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F\V3 Design Philosophy

* Discretization should be guided by physical principles as much as
possible
* Finite-volume, integrated form of conservation laws
* Upstream-biased fluxes

* Operators “reverse engineered” to achieve desired properties
* Computational efficiency is crucial. Fast models can be good models!
* Solver should be built with vectorization and parallelism in mind

* Dynamics isn’t the whole story! Coupling to physics and the ocean is
important.



Finite-volume methodology

* In FV3, all variables are 3D cell- or face-means...not gridpoint values

* We solve not the differential Euler equations but their cell-integrated
forms using integral theorems
* Everything is a flux, including the momentum equation
* Mass conservation is ensured, to rounding error
e C-D grid: Vorticity computed exactly; accurate divergence computation

* Mimetic: Physical properties recovered by discretization, particularly
Newton’s 3™ law



Outline of the FV3 solver



Abstract of FV3

 Ghomonic cubed-sphere grid for scalability and uniformity

* Fully-compressible vector-invariant Euler equations

* Vertically-Lagrangian dynamics

e C-D grid discretization

* Forward-in-time 2D Lin-Rood advection using PPM operators

* Fully nonhydrostatic with semi-implicit solver
* Runtime hydrostatic switch



FV3 time integration sequence

* F\/3is a forward-in-time solver
* Flux-divergence terms and physics tendencies evaluated forward-in-time
* Pressure-gradient and sound-wave terms evaluated backward-in-time for
stability

e Lagrangian vertical coordinate: flow constrained along time-evolving
Lagrangian surfaces

* Tracers are sub-cycled since their stability condition is much less
restrictive than the sound- or gravity-wave modes
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Prognostic Variables

op Total air mass (including vapor and condensates)
Equal to hydrostatic pressure depth of layer

0, Virtual potential temperature

u,v  Horizontal D-grid winds in local coordinate
(defined on cell faces)

W Vertical winds
6z Geometric layer depth

q; Passive tracers

Cell-mean pressure, density, divergence, and specific heat are all diagnostic quantities
All variables are layer-means in the vertical: No vertical staggering



Lagrangian Dynamics in FV3

What they are
What the equations are

How they are solved



What are Lagrangian Dynamics?

* The Euler equations can be written in
Lagrangian or Eulerian forms...
or Eulerian in the horizontal, and
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Lagrangian in the vertical Dpop*w + V - (Vép'w) = —gézg—i
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_agrangian Dynamics:
-lux-form advection
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e Advection is not just for passive tracers!
Nearly everything in FV3 is a flux

* Even the momentum advection terms can be expressed as scalar fluxes

* Lin-Rood (1996) 2D advection scheme:

* Reverse-engineered scheme devised from 1D PPM operators
* Allows monotonicity and positivity from subgrid reconstructions
* Monotonicity is “smart” diffusion

e Again: advection is along Lagrangian surfaces



Lagrangian Dynamics:
Tracer advection and sub-cycling

* Tracers can be advected with a longer timestep than the dynamics

* FV3 permits accumulation of mass fluxes during Lagrangian dynamics.
These fluxes are then used to compute the advection of tracers
before the vertical remapping

* Typically one or two tracer timesteps is sufficient for stability.

* Tracer advection is always monotone (or at least positive definite) to
avoid new extrema. Explicit diffusion is not used.

* Question: what about physical eddy diffusion (cf. PBL scheme?)



Lagrangian Dynamics:
C-D grid solver .

* F\/3 solves for the (purely horizontal)
D-grid staggered winds. But solver
requires face-normal fluxes D-gic vinds —

C-grid winds

* To compute time step-mean fluxes, the
C-grid winds are interpolated and then advanced a half-timestep.

* A sort of simplified Riemann solver
* The C-grid solver is the same as the D-grid, but uses lower-order fluxes for
efficiency
* Two-grid discretization and time-centered fluxes avoid computational
modes



_agrangian Dynamics:

Momentum equation A 0 XV ¥ (5 +05°D) - L
* FV3 solves the flux-form vector invariant
equations

* Nonlinear vorticity flux term in momentum
equation, confounding linear analyses

* D-grid allows exact computation of
absolute vorticity—no averaging!

* Vorticity uses same flux as dp: consistency
improves geostrophic balance, and SW-PV
advected as a scalar!




_agrangian Dynamics:

Momentum equation A 0 XV ¥ (5 +05°D) - L
* FV3 solves the flux-form vector invariant
equations

* Nonlinear vorticity flux term in momentum
equation, confounding linear analyses

* D-grid allows exact computation of
absolute vorticity—no averaging!

* Vorticity uses same flux as w: consistency
improves nonlinear balance, and
updraft helicity advected as a scalar!
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Many flows are vortical
Not just large-scale flows

128x64—-600

Figure 10. Polar stereographic projection (from the equator to the north pole) of the potential vorticity contours
at DAY-24 in the “stratospheric vortex erosion’ test case at three different resolutions.




May | talk to you about...diffusion?

 All dynamical cores require artificial diffusion (implicit or explicit)
to remove energy cascading to grid scale

* F\3 has implicit diffusion from monotone advection, forward-
backward timestepping, and vertical remapping

* Except for vertical remapping...all explicit and implicit diffusion is
along the Lagrangian surfaces



May | talk to you about...diffusion?

