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Abstract
Seasonal predictions of Arctic sea ice on regional spatial scales are a pressing need for a broad group of stakeholders, 
however, most assessments of predictability and forecast skill to date have focused on pan-Arctic sea–ice extent (SIE). In 
this work, we present the first direct comparison of perfect model (PM) and operational (OP) seasonal prediction skill for 
regional Arctic SIE within a common dynamical prediction system. This assessment is based on two complementary suites 
of seasonal prediction ensemble experiments performed with a global coupled climate model. First, we present a suite of PM 
predictability experiments with start dates spanning the calendar year, which are used to quantify the potential regional SIE 
prediction skill of this system. Second, we assess the system’s OP prediction skill for detrended regional SIE using a suite 
of retrospective initialized seasonal forecasts spanning 1981–2016. In nearly all Arctic regions and for all target months, we 
find a substantial skill gap between PM and OP predictions of regional SIE. The PM experiments reveal that regional winter 
SIE is potentially predictable at lead times beyond 12 months, substantially longer than the skill of their OP counterparts. 
Both the OP and PM predictions display a spring prediction skill barrier for regional summer SIE forecasts, indicating a 
fundamental predictability limit for summer regional predictions. We find that a similar barrier exists for pan-Arctic sea–ice 
volume predictions, but is not present for predictions of pan-Arctic SIE. The skill gap identified in this work indicates a 
promising potential for future improvements in regional SIE predictions.
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1 Introduction

Rapid changes in Arctic sea–ice extent (SIE), thickness 
(SIT), and age over the satellite era, and their implications 
for a broad group of stakeholders, have led to a burgeoning 
research interest in seasonal-to-interannual predictability 
and prediction skill of Arctic sea ice. Over the past decade, 
substantial progress in sea–ice prediction science has been 
made, including the first seasonal predictions of sea ice made 
using coupled global climate models (GCMs) (Wang et al. 
2013; Chevallier et al. et al. 2013; Sigmond et al. 2013; Mer-
ryfield et al. 2013; Msadek et al. 2014; Peterson et al. 2015; 
Blanchard-Wrigglesworth et al. 2015; Collow et al. 2015; 
Guemas et al. 2016; Dirkson et al. 2017; Bushuk et al. 2017; 
Blanchard-Wrigglesworth et al. 2017; Chen et al. 2017), the 
first prognostic estimates of potential sea–ice prediction skill 
using “perfect model” approaches (Koenigk and Mikolajew-
icz 2009; Holland et al. 2011; Blanchard-Wrigglesworth 
et al. 2011b; Tietsche et al. 2014; Germe et al. 2014; Day 
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et al. 2014, 2016), diagnostic studies quantifying timescales 
and identifying key sources of sea–ice predictability (Kauker 
et al. 2009; Blanchard-Wrigglesworth et al. 2011a; Holland 
and Stroeve 2011; Chevallier and Salas 2012; Day et al. 
2014; Bushuk et al. 2015; Bushuk and Giannakis 2015; 
Cheng et al. 2016; Bushuk et al. 2017; Bushuk and Gian-
nakis 2017), the development of novel statistical techniques 
for sea–ice forecasting (Drobot et al. 2006; Drobot 2007; 
Lindsay et al. 2008; Tivy et al. 2011; Stroeve et al. 2014; 
Schröder et al. 2014; Kapsch et al. 2014; Wang et al. 2016; 
Yuan et al. 2016; Williams et al. 2016; Petty et al. 2017), 
and the creation of the sea–ice prediction network (SIPN, 
Stroeve et al. 2014; Blanchard-Wrigglesworth et al. 2015), 
which collects and communicates predictions of September 
Arctic SIE (see http://www.arcus .org/sipn/sea-ice-outlo ok).

A crucial finding that has emerged from this body of work 
is that current seasonal forecasts of pan-Arctic SIE made 
with operational (OP) prediction systems could be sub-
stantially improved. State-of-the-art dynamical prediction 
systems, based on fully-coupled GCMs and initial condi-
tions (ICs) constrained by observations, can skillfully pre-
dict detrended pan-Arctic summer SIE at 1–6 month lead 
times and winter SIE at 1–11 month lead times depending 
on the prediction system used (Wang et al. 2013; Cheval-
lier et al. et al. 2013; Sigmond et al. 2013; Merryfield et al. 
2013; Msadek et al. 2014; Peterson et al. 2015; Blanchard-
Wrigglesworth et al. 2015; Collow et al. 2015; Guemas 
et al. 2016; Dirkson et al. 2017). These OP skill estimates 
are based on retrospective predictions (hindcasts), in which 
the fixed prediction system is run using only data available 
prior to the forecast initialization date. Perfect model (PM) 
studies, based on ensembles of model runs initialized from 
nearly identical ICs, complement these findings by provid-
ing estimates of the upper limits of prediction skill within a 
given GCM. These idealized experiments provide skill esti-
mates in the case of perfectly known model physics and per-
fect ICs, and therefore are considered to be an upper bound 
to the prediction skill achievable in an OP system. PM stud-
ies show that pan-Arctic SIE and sea–ice volume (SIV) are 
predictable at 12–36 and 24–48 month lead times, respec-
tively, highlighting a significant skill gap between PM and 
OP predictions (Koenigk and Mikolajewicz 2009; Holland 
et al. 2011; Blanchard-Wrigglesworth et al. 2011b; Tietsche 
et al. 2014; Germe et al. 2014; Day et al. 2014).

The principal focus of Arctic sea–ice predictability 
research has been pan-Arctic SIE, a quantity of minimal 
utility at stakeholder-relevant spatial scales. As prospects 
for skillful seasonal sea–ice prediction systems become more 
realistic, it is paramount for sea–ice predictability science to 
address the regional scales required by future forecast users, 
which include northern communities, shipping industries, 
fisheries, wildlife management organizations, ecotourism, 
and natural resource industries (Jung et al. 2016). Initial 

steps towards understanding Arctic regional predictability 
have been made, but many knowledge gaps remain. The 
PM study of Day et al. (2014) demonstrated a potential for 
skillful regional SIE predictions in the HadGEM1.2 GCM, 
finding greatest predictability for winter SIE in the Labra-
dor, Greenland-Iceland-Norwegian (GIN), and Barents Seas 
(at lead times of 1.5–2.5 years) and lower predictability for 
summer SIE (skill at lead times of 2–4 months). Sigmond 
et al. (2016) showed skillful OP predictions of detrended 
sea–ice retreat and advance dates, with notably high skill 
for ice-advance date predictions in the Labrador Sea/Baffin 
Bay, Beaufort Sea, Laptev/East Siberian Seas, Chukchi Sea, 
and Hudson Bay (3–5 month leads for detrended anoma-
lies). The work of Krikken et al. (2016) reported skillful OP 
predictions of detrended sea–ice area up to 6 month lead 
times in the Barents/Kara Seas and the Northeast passage 
region. Bushuk et al. (2017) provided the first comprehen-
sive assessment of OP regional SIE predictions, reporting 
detrended SIE skill at lead times of 5–11 months in the Lab-
rador, GIN, and Barents Seas, and 1–4 months in the Laptev, 
East Siberian, Chukchi, Beaufort, Okhotsk, and Bering Seas. 
This work attributed the high winter SIE skill of the North 
Atlantic to initialization of subsurface ocean temperature 
anomalies, and the summer SIE skill to initialization of SIT 
anomalies. Using two different OP seasonal prediction sys-
tems, Collow et al. (2015) and Dirkson et al. (2017) both 
found that improved SIT ICs led to improvements in regional 
predictions of summer sea ice. On longer timescales, Yeager 
et al. (2015) demonstrated that decadal sea–ice trends in the 
North Atlantic are predictable, due to dynamical predict-
ability of thermohaline circulation variations.

