D	PPM	operators

• Allows	monotonicity	and	positivity	from	subgrid reconstructions

• Monotonicity	is	“smart”	diffusion

• Again:	advection	is	along	Lagrangian surfaces



Lagrangian Dynamics:
Tracer	advection	and	sub-cycling
• Tracers	can	be	advected with	a	longer	timestep than	the	dynamics

• FV3 permits	accumulation	of	mass	fluxes	during	Lagrangian dynamics.

These	fluxes	are	then	used	to	compute	the	advection	of	tracers	

before	the	vertical	remapping

• Typically	one	or	two	tracer	timesteps is	sufficient	for	stability.

• Tracer	advection	is	alwaysmonotone	(or	at	least	positive	definite)	to	

avoid	new	extrema.	Explicit	diffusion	is	not	used.

• Question: what	about	physical	eddy	diffusion	(cf.	PBL	scheme?)



Lagrangian Dynamics:
C-D	grid	solver
• FV3 solves	for	the	(purely	horizontal)	

D-grid	staggered	winds.	But	solver

requires	face-normal	fluxes

• To	compute	time	step-mean	fluxes,	the	

C-grid	winds	are	interpolated	and	then	advanced	a	half-timestep.

• A	sort	of	simplified	Riemann	solver

• The	C-grid	solver	is	the	same	as	the	D-grid,	but	uses	lower-order	fluxes	for	

efficiency

• Two-grid	discretization	and	time-centered	fluxes	avoid	computational	

modes

�

D-grid winds

C-grid winds

Fluxes

Fig. 2. Geometry of the wind staggerings and fluxes for a cell on a non-orthogonal grid.
The angle � is that between the covariant and contravariant components; in orthogonal
coordinates � = ⇥/2.
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Lagrangian Dynamics:
Momentum	equation
• FV3	solves	the	flux-form	vector	invariant	

equations

• Nonlinear	vorticity	flux	term	in	momentum	

equation,	confounding	linear	analyses

• D-grid	allows	exact	computation	of	

absolute	vorticity—no	averaging!

• Vorticity	uses	same	flux	as	δp:	consistency	

improves	geostrophic	balance,	and	SW-PV	

advected as	a	scalar!

2. The Nested Grid Model126

a. Finite-Volume Dynamical Core and cubed-sphere grid127

The FV core is a hydrostatic, 3D dynamical core using the vertically-Lagrangian dis-128

cretization of L04 and the horizontal discretization of Lin and Rood (1996, 1997, hence-129

forth LR96 and LR97, respectively), using the cubed-sphere geometry of PL07 and Putman130

(2007). This solver discretizes a hydrostatic atmosphere into a number of vertical layers, each131

of which is then integrated by treating the pressure thickness and potential temperature as132

scalars. Each layer is advanced independently, except that the pressure gradient force is133

computed using the geopotential and the pressure at the interface of each layer (Lin 1997).134

The interface geopotential is the cumulative sum of the thickness of each underlying layer,135

counted from the surface elevation upwards, and the interface pressure is the cumulative136

sum of the pressure thickness of each overlying layer, counted from the constant-pressure137

top of the model domain downward. Vertical transport occurs implicitly from horizontal138

transport along Lagrangian surfaces. The layers are allowed to deform freely during the139

horizontal integration. To prevent the layers from becoming infinitesimally thin, and to ver-140

tically re-distribute mass, momentum, and energy, the layers are periodically remapped to141

a pre-defined Eulerian coordinate system.142

The governing equations in each horizontal layer are the vector-invariant equations:143
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where the prognostic variables are the hydrostatic pressure thickness �p of a layer bounded148

by two adjacent Lagrangian surfaces, which is proportional to the mass of the layer; the149

potential temperature �; and the vector wind V. Here, k̂ is the vertical unit vector. The150
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Many	flows	are	vortical

Not	just	large-scale	flows

NASA	Goddard



May	I	talk	to	you	about…diffusion?

• All	dynamical	cores	require	artificial	diffusion	(implicit	or	explicit)	

to	remove	energy	cascading	to	grid	scale

• FV3 has	implicit	diffusion	from	monotone	advection,	forward-

backward	timestepping,	and	vertical	remapping

• Except	for	vertical	remapping…all	explicit	and	implicit	diffusion	is	

along	the	Lagrangian surfaces



May	I	talk	to	you	about…diffusion?

• C-D	grid	does	not	explicitly	see	divergence—so	explicit	divergence	

damping	is	an	intrinsic	part	of	the	solver

• Non-monotone	advection	is	useful	in	nonhydrostatic dynamics

Noise	can	be	controlled	by	adding	diffusion	to	the	vorticity	fluxes

• Explicitly-dissipated	kinetic	energy	can	be	converted	to	heat
• Divergence	and	vorticity	damping	can	be	controlled	separately

• A	simplified	second-order	Smagorinsky damping,	with	a	nonlinear	

flow-dependent	coefficient,	is	also	available



Backward	horizontal
pressure	gradient	force
• Computed	from	Newton’s	second	and	third	
laws,	and	Green’s	Theorem

• Errors	lower,	with	much	less	noise,	
compared	to	traditional	evaluations

• Purely	horizontal
no along-coordinate	projection

• PGF	equal	and	opposite—3rd law!	
Momentum	conserved

• Curl-free	in	the	absence	of	density	gradients
• Nonhydrostatic and	hydrostatic	components	
can	be	computed	separately

• log(phyd)	PGF	more	accurate
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Vertical	processes:
Vertical	elastic	terms
and	Lagrangian vertical	coordinate



Semi-implicit	solver

• Vertical	pressure	gradient	and	layer	depth	δz	is	solved	by	semi-

implicit	solver

• Vertically-propagating	sound	waves	weakly	damped

• This	is	all	that	is	needed	to	make	the	classic	FV	hydrostatic	algorithm	

nonhydrostatic

• Fully	compressible	and	nonhydrostatic!	Full	Euler	equations	solved

• w,	δz	advected as	other	variables—consistent!