* C-D grid does not explicitly see divergence—so explicit divergence
damping is an intrinsic part of the solver

* Non-monotone advection is useful in nonhydrostatic dynamics
Noise can be controlled by adding diffusion to the vorticity fluxes
* Explicitly-dissipated kinetic energy can be converted to heat
* Divergence and vorticity damping can be controlled separately

* A simplified second-order Smagorinsky damping, with a nonlinear
flow-dependent coefficient, is also available



Backward horizontal
oressure gradient force

 Computed from Newton’s second and third
laws, and Green’s Theorem

* Errors lower, with much less noise,
compared to traditional evaluations

* Purely horizontal
no along-coordinate projection

* PGF equal and opposite—3" |aw!
Momentum conserved

* Curl-free in the absence of density gradients

* Nonhydrostatic and hydrostatic components
can be computed separately
* log(py,q) PGF more accurate
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* Errors lower, with much less noise,
compared to traditional evaluations

* Purely horizontal

Figure 5. The pressure gradient (m s~?) computed by the Arakawa-Suarez method. Contour interval is 1 x 1075,
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Backward horizontal
oressure gradient force

* Computed from Newton’s second and thir
laws, and Green’s Theorem

* Errors lower, with much less noise,
compared to traditional evaluations

* Purely horizontal
no along-coordinate projection

* PGF equal and opposite—3" |aw!
Momentum conserved

* Curl-free in the absence of density gradients

* Nonhydrostatic and hydrostatic componen
can be computed separately

* log(py,q) PGF more accurate
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Vertical processes:
Vertical elastic terms
and Lagrangian vertical coordinate



Semi-implicit solver

* Vertical pressure gradient and layer depth 6z is solved by semi-
implicit solver

 Vertically-propagating sound waves weakly damped

* This is all that is needed to make the classic FV hydrostatic algorithm
nonhydrostatic
* Fully compressible and nonhydrostatic! Full Euler equations solved
* w, 8z advected as other variables—consistent!
* Nonhydrostatic horizontal PGF evaluated same way as hydrostatic



The Lagrangian Vertical Coordinate

 The domain is separated into a number of quasi-horizontal Lagrangian
layers (k index)

 All flow is within the layers (“logically” horizontal)

* No cross-layer layer flow or diffusion
Vertical motion deforms the layers instead

* Periodically, a highly-accurate conservative remapping is done to
avoid layers becoming infinitismally thin (6p = 0)

* Remapping interval like Lagrangian advection’s timestep:
longer timesteps yield less overall artificial diffusion

* This is the only way cross-layer diffusion is introduced!!



The Lagrangian Vertical Coordinate

* The mass Op and height 6z are prognostic variables.
Height and pressure of each layer are dynamically computed.

* Lagrangian coordinate works for any base coordinate
* Hybrid-pressure, hybrid-height, and hybrid-isentropic coordinates
have been successfully used
* Vertical advection is implicit through the vertical movement of layers
* There is no Courant number restriction or time-splitting!
* Vertical advection does not need a separate computation.
Computing dp and 0z is sufficient.

* Implicit advection not only saves time but also permits very thin
layers without requiring a smaller timestep



The Cubed-Sphere Grid

The 3 in FV3



The Cubed-Sphere Grid

* Ghomonic cubed-sphere grid:
coordinates are great circles

* Widest cell only V2 wider than
narrowest

* More uniform than conformal, elliptic,
or spring-dynamics cubed spheres

* Tradeoff: coordinate is non-orthogonal,
and special handling needs to be done at
the edges and corners.

D-grid winds ===
Fluxes =—>
C-grid winds s




The Cubed-Sphere Grid

 Ghomonic cubed-sphere is non-
orthogonal

* Instead of using numerous metric terms,
use covariant and contravariant winds

* Solution winds are covariant, advection is by
contravariant winds

* KE is half the product of the two

* Winds u and v are defined in the local
coordinate: rotation needed to get zonal
and meridional components

D-grid winds ===
Fluxes =—>
C-grid winds s




A little bit about initialization

FV3 has a host of utilities to generate grids, orography, and initial
conditions from cold start

* Any grid can be generated in seconds

* |nitialize from NCEP or EC analyses

 Remap from different vertical spacings

 Comprehensive topography generation, including subgrid orography

* Advanced FCT orography filter allows preservation of total topography, peaks,
and valleys; limits slope steepness; and prevents nonzero topography in the
ocean

Atmospheric nudging to analyses for simple assimilated initialization, or for
aerosol and chemistry studies



Essential Runtime Options

* dt_atmos: physics timestep

* kK _split: Number of vertical remappings per dt _atmos
*n_split: Number of “acoustic” timesteps perk _split
* hord_ xx: Horizonal advection algorithms

 kord_ yy: Vertical remapping options

* d4 bg, vtdm4: explicit damping options for divergence and for
fluxes (except scalars), of order 2*(nord+1)

* dddmp: Smagorinsky damping coefficient

* d_con: Converts explicitly-damped KE to heat



Grid refinement (preview)

FV3 supports both stretching and nesting for grid refinement

Grid stretching is simple and smooth Grid nesting is efficient and flexible



* FV3 is able to mimic many physical properties, particularly Newton’s
laws, mass conservation, and excellent vorticity dynamics

* Lagrangian dynamics is very powerful!
* Increased parallelism
* Implicit vertical advection, without computation
* Much reduced implicit vertical diffusion
* Improves PBL and surface interaction

 Solver is fully compressible, and so horizontally local

* Fully nonhydrostatic solver maintains excellent hydrostatic flow while
consistently implementing nonhydrostatic elastic terms

* Flexible advection, diffusion, and grid structure options