While the gap between PM and OP prediction skill sug-
gests a potential for improved OP predictions, it is important 
to note that the PM and OP studies cited above were per-
formed with different GCMs. Since each GCM has unique 
model physics and a resulting unique set of model biases, 
this precludes a direct quantitative assessment of the PM/
OP skill gap. In this study, we present the first formal com-
parison of PM and OP Arctic sea–ice prediction skill within 
the same GCM-based prediction system. In order to pro-
vide an “apples-to-apples” skill comparison, we first address 
the general problem of how to make a robust comparison 
between PM and OP skill. PM and OP studies often utilize 
different metrics to quantify prediction skill, or use different 
definitions for metrics with the same name (Hawkins et al. 
2016). In this study, we begin by introducing a consistent 
set of PM and OP skill metrics, which can be computed 
analogously for both PM and OP prediction applications. 
These metrics are specifically designed to allow for a robust 
comparison between PM and OP skill.

In this work, we perform a suite of PM experiments ini-
tialized from six start months spanning the calendar year 
and from six start years spanning different initial SIV states. 

http://www.arcus.org/sipn/sea-ice-outlook
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This experimental design provides better seasonal coverage 
than earlier PM studies, allowing for an evaluation of PM 
skill for all target months and lead times of 0–35 months. We 
also consider a suite of retrospective OP predictions made 
with the same model, initialized on the first of each month 
from January 1981–December 2016. Using these comple-
mentary experiments, we directly compare PM and OP pre-
diction skill for regional Arctic SIE, providing a quantitative 
assessment of the gap between current and potential Arctic 
seasonal-to-interannual prediction skill.

The plan of this paper is as follows. In Sect.  2, we 
describe the experimental design and introduce prediction 
skill metrics that allow for a direct comparison between PM 
and OP skill. Section 3 presents predictability results for 
pan-Arctic SIV and SIE. In Sect. 4, comparisons between 
PM and OP skill are made for fourteen Arctic regions. We 
conclude in Sect. 5.

2  Experimental design and prediction skill 
metrics

2.1  The dynamical model

This study is based on experiments performed with the 
Geophysical Fluid Dynamics Laboratory Forecast-oriented 
Low Ocean Resolution (GFDL-FLOR) GCM. FLOR is a 
fully-coupled global atmosphere–ocean–sea ice–land model, 
which employs a relatively high resolution of 0.5◦ in the 
atmosphere and land components and a lower resolution of 
1◦ in the ocean and sea–ice components (Vecchi et al. 2014). 
The choice of a coarser resolution for the ocean and sea–ice 
components was made for computational efficiency, as this 
model was developed for seasonal prediction applications 
requiring ensemble integrations and many start dates, and 
for consistency with the ocean and sea ice components of 
GFDL-CM2.1 (Delworth et al. 2006), which is the basis of 
the assimilation system with which the initial conditions for 
the OP predictions are generated. The sea–ice component 
of FLOR is the sea–ice simulator version 1 (SIS1, Delworth 
et al. 2006), which utilizes an elastic–viscous–plastic rheol-
ogy to compute the internal ice stresses (Hunke and Duko-
wicz 1997), a modified Semtner 3-layer thermodynamic 
scheme with two ice layers and one snow layer (Winton 
2000), and a subgrid-scale ice-thickness distribution with 
5 thickness categories (Bitz et al. 2001). FLOR’s ocean 
component is the Modular Ocean Model version 5 (MOM5, 
Griffies 2012), which uses a rescaled geopotential height 
coordinate (z*, Griffies et al. 2011) with 50 vertical lev-
els. The atmospheric component of FLOR is Atmospheric 
Model version 2.5 (AM2.5, Delworth et al. 2012), which 
uses a cubed-sphere finite-volume dynamical core (Lin 
2004; Putman and Lin 2007) with 32 vertical levels, and the 

land component of FLOR is Land Model, version 3 (LM3, 
Milly et al. 2014).

2.2  The control integration

The perfect model (PM) experiments described in the fol-
lowing subsection are branched from a 300-year control 
integration of FLOR, which uses radiative forcing and land 
use conditions that are representative of 1990. This 300-year 
control integration (“the new control run”) was initialized 
from year 800 of another 1400-year 1990 control run (hence-
forth “the original control run”), which had been previously 
run on a now-decommissioned high-performance computing 
cluster. The new control run and PM experiments were run 
on a new computing cluster, which does not bitwise repro-
duce numerical solutions obtained on the previous cluster 
but does reproduce the climate mean state and variability. 
The original control run shows clear signs of model spin up, 
with a notable adjustment occurring in the first 500 years of 
the run (see the evolution of SIV anomalies in Fig. 1a). After 
roughly year 600, the model reaches a statistically steady 
equilibrium for the variables of interest in this study. The 
new control run was initialized from the well-equilibrated 
year 800 of the original control run, and does not show 
signs of model drift over the 300-year integration period 
(see Fig. 1a). Centennial-timescale drift of Arctic SIE and 
SIV associated with model spin up is a ubiquitous feature 
across GCMs (e.g., see Fig. 1 of Day et al. 2016) and has 
the potential to significantly bias PM skill results. These 
potential skill biases are particularly relevant for regional 
sea ice, as a drifting climatology can cause a formerly high-
variability region to shift to a low-variability region as it 
becomes ice covered or ice free, and vice versa. Therefore, 
the well-equilibrated control run shown in Fig. 1a is a crucial 
feature of this regional sea–ice study. Henceforth, we will 
refer to the new 300-year control run simply as “the control 
run.”

We evaluate the FLOR sea–ice model biases using 
monthly-averaged passive microwave satellite SIC observa-
tions from the National Snow and Ice Data Center (NSIDC) 
processed using the NASA Team Algorithm (dataset ID: 
NSIDC-0051, Cavalieri et al. 1996). We also consider SIT 
data from the Pan-Arctic Ice Ocean Modeling and Assimi-
lation System (PIOMAS, Zhang and Rothrock 2003), an 
ice–ocean reanalysis that agrees quite well with available 
in situ and satellite thickness observations (Schweiger et al. 
2011). For comparison with FLOR, both the NSIDC and 
PIOMAS data were regridded onto the FLOR sea–ice grid. 
The pan-Arctic SIE climatology of FLOR has fairly good 
agreement with satellite observations, with a slight low bias 
in August–October and good agreement in other months 
(see Fig. S1a). The model biases are more pronounced when 
considering SIC spatial patterns. FLOR’s winter SIC has 
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negative biases (too little sea ice) in the Labrador, Okhotsk, 
and Bering Seas, and positive biases (too much sea ice) in 
the Greenland-Iceland-Norwegian (GIN) and Barents Seas 
(Fig. S2a–c). The summer SIC pattern is dominated by a 
negative bias wrapping the Alaskan and Eurasian coastlines, 
and a positive bias in the northern GIN and Barents Seas 
(Fig. S2d–f). Compared to PIOMAS, FLOR has a substan-
tial thin bias of 0.5–1m at most central Arctic gridpoints 
(Fig. S3) and a lower pan-Arctic SIV in all months of the 
year (Fig. S1b). The spatial biases in SIC variability are 
largely dictated by biases in the mean ice-edge position, 
which result in dipole bias patterns in the SIC standard 
deviation fields (Fig. S4). One notable exception to this is 
the Labrador Sea during winter, in which FLOR has less SIC 
variability throughout the region.