• Nonhydrostatic horizontal	PGF	evaluated	same	way	as	hydrostatic



The	Lagrangian Vertical	Coordinate

• The	domain	is	separated	into	a	number	of	quasi-horizontal	Lagrangian

layers (k	index)

• All	flow	is	within	the	layers	(“logically”	horizontal)
• No cross-layer	layer	flow	or	diffusion
Vertical	motion	deforms	the	layers	instead	

• Periodically,	a	highly-accurate	conservative	remapping	is	done	to	

avoid	layers	becoming	infinitismally thin	(δp	→	0)

• Remapping	interval	like	Lagrangian advection’s	timestep:	

longer	timesteps yield	less	overall	artificial	diffusion

• This	is	the	only way	cross-layer	diffusion	is	introduced!!



The	Lagrangian Vertical	Coordinate

• The	mass	δp	and	height	δz	are	prognostic	variables.	
Height	and	pressure	of	each	layer	are	dynamically	computed.

• Lagrangian coordinate	works	for	any base	coordinate
• Hybrid-pressure,	hybrid-height,	and	hybrid-isentropic	coordinates
have	been	successfully	used

• Vertical	advection	is	implicit	through	the	vertical	movement	of	layers	

• There	is	no	Courant	number	restriction	or	time-splitting!

• Vertical	advection	does	not	need	a	separate	computation.	
Computing	δp	and	δz	is	sufficient.

• Implicit	advection	not	only	saves	time	but	also	permits	very	thin	
layers	without	requiring	a	smaller	timestep



The	Cubed-Sphere	Grid
The	3	in	FV3



The	Cubed-Sphere	Grid

• Gnomonic	cubed-sphere	grid:	

coordinates	are	great	circles

• Widest	cell	only	√2	wider	than	

narrowest

• More	uniform	than	conformal,	elliptic,	

or	spring-dynamics	cubed	spheres

• Tradeoff:	coordinate	is	non-orthogonal,	
and	special	handling	needs	to	be	done	at	

the	edges	and	corners.

�

D-grid winds

C-grid winds

Fluxes

Fig. 2. Geometry of the wind staggerings and fluxes for a cell on a non-orthogonal grid.
The angle � is that between the covariant and contravariant components; in orthogonal
coordinates � = ⇥/2.
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The	Cubed-Sphere	Grid

• Gnomonic	cubed-sphere	is	non-

orthogonal

• Instead	of	using	numerous	metric	terms,	

use	covariant	and	contravariant	winds

• Solution	winds	are	covariant,	advection	is	by	
contravariant	winds

• KE	is	half	the	product	of	the	two
• Winds	u	and	v	are	defined	in	the	local	

coordinate:	rotation	needed	to	get	zonal	

and	meridional	components

�

D-grid winds

C-grid winds

Fluxes

Fig. 2. Geometry of the wind staggerings and fluxes for a cell on a non-orthogonal grid.
The angle � is that between the covariant and contravariant components; in orthogonal
coordinates � = ⇥/2.
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A	little	bit	about	initialization

FV3 has	a	host	of	utilities	to	generate	grids,	orography,	and	initial	

conditions	from	cold	start

• Any	grid	can	be	generated	in	seconds
• Initialize	from	NCEP	or	EC	analyses

• Remap	from	different	vertical	spacings

• Comprehensive	topography	generation,	including	subgrid orography

• Advanced	FCT	orography	filter	allows	preservation	of	total	topography,	peaks,	
and	valleys;	limits	slope	steepness;	and	prevents	nonzero	topography	in	the	

ocean

• Atmospheric	nudging	to	analyses	for	simple	assimilated	initialization,	or	for	

aerosol	and	chemistry	studies



Essential	Runtime	Options
• dt_atmos:	physics	timestep

• k_split:	Number	of	vertical	remappings per	dt_atmos
• n_split:	Number	of	“acoustic”	timesteps per	k_split
• hord_xx:	Horizonal advection	algorithms

• kord_yy:	Vertical	remapping	options

• d4_bg,	vtdm4:	explicit	damping	options	for	divergence	and	for	

fluxes	(except	scalars),	of	order	2*(nord+1)
• dddmp:	Smagorinsky damping	coefficient

• d_con:	Converts	explicitly-damped	KE	to	heat



Grid	refinement	(preview)
FV3 supports	both	stretching	and	nesting	for	grid	refinement

Grid	stretching	is	simple	and	smooth Grid	nesting	is	efficient	and	flexible



• FV3	is	able	to	mimic	many	physical	properties,	particularly	Newton’s	

laws,	mass	conservation,	and	excellent	vorticity	dynamics

• Lagrangian dynamics	is	very	powerful!

• Increased	parallelism
• Implicit	vertical	advection,	without	computation

• Much	reduced	implicit	vertical	diffusion

• Improves	PBL	and	surface	interaction

• Solver	is	fully	compressible,	and	so	horizontally	local

• Fully	nonhydrostatic solver	maintains	excellent	hydrostatic	flow	while	

consistently	implementing	nonhydrostatic elastic	terms

• Flexible	advection,	diffusion,	and	grid	structure	options