2.3  Perfect model predictability experiments

The 300-year control simulation serves as the baseline 
for our PM predictability experiments. Using this run, we 
choose a number of start dates, initialize a 12-member initial 
condition ensemble for each start date, and run these ensem-
bles forward in time for three years. A novel aspect of our 
experimental design is the choice of start dates with uniform 
seasonal coverage. Prior PM studies have focused primarily 
on January, May, and July start dates (Day et al. 2016). In 
this study, for each start year, we initialize ensembles on Jan-
uary 1, March 1, May 1, July 1, September 1, and Novem-
ber 1 (see Table 1 for a summary of the PM experiments). 
This uniform seasonal coverage allows us to investigate the 
lead-dependence of seasonal forecast skill and to make a 
clean quantitative comparison with the OP prediction skill 
reported in Bushuk et al. (2017). These start dates also allow 
us to identify optimal initialization months for given regions 
or target months of interest. In order to assess how predict-
ability varies with the initial SIV state, we choose start years 
based on SIV anomalies, selecting two high volume years, 
two typical volume years, and two low volume years. The 
high/low volume years are years in which the SIV anomaly 
exceeds ± 1.2� in all months of the year, and the typical 
volume years have SIV anomalies with absolute value less 
than 0.25� in all months of the year (see Fig. 1b). The SIV 

standard deviation of the FLOR control run ( � = 1.1e12 m 3 ) 
is comparable to the detrended SIV standard deviation of 
PIOMAS ( � = 1.3e12 m 3 ), indicating that the chosen high/
low SIV anomalies have similar magnitude to those in the 
PIOMAS record. The start years are chosen at least 20 years 
apart, so that each start year of ensembles can be considered 
independent of other start years.

Table 1  Summary of GFDL-
FLOR PM experiments

Start year Volume state Start months Ensemble 
members

Integration 
time (years)

839 High Jan, Mar, May, Jul, Sep, Nov 12 3
874 Low Jan, Mar, May, Jul, Sep, Nov 12 3
898 Typical Jan, Mar, May, Jul, Sep, Nov 12 3
933 High Jan, Mar, May, Jul, Sep, Nov 12 3
981 Low Jan, Mar, May, Jul, Sep, Nov 12 3
1008 Typical Jan, Mar, May, Jul, Sep, Nov 12 3
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Fig. 1  Experimental setup for PM experiments. a Arctic SIV anomaly 
timeseries from the original and new 1990 control runs. The new con-
trol is initialized from year 800 of the original control. b Start dates 
for PM ensemble experiments (cyan dots). The new control is used 
to define thresholds to select high/low/typical SIV years. The ± 1.2� 
levels and ± 0.25� levels are indicated by horizontal red lines. c Evo-
lution of volume anomalies from an ensemble initialized on January 1 
of year 839. The black line shows the control run realization
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A key aspect of PM experiments is the availability of 
model restart files which can be used to construct an ensem-
ble of initial conditions. In the control run, restart files were 
saved at monthly frequency, which allows us to initialize 
an ensemble from any month of the year. The ensembles 
were constructed by adding a random spatially uncorrelated 
Gaussian perturbation with standard deviation 10−4 K to the 
SST field at each ocean gridpoint. This ensemble genera-
tion technique mirrors the protocol used in the APPOSITE 
experiments (Day et al. 2014; Tietsche et al. 2014; Day 
et al. 2016). Our PM experiments were run with 12 ensem-
ble members, which is the ensemble size used for GFDL’s 
initialized seasonal predictions (see following subsection). 
This suite of experiments, consisting of six start years, six 
start months per start year, 12 ensemble members per start 
month, and 3 years of integration time, totals 1296 years of 
model integration.

In each ensemble experiment, the ensemble members are 
initialized infinitesimally close to one another and diverge 
over time due to the chaotic dynamics of the system (see 
Fig. 1c). The rate at which this ensemble divergence occurs 
provides information on the inherent predictability of the 
system, quantifying the timescale at which a skillful predic-
tion could be made in the case of perfect ICs and perfectly 
known model physics. In Sect. 2.6, we present a set of met-
rics used to quantity the prediction skill of PM predictability 
experiments.

2.4  Retrospective seasonal prediction experiments

As a complement to the PM experiments, we analyze the sea-
sonal prediction skill of a suite of retrospective OP prediction 
experiments made using the FLOR model. These twelve-mem-
ber ensemble predictions are initialized on the first of each 
month from January 1981–December 2016, and integrated for 
one year. The initial conditions come from GFDL’s Ensemble 
Coupled Data Assimilation (ECDA; Zhang et al. 2007; Zhang 
and Rosati 2010) System, which is based on the ensemble 
adjustment Kalman filter (Anderson 2001). The ECDA system 
assimilates satellite sea-surface temperatures (SST), subsur-
face temperature and salinity data, and atmospheric reanaly-
sis data from National Centers for Environmental Prediction 
(Bushuk et al. 2017). Note that while this system does not 
explicitly assimilate sea–ice data, the sea–ice state in the cou-
pled assimilation is constrained via surface heat fluxes associ-
ated with assimilation of SST and surface-air temperature data. 
This assimilation system captures the climatology, long-term 
trend, and interannual variability of pan-Arctic SIE with rea-
sonable fidelity (Msadek et al. 2014). These FLOR retrospec-
tive seasonal predictions have been used to examine pan-Arctic 
(Msadek et al. 2014) and regional (Bushuk et al. 2017) SIE 
prediction skill in addition to a diverse set of other climate 
prediction applications, including regional SST (Stock et al. 

2015), tropical cyclones (Vecchi et al. 2014; Murakami et al. 
2017), temperature and precipitation over land (Jia et al. 2015, 
2017), and extratropical storm tracks (Yang et al. 2015). Using 
FLOR for both the PM and OP predictions allows us to make a 
clean “apples-to-apples” comparison between operational and 
potential prediction skill within the same prediction system.

2.5  Operational prediction skill metrics

We assess the skill of the OP predictions using the anomaly 
correlation coefficient (ACC) and the mean-squared skill score 
(MSSS). We let o and p be observed and predicted values, 
respectively, of a time series of interest, for example pan-Arctic 
SIE. We let � be the forecast lead time, oj be the observed value 
at time j, K be the number of years in the observed timeseries, 
and N be the number of prediction ensemble members. We let 
pij(�) be the predicted value given by the ith ensemble member 
initialized � months prior to time j. Our lead � prediction of 
oj is given by the ensemble-mean prediction ⟨pj(�)⟩ , where:

We let ⋅̄ denote the time-mean over the K samples. The ACC  
is given by the Pearson correlation coefficient between the 
predicted and observed timeseries:

The mean-squared error (MSE) is given by

and the MSE of a climatological forecast ō is given by

The MSSS (Murphy 1988) is a skill score based on a com-
parison between MSE and MSEclim , and is given by

The MSSS is directly related to the ACC  via the decomposi-
tion of Murphy (1988), which shows that

(1)⟨pj(�)⟩ =
1

N

N�

i=1

pij(�).

(2)

ACC(𝜏) =

∑K
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�
⟨pj(𝜏)⟩ − p(𝜏)

��
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where the last two terms are negative definite and corre-
spond to the conditional and unconditional forecast biases, 
respectively, and � is the standard deviation of the given 
time series. The unconditional bias term is related to the 
mean offset between the observed and predicted time series, 
whereas the conditional bias term represents the degree to 
which the slope of the regression line between these time 
series deviates from 1 (i.e. the degree to which predictions 
are underconfident or overconfident).

Since the focus of this study is the initial-value predict-
ability of Arctic sea ice, we assess prediction skill relative to 
a linear trend reference forecast. Specifically, we detrend the 
regional SIE time series’ using a linear trend forecast which 
is updated each year using all available past data (Petty 
et al. 2017; Bushuk et al. 2017) and compute OP ACC  and 
MSSS values using these detrended data. This differs from 
the approach used in other hindcast studies, which com-
pute detrended anomalies using linear or quadratic trends 
based on the full hindcast period, providing an a posteriori 
assessment of detrended prediction skill (Wang et al. 2013; 
Chevallier et al. et al. 2013; Sigmond et al. 2013; Merryfield 
et al. 2013; Msadek et al. 2014; Peterson et al. 2015; Gue-
mas et al. 2016; Dirkson et al. 2017). A drawback to this 
full-hindcast period approach is that the detrended anomaly 
of a given year relies upon future information, and there-
fore the linear trend reference forecast does not represent 
a viable forecasting strategy. The approach employed here 
ameliorates this issue, by computing a linear trend forecast 
each year using all available past data (we assume a linear 
trend of zero for the first three hindcast years). After this 
detrending, the OP ACC  and MSSS can be cleanly com-
pared to the PM ACC  and MSSS, respectively. Note that we 
also computed detrended regional SIE prediction skill using 
linear and quadratic trends computed over the full hindcast 
period, and found that regional prediction skill is relatively 
insensitive to the choice of detrending method.

2.6  Perfect model skill metrics

We next introduce a set of predictability metrics, which are 
used to judge the prediction skill of the PM experiments. 
These metrics utilize a technique commonly used in the PM 
literature (Collins 2002; Hawkins et al. 2016) in which each 
ensemble member in turn is taken to be the “truth” and the 
remainder of the ensemble is used to predict this “truth” 
member. In order to facilitate a clean comparison between 
OP and PM skill, we define our PM skill metrics in analogy 
to the OP skill metrics presented in the previous section. 
Note that these metrics differ somewhat from other metrics 
commonly used in the PM predictability literature (Collins 
2002; Pohlmann et al. 2004; Hawkins et al. 2016), and offer 
conceptual advantages when comparing to OP prediction 
skill (see Appendix 6.2 for a discussion of how these metrics 

relate to other commonly used definitions). In particular, 
these PM metrics can be compared directly with their OP 
analogues, while other commonly used PM metrics cannot.

We let x be a timeseries of interest, for example pan-
Arctic SIE or SIV. We let xij(�) be the prediction of x from 
start date j and ensemble member i at lead time � . Suppose 
that we have M ensemble start dates, with each ensemble 
consisting of N members (in this study M = 6 and N = 12 ). 
We now motivate a definition for the PM MSE. Suppose that 
ensemble member i is the synthetic observation (the “truth” 
member). We use the remaining N − 1 ensemble members to 
predict this synthetic observation. Specifically, we take the 
ensemble mean of these N − 1 members as our prediction of 
xij . As a notation, we let �îj be a vector of ensemble members 
from the jth ensemble with the ith member removed:

and let ⟨⋅⟩ denote the ensemble mean operator. Thus, 
⟨�îj(𝜏)⟩ is our prediction of xij , and has a squared error of 
(⟨�îj(𝜏)⟩ − xij(𝜏))

2 . Letting each ensemble member take 
a turn as the truth and averaging over all ensemble mem-
bers (N) and ensemble start dates (M), we obtain the mean-
squared error (MSE):

This metric is the PM analogue to the OP MSE defined 
in Eq. (3). This MSE formula satisfies a necessary condi-
tion for forecast reliability (Jolliffe and Stephenson 2012; 
Palmer et al. 2006; Johnson and Bowler 2009; Leutbecher 
and Palmer 2008; Weigel et al. 2009), which states that the 
MSE of ensemble-mean forecasts is equal to the mean intra-
ensemble variance, �2

e
 , up to a scaling factor related to the 

finite ensemble size. Specifically, we show in Appendix 6.1 
that

where

and ⟨�j(�)⟩ is the ensemble mean of the jth ensemble.
We can now define a PM MSSS, given by

where �2
c
 is the climatological variance of x computed from 

the control run. �2
c
 is the MSE of a climatological reference 

forecast, which can be seen by replacing the ensemble-mean 

(7)�îj = (x1j,… , xi−1j, xi+1j,… , xNj),

(8)
MSE(𝜏) =

∑M

j=1

∑N

i=1

�
⟨�îj(𝜏)⟩ − xij(𝜏)

�2

MN
.

(9)MSE(�) =
N

N − 1
�2

e
(�),

(10)�2

e
(�) =

1

M

M�

j=1

1

N − 1

N�

i=1

�
⟨�j(�)⟩ − xij(�)

�2

,

(11)MSSS(�) = 1 −
MSE(�)

�2
c

,
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forecast in Eq. (8) with � , the monthly climatological mean 
of the control run. In practice, computing the climatologi-
cal variance from the control run is more robust than using 
Eq. (8), due to the relatively small number of start dates used 
in most PM studies. MSSS values close to one indicate high 
PM skill and a value of zero indicates no prediction skill 
relative to a climatological forecast. The MSSS is closely 
related to the potential prognostic predictability (PPP, Pohl-
mann et al. 2004), and can be interpreted analogously (see 
Appendix 6.2).

We also consider root-mean squared error (RMSE)

which quantifies the error in physical units, and the normal-
ized RMSE (NRMSE),

which normalizes the RMSE by the RMSE of a climatologi-
cal forecast. NRMSE values close to zero indicate skillful 
PM predictions and a value of one indicates no prediction 
skill relative to a climatological forecast. The MSSS is 
directly related to the NRMSE via

This RMSE definition provides a more natural compari-
son with OP RMSE than the definition of Collins (2002) 
(which includes an additional factor of 

√
2 ), reducing poten-

tial for confusion when interpreting PM RMSE values (see 
Appendix 6.2).

We define the ACC  as the correlation between predicted and 
“observed” anomalies, where each ensemble member xij takes 
a turn as the “truth” and the ensemble means ⟨�îj(𝜏)⟩ are used 
to predict these synthetic observations:

Note that the anomalies are computed relative to �(�) , which 
is the climatological value of x at lead time � computed using 
the control run. In a non-stationary climate, � is a function 
of start date j. Given that the control run considered in this 
study has a statistically steady climate, we drop the j depend-
ence in this formula. ACC  values near 1 indicate high PM 
skill, and values of zero indicate no skill relative to a clima-
tological forecast.

(12)RMSE(�) =
√
MSE(�),

(13)NRMSE(�) =
RMSE(�)

�c
,

(14)MSSS(�) = 1 − (NRMSE(�))2.

(15)ACC(𝜏) =

∑M

j=1

∑N

i=1

�
⟨�îj(𝜏)⟩ − 𝜇(𝜏)

��
xij(𝜏) − 𝜇(𝜏)

�

�
∑M

j=1

∑N

i=1

�
⟨�îj(𝜏)⟩ − 𝜇(𝜏)

�2
�

∑M

j=1

∑N

i=1

�
xij(𝜏) − 𝜇(𝜏)

�2

.

2.7  Significance testing

Throughout the manuscript, we assess statistical signifi-
cance using a 95% confidence level. The statistical signifi-
cance of the PM RMSE, NRMSE, and MSSS values is 
assessed using an F test based on the FMN−1,s∗−1 distribu-
tion, where M and N are the number of start dates and 
ensemble members from the PM experiments, respec-
tively, and s∗ is the effective number of degrees of freedom 
in the control run, given by s∗ = s

1−r(Δt)2

1+r(Δt)2
 where s is the 

number of samples in the control run and r(Δt) is the lag-1 
year autocorrelation computed from the control run 
(Bretherton et al. 1999). For the initialized forecast RMSE, 
NRMSE, and MSSS values, we use an F test based on the 
FK∗−1,K∗−1 d i s t r ibu t ion .  Here  K∗ i s  g iven  by 
K∗ = K

1−r1(Δt)r2(Δt)

1+r1(Δt)r2(Δt)
 , where K = 35 is the number of years 

in the retrospective forecast experiments and r1(Δt) and 
r2(Δt) are the lag-1 year autocorrelation values for each 
time series.

We assess whether the PM ACC  values are significantly 
greater than zero based on a t test with MN − 2 degrees of 
freedom. Similarly, we assess the OP ACC  values using 
a t test with K∗ − 2 degrees of freedom. Scatterplots of 
predicted vs observed regional SIE show that the assump-
tions of linearity and homoscedasticity are satisfied in all 
regions except for the Central Arctic, which is fully ice-
covered for many of the verification years. When directly 
comparing PM and OP forecast ACC, we use the OP fore-
cast significance threshold, which is the higher (more con-
servative) threshold of the two.

3  Pan‑Arctic predictability

3.1  Pan‑Arctic SIV

We begin by investigating the ensemble evolution and 
PM prediction skill for pan-Arctic SIV. As an example, 
Fig. 2 shows the ensemble evolution of SIV anomalies for 
ensembles initialized in year 839, a high volume year. As 
the ensembles evolve in time, they progressively diverge 
under the chaotic dynamics of the system. This divergence 
occurs on a timescale of years for pan-Arctic SIV: After 
three years of integration, most ensemble members have 
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retained a portion of their initial positive SIV anomaly, 
indicating that SIV is predictable beyond three-year lead 
times in this model. The rate of ensemble divergence also 
has a clear seasonal dependence. In particular, the ensem-
ble members diverge rapidly over the months of May–July, 
and experience a much slower rate of divergence over the 
late summer, fall, and winter months (for example, com-
pare the May initialized ensemble to the July initialized 
ensemble). This qualitative behavior is consistent with 
the physical expectation that the positive ice-albedo feed-
back should drive rapid ensemble divergence during the 
months of maximum solar insolation. Conversely, negative 
feedbacks active in fall and winter should act to reduce 
ensemble divergence, possibly even leading to ensemble 
convergence. These feedbacks include the negative feed-
back between ice growth and ocean entrainment (Mar-
tinson 1990), ice growth increases the amount of heat 
entrained into the mixed layer, reducing ice growth rates), 
ice growth and ice thickness (Bitz and Roe 2004), thin ice 
has larger growth rates than thick ice), and ice strength and 
ice thickness (Owens and Lemke 1990), thin, weak ice has 
a greater propensity for thickening via ice convergence and 

for open-water formation via ice divergence, which leads 
to increased thermodynamic growth).

The PM skill metrics help to quantify the qualitative 
impressions obtained from Fig. 2. In Fig. 3, we plot the PM 
RMSE, NRMSE, ACC, and MSSS for pan-Arctic SIV. Note 
that each of these curves is computed over all six start years. 
Each of these metrics shows statistically significant predic-
tion skill for SIV to lead times beyond 36 months, consist-
ent with earlier PM studies (Blanchard-Wrigglesworth et al. 
2011b; Tietsche et al. 2014; Day et al. 2014; Germe et al. 
2014; Day et al. 2016). We find that error growth rates and 
normalized error growth rates, as indicated by the slopes of 
the RMSE and NRMSE curves, respectively, vary strongly 
with target month. For both RMSE and NRMSE, the larg-
est error growth occurs in May–July, which is followed by 
a sharp decrease in error growth in August and September. 
These low error growth rates continue into the fall and win-
ter seasons, reaching their lowest values in the months of 
January–April (the error growth rates are negative in the 
winters of the second and third years). This is followed by 
rapid error growth in May as the melt season begins, and the 
error growth cycle roughly repeats again. Similar behavior 
is also observed in the ACC  and MSSS metrics, with pre-
cipitous decreases in skill from May–July and much slower 
skill declines for the remainder of the year. The MSSS, and 
to a lesser extent the ACC , display a winter reemergence of 
prediction skill in years two and three, in which the winter 
skill values are higher than the skill of the previous summer.

The clear seasonality of SIV error growth rates highlights 
the crucial importance of initialization month in Arctic SIV 
predictions. In particular, there is a significant skill gap 
between predictions initialized prior to June and those ini-
tialized post June, suggesting a melt season “predictability 
barrier” for SIV. These results demonstrate that this bar-
rier lies somewhere between May 1 and July 1, but further 
experiments are required to pinpoint its precise date. In 
other words, how far into the melt season must a prediction 
be initialized in order to avoid the unpredictable effects of 
atmospheric chaos, melt onset variability, and ice-albedo 
feedbacks? It is important to note that while this melt season 
predictability barrier is quite stark for SIV, it is less clearly 
defined for predictions of pan-Arctic SIE (see Sect. 3.4, 
ahead).

3.2  State‑dependence of predictability

Next, we consider the state-dependence of SIV predictabil-
ity, asking: Does the initial SIV state have an influence on 
SIV predictability characteristics? In Fig. 4, we plot SIV 
predictability metrics for each initial month binned into 
high, low, and typical volume states. For the skill metrics 
based on ensemble spread (RMSE, NRMSE, and MSSS), we 
find no clear dependence on the volume state; however, the 
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ACC  metric shows a striking difference between the high/
low volume states and the typical volume states. This result 
is consistent with the findings of Day et al. (2016) and can 
be explained via the ACC  formula given in Eq. (15). For 
the high/low volume ensembles, the ensemble means retain 
positive/negative anomalies over some timescale as the 
model relaxes towards its climatology (e.g. Fig. 2a), and the 
ensemble members fluctuate randomly around this ensemble 
mean. Therefore, the high/low ensembles each contribute 
positive values to the numerator of Eq. (15), since both the 
synthetic observations and synthetic predictions have like-
signed anomalies. On the other hand, the typical-anomaly 
ensembles fluctuate randomly around a near-zero anomaly 
state, making both positive and negative contributions to the 
numerator of Eq. (15), and producing an ACC  that is close to 
zero. A similar ACC  state-dependency holds for pan-Arctic 
SIE and other variables (not shown).

3.3  An unbiased estimate of perfect model ACC 

Because the PM ACC  is strongly state dependent, the ACC  
computed using Eq. (15) will be highly sensitive to the set of 
start dates chosen for a given PM study. This is an important 
caveat to consider when evaluating PM ACC : If start dates 
are not drawn randomly from the climatological distribution 
of states, the ACC  estimates will have systematic biases. For 
example, in this study, start dates were selected specifically 
to have high, low, and typical volume states (see Fig. 1b). 
These states do not obey the climatological distribution of 
volume states, as four of the six have notably large anoma-
lies. Since large-anomaly states have higher ACC  values, our 
ACC  estimates are likely biased high due to the non-random 
sampling of start dates used in this study.

To remedy this issue, we appeal to the decomposition of 
Murphy (1988), which relates the MSSS to the ACC  (see 
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Fig. 3  Pan-Arctic SIV PM prediction skill for different initializa-
tion months. Shown here are the temporal evolutions of a RMSE; b 
NRMSE; c ACC; and d MSSS. The curves are colored based on their 
initialization month. The gray dashed lines indicate the 95% thresh-

old for statistical significance. Note that the RMSE significance level 
is not constant due to the seasonal cycle in pan-Arctic SIV standard 
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Eq. 6). In a PM framework, predictions are free of condi-
tional and unconditional biases, therefore Murphy (1988) 
suggests that the identity MSSS = ACC2 should hold for 
PM predictions (Tietsche et al. 2014; Hawkins et al. 2016). 
However, we find that PM MSSS is not equal to ACC2 (e.g. 
see Fig. 6, ahead). Why is this? The decomposition of 
Murphy (1988) is a mathematical identity, which holds 
identically when the climatological mean and variance are 
computed “in sample” (i.e. using the available samples 
from the PM experiments, and not the control run values). 
In Eqn. (11) and (15), the climatological mean and vari-
ance are computed using the control run. If the start dates 
are non-randomly sampled, the control run mean and vari-
ance will be biased relative to the “in sample” mean and 
variance. This results in a breakdown of the decomposi-
tion of Murphy (1988). Since the MSSS shows much less 
sensitivity to start date than the ACC , it is less prone to 
sampling bias, and provides a more robust assessment of 
PM skill. We use this fact to define an unbiased estimate 

of the ACC , ACCU , which can be cleanly compared to OP 
ACC  values:

The ACCU is the value the ACC  would have if the decom-
position of Murphy (1988) held, which is the case when the 
PM states are sampled from the climatological distribution. 
Therefore, up to the independence of MSSS with respect 
to start date, this formula provides an ACC  estimate which 
is insensitive to start-date sampling error. In the following 
section, we directly compare OP ACC  and PM ACCU . Note 
that we could also directly compare OP and PM predictions 
based on MSSS values. If this comparison is made, many 
of the skill structures present in OP ACC  are degraded and 
the PM/OP skill gap is larger than the gap based on ACC , 
due to conditional biases in the OP predictions (not shown). 
For these reasons, we make our skill comparisons using OP 
ACC , which provides a lower bound on the PM/OP skill gap.

(16)ACCU =
√
MSSS.
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Fig. 4  PM prediction skill (a RMSE; b NRMSE; c ACC ; d MSSS) for pan-Arctic SIV in high (red curves), low (blue curves), and typical (black 
curves) volume states for different initialization months
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3.4  Pan‑Arctic SIE predictability

In this subsection, we compare the PM and OP prediction 
skill of pan-Arctic SIE. Figure 5 shows the evolution of 
RMSE, NRMSE, ACC, and MSSS for different initialization 
months for both PM and OP predictions of pan-Arctic SIE. 
Figure 6 takes a different vantage point, plotting the skill as a 
function of target month (the month we are trying to predict) 
and forecast lead time. These “target month” style PM skill 
plots are a unique contribution of this study, made possible 
by our choice of equally-spaced initialization months span-
ning the calendar year. Previous PM studies have typically 
focussed on January and/or July initializations, not provid-
ing enough initial-month “resolution” to construct a target-
month style plot. These plots allow for a systematic study of 
the skill dependence on target month, initial month, and lead 
time. Note that we have PM predictions initialized at two-
month intervals. For example, for target month January, we 
have predictions for all even lead times, from lead-0 through 

lead-34 (note that a lead-0 prediction is defined as the Janu-
ary-mean value from a prediction initialized on January 1). 
To obtain skill estimates for the odd lead times, we perform 
a linear interpolation between the even-lead values. This 
method provides reasonable results, as most skill variations 
occur over lead times of many months (see Fig. 6).

We find a striking gap between the PM and OP predic-
tion skill for pan-Arctic SIE. While the OP predictions have 
statistically significant ACC  at lead times of 0–5 months 
depending on the target month (Fig. 6c), the PM predictions 
have statistically significant ACC  and ACCU up to lead times 
of 35 months, for all target months (Fig. 6a, b). It is impor-
tant to note that PM skill should be considered an upper limit 
of prediction skill, and may overestimate the skill achievable 
in reality (see discussion in Sect. 4.3, ahead). Nevertheless, 
the skill gap shown in Figs. 5 and 6 suggests that substan-
tial skill improvements are possible in current OP predic-
tion systems. In particular, Fig. 5 shows large differences in 
lead-0 skill, indicating that the OP predictions likely suffer 
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Fig. 5  Comparison of PM (solid lines) and OP (dashed lines) prediction skill (a RMSE; b NRMSE; c ACC ; d MSSS) for pan-Arctic SIE for dif-
ferent initialization months. The 95% significance levels for ACC  and MSSS are plotted as dashed gray lines
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from initialization errors and/or initialization shocks. These 
lead-0 predictions could presumably be improved by assimi-
lating more observational data, improving data assimilation 
techniques, and expanding existing observational networks. 
In addition, we find that the loss of skill in the OP predic-
tions occurs much more rapidly than in the PM experiments. 
This rapid loss of skill likely results from a combination of 
(i) model physics errors; (ii) model drift associated with 
initialization shock; and (iii) differences between the model 
and nature in their underlying predictability, possibly result-
ing in an overestimated upper limit of predictability in the 
PM experiments.

Comparing Fig. 6a, b, we find that pan-Arctic SIE ACC  is 
higher than ACCU , consistent with our a priori expectation 
from Sect. 3.3. ACC  and ACCU offer similar qualitative con-
clusions, but have quantitative differences when assessing 
limits of predictability. For the skill comparisons throughout 
the remainder of the paper, we will use the ACCU values 
when comparing to OP prediction ACC . The PM skill shows 
a clear seasonality, with higher skill for winter SIE predic-
tions than summer SIE. As a reference-level for a “highly 
skillful” prediction, we have marked the ACC = 0.7 contour 
in Fig. 6, as this is the level at which half the variance of 
the observed signal can be predicted. This shows that half 
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the winter SIE variance is predictable at 18–26 month lead 
times, whereas the analogous limits for summer SIE are 
5–11 months.

The study of Day et al. (2014) found evidence of a May 
“predictability barrier” for pan-Arctic SIE, in which predic-
tions initialized in May lost skill more rapidly in the first 
four months than those initialized in January or July. In this 
model, there is no clear evidence of such a barrier, as the 
error growth rates over the first four months are similar for 
all initialization months (see Fig. 5b, d). Also, a May pre-
dictability barrier would result in a diagonal ACCU feature 
corresponding to initial month May in Fig. 6b, which is not 
seen. This lies in contrast to SIV, which shows clear evi-
dence of a melt-season predictability barrier (see Fig. 3). 
Interestingly, the OP predictions of summer SIE show evi-
dence of a spring prediction skill barrier, with lower skill 
for forecasts initialized prior to May. A similar feature is 
also seen in SIE persistence forecasts (see Fig. S8), suggest-
ing that SIE persistence is a key source of skill for the OP 
predictions, whereas the PM predictions presumably benefit 
from other sources of predictability, such as perfect SIT ICs, 
which extend skill beyond this barrier. We find that both 
PM and OP predictions show spring skill barriers in certain 
regions, which we explore in Sect. 4 ahead.

4  Regional sea–ice predictability

4.1  SIC predictability

In this section, we move to smaller spatial scales, exploring 
the ability of this model to make skillful predictions at the 
regional and gridpoint scale. In Fig. 7, we plot PM MSSS 
values for SIC for different target months and lead times of 
0–14 months. We find that for all target months, the lead-0 
SIC predictions are highly skillful, indicating a year-round 
potential for regional-scale sub-seasonal sea–ice predic-
tions in this model. The loss of SIC predictability with lead 
time is highly dependent on the region and target month. 
We observe a clear difference between summer and winter 
SIC predictions, with summer predictions losing most of 
their skill beyond six-month lead times and winter predic-
tions retaining skill beyond 14-month lead times. This long-
lead winter prediction skill is notably high in the Barents 
and GIN Seas, with lower values in the Labrador, Bering, 
and Okhotsk Seas. The SIC prediction skill for even target 
months and odd lead times has analogous skill characteris-
tics (not shown).

To synthesize the information of Fig. 7, we introduce a 
“predictable area” metric, defined as

(17)Predictable area(�) =
∫ MSSS(x, y, �)dA

∫ MSSS(x, y, � = 0)dA
,

which is the area integral of the SIC MSSS for a given target 
month, normalized by its lead-0 value. Figure 8 shows the 
evolution of SIC predictable area with lead time. We find 
that predictions of summer and winter SIC lose predictabil-
ity at a similar rate over the first 3 months, after which the 
rates of predictability loss begin to diverge. At lead times 
beyond 6 months, the winter SIC predictions (target months 
December–May) have higher predictable area values than 
summer SIC predictions (target months June–November). 
Consistent with the pan-Arctic SIE results, this shows that 
there is a greater potential for skillful long-lead predictions 
of winter SIC compared with summer SIC.

4.2  Regional SIE predictability

Next, we consider the predictability of regional SIE, pro-
viding a direct comparison between PM and OP regional 
SIE prediction skill. Regional SIE is likely a more “forgiv-
ing” metric than SIC, as it is less sensitive to local-scale ice 
dynamics associated with unpredictable atmospheric forc-
ing. The region definitions follow those used in Day et al. 
(2014) and Bushuk et al. (2017) (see Fig. S5). We find that 
for nearly all regions and all target months, there is a sub-
stantial gap between PM and OP prediction skill, indicating 
a potential for large improvements in regional SIE predic-
tions (see Figs. 9, 10, 11). We also find that the ACC skill 
structures are broadly similar between the PM and OP pre-
dictions. This correspondence indicates that OP prediction 
skill is partially governed by the fundamental predictability 
limits found in the PM experiments, and that common physi-
cal mechanisms underlie the prediction skill of both PM and 
OP predictions. Finally, we find that the regional differences 
in PM prediction skill generally mirror the skill differences 
found in the OP SIE predictions.

In both the PM and OP predictions, the highest regional 
prediction skill is found for winter SIE in the North Atlan-
tic sector (see Fig. 9). PM predictions in the Barents and 
GIN Seas are highly skillful (defined here as ACC ≥ 0.7 ; 
a prediction capable of capturing more than half the vari-
ance) at lead times beyond 24 months. This lies in contrast 
to the OP predictions, which have statistically significant 
skill in these regions at lead times of 5–11 months, but are 
not highly skillful. In both PM and OP predictions, regional 
SIE skill in the North Pacific sector is lower than that of the 
North Atlantic. This suggests that the Bering Sea and Sea 
of Okhotsk are fundamentally less predictable, lacking the 
potential for highly skillful predictions beyond 12-month 
lead times. Compared with the large PM/OP skill gap found 
in other regions, the Labrador Sea is an exception, showing 
similar PM and OP skill. The PM skill of this model may 
underestimate the fundamental limit of Labrador SIE pre-
dictability, as this model has too little SIC variability in this 
region (see Fig. S4). This SIC variability bias likely results 
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Fig. 7  SIC PM MSSS for different target months and lead times of 0–14 months. A mask has been applied such that only gridpoints with SIC 
standard deviation greater than 10% are plotted
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from excessive deep open ocean convection in the Labrador 
sea, which restricts sea–ice variability in this region. Indeed, 
the study of Day et al. (2014) found that the Labrador Sea 
had the longest duration of predictability in HadGEM1.2, 
suggesting that model formulation and biases may strongly 
affect Labrador Sea predictability estimates.

The study of Bushuk et al. (2017) identified a spring pre-
diction skill barrier in the Laptev, East Siberian and Beau-
fort Seas, in which summer SIE prediction skill dropped off 
sharply for OP forecasts initialized prior to May, May, and 
June, respectively (see Fig. 10g, h, j). Interestingly, the PM 
forecasts show a similar skill barrier in these regions, with 
highly skillful summer SIE predictions for forecasts initial-
ized May 1 and later, and a clear drop-off in skill for predic-
tions initialized before this (see Fig. 10b, c, e). The diagonal 
ACC contours in these regions indicate that summer SIE 
skill tends to be roughly constant for a given initialization 
month. The fact that the spring prediction skill barrier is 
present in both OP and PM predictions suggests that it is a 
fundamental predictability feature of this model, rather than 
resulting from IC errors in the OP predictions. In particular, 
the perfect SIT ICs in the PM experiments are not sufficient 
to overcome this spring barrier. Additional PM experiments 
using other GCMs are required to determine if the spring 
barrier is truly a feature present in nature. Summer SIE pre-
dictions in the Chukchi Sea are highly skillful at 2–4 month 
lead times in the PM experiments. While there is some diag-
onal structure in the Chukchi ACC plots, both the PM and 
OP predictions do not have a clearly defined spring barrier in 
this region. The Kara Sea has highly skillful PM predictions 

for summer and fall SIE at lead times of 2–11 months and 
also does not show a spring prediction skill barrier.

The Central Arctic has relatively low PM and OP predic-
tion skill (see Fig. 11), whereas the Canadian Archipelago 
has slightly higher skill, with highly skillful PM forecasts 
of August and September SIE at 2–3 month lead times. The 
Canadian Archipelago results should be viewed with some 
caution, given the model’s coarse resolution of this bathy-
metrically complex region. The PM forecasts have skill in 
predicting both melt season and growth season SIE anoma-
lies in Hudson and Baffin Bay. In each of these regions, 
the melt season skill is higher than the growth season, sug-
gesting that persistence of winter ice thickness anomalies 
is the greatest source of predictability in these regions. The 
Hudson and Baffin Bay OP skill is substantially lower than 
the PM skill, particularly for the growth season in Hudson 
Bay and the melt season in Baffin Bay. This skill discrepancy 
could possibly be reduced by directly assimilating SIT data 
in the OP system.

We also note that there are a small number of instances in 
which an isolated month shows OP skill but not PM skill (for 
example, lead-6 September predictions in the Barents Sea, 
lead-8 October/November predictions in the Chukchi Sea, 
and lead-4 November predictions in the Kara Sea). These 
instances tend to have fairly low skill ( ACC < 0.5 ), sug-
gesting that sampling errors in the OP predictions could be 
playing a role. Also, in some of these instances the PM skill 
does not decay monotonically with lead time, violating a 
property that we expect PM predictions to satisfy. This sug-
gests that sampling errors in the PM predictions could also 
explain these discrepancies.

4.3  Interpretation of the PM/OP skill gap

The PM/OP skill gap demonstrated in Figs. 9, 10 and 11 
raises a natural question: To what extent can these PM skill 
estimates be realized in future OP prediction systems? In 
other words, is it valid to interpret the PM/OP skill gap as 
possible “room for improvement” in prediction skill? The 
work of Kumar et al. (2014) directly addresses these ques-
tions, providing a framework to assess the fidelity of PM 
skill estimates. Kumar et al. (2014) argue that the inter-
pretation of the PM/OP skill gap as “room for improve-
ment” relies on an implicit assumption that the observed 
and model-predicted time series’ share the same statistical 
characteristics. In particular, they show that differences in 
PM skill between different models can largely be attributed 
to differences in temporal autocorrelation (persistence) and, 
by extension, argue that a model’s temporal autocorrelation 
should be compared to observations before making infer-
ences based on PM skill.

Following this, we compare the temporal autocorrelation 
of observed detrended regional SIE to the autocorrelation of 
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the FLOR control run. Computing autocorrelation values 
for all target months and lead times of 0–35 months, we 
find that the model’s regional SIE persistence characteris-
tics are generally quite consistent with observed persistence 
(see Figs. S6–S8). In particular, we find strong agreement 
in the Laptev, East Siberian, Beaufort, Bering, Canadian 
Arctic Archipelago, Hudson Bay, Baffin Bay, and Central 
Arctic regions. This suggests that in these regions the PM 
skill provides a reliable estimate of the true upper limits of 
skill achievable in nature. In the Chukchi Sea, Kara Sea, 
and Sea of Okhotsk, the model autocorrelation values agree 
well with observations for lead times less than or equal to 
6 months. For lead times beyond 6 months, the model has 

higher correlation values than observed, although the values 
are quite modest (less than 0.4). Since the majority of highly 
skillful PM predictions in these regions occur for lead times 
of 6 months or less, we conclude that the PM skill estimates 
are also quite reliable in these regions. We find a larger dis-
crepancy in the GIN and Barents Seas, with the model dis-
playing higher autocorrelation values than the observations, 
particularly for winters 1 and 2 years in advance of a given 
winter target month. This discrepancy could potentially arise 
due to the removal of low-frequency (period > 20 years) var-
iability when the observed SIE is linearly detrended. How-
ever, we find that this cannot fully explain the discrepancy, 
as notable differences in autocorrelation remain present even 
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Fig. 9  Comparison of PM prediction skill ( ACC
U

 ) and OP prediction 
skill (ACC ) for Arctic regional SIE for the GIN, Barents, Labrador, 
and Bering Seas and the Sea of Okhotsk. ACC  values are plotted as a 
function of target month and forecast lead time, and are only plotted 

for target months with SIE standard deviation greater than 0.03×106 
km2 . The thick black lines indicate the ACC  = 0.7 contours. Dots 
indicate months in which the ACC  values are statistically significant 
at the 95% confidence level
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if the model data is 20-year high-pass filtered. This suggests 
that the PM skill may overestimate the true upper limits of 
prediction skill in the Barents and GIN Seas. Conversely, 
we find that the model has lower autocorrelation values than 
detrended observations in the Labrador Sea, suggesting that 
the PM skill underestimates the true skill achievable in this 
region. This is consistent with the lack of a PM/OP skill gap 
in the Labrador Sea, and likely results from the model biases 
discussed in Sect. 4.2. Finally, we find that the model’s pan-
Arctic SIE is substantially more persistent than detrended 
observations, suggesting that the PM skill overestimates the 
true upper limit of predictability for the pan-Arctic domain. 
Overall, these findings provide general confidence in the 
interpretation of the PM/OP skill gap as possible “room for 

improvement” in prediction skill, while highlighting some 
caveats that apply to the North Atlantic regions and the pan-
Arctic domain.

5  Conclusions and discussion

In this work, we have established the first direct comparison 
of perfect model (PM) and operational (OP) Arctic sea–ice 
prediction skill within a common prediction system. Using 
the GFDL-FLOR coupled GCM, we have performed two 
complementary suites of ensemble prediction experiments. 
The first is a suite of PM experiments, consisting of ensem-
bles initialized in January, March, May, July, September, 

L
ea

d 
(m

on
th

s)

Target Month

A Kara Sea

J F MAM J J A S O N D

35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10

9
8
7
6
5
4
3
2
1
0

L
ea

d 
(m

on
th

s)

F

Target Month

Kara Sea

J F MAM J J A S O N D

11
10

9
8
7
6
5
4
3
2
1
0

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

Target Month

B Laptev Sea

J F MAM J J A S O N D

35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10

9
8
7
6
5
4
3
2
1
0

G

Target Month

Laptev Sea

J F MAM J J A S O N D

11
10

9
8
7
6
5
4
3
2
1
0

Target Month

C

Perfect Model Skill (ACC
U

)

East Siberian Sea

J F MAM J J A S O N D

35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10

9
8
7
6
5
4
3
2
1
0

Initialized Forecast Skill (ACC)
H

Target Month

East Siberian Sea

J F MAM J J A S O N D

11
10
9
8
7
6
5
4
3
2
1
0

Target Month

D Chukchi Sea

J F MAM J J A S O N D

35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10

9
8
7
6
5
4
3
2
1
0

I

Target Month

Chukchi Sea

J F MAM J J A S O N D

11
10

9
8
7
6
5
4
3
2
1
0

Target Month

E Beaufort Sea

J F MAM J J A S O N D

35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10

9
8
7
6
5
4
3
2
1
0

J

Target Month

Beaufort Sea

J F MAM J J A S O N D

11
10

9
8
7
6
5
4
3
2
1
0

Fig. 10  Comparison of PM prediction skill ( ACC
U

 ) and OP prediction skill (ACC ) for Arctic regional SIE for the Kara, Laptev, East Siberian, 
Chukchi, and Beaufort Seas
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and November, and in high, low, and typical sea–ice volume 
(SIV) regimes. Secondly, we have utilized a suite of ret-
rospective initialized OP predictions spanning 1981–2016 
made with GFDL-FLOR. The skill comparison between 
these OP predictions and the PM experiments forms the 
basis of this study.

In order to make a robust skill comparison, we have intro-
duced a set of PM skill metrics, defined in analogy with 
metrics used in OP prediction applications. These metrics 
were designed to allow for an “apples-to-apples” PM/OP 
skill comparison, and offer conceptual advantages over other 

commonly used PM skill metrics. We have found that PM 
skill metrics based on ensemble spread (RMSE, NRMSE, 
MSSS) do not have a clear dependence on the SIV state, 
whereas the ACC  is clearly higher in high/low volume states 
compared with typical volume states. This state-dependency 
can lead to biased ACC  estimates if start dates are not sam-
pled from the climatological distribution. We have defined 
an unbiased ACC , ACCU , which does not suffer from this 
sampling bias. All comparisons with OP prediction skill in 
this study were made using ACCU . The unbiased ACC  metric 
may be broadly useful for PM studies, since many of these 
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studies do not sample start dates from the climatological 
distribution of states. Using these PM and OP skill metrics, 
we have investigated the predictability of pan-Arctic SIV, 
pan-Arctic SIE, and regional Arctic SIE.

This study has shown that PM predictions of pan-Arctic 
SIV and SIE have statistically significant skill for all target 
months and lead times up to 35 months (the length of our 
PM simulations). The PM predictions of pan-Arctic SIE are 
highly skillful ( ACCU ≥ 0.7 ) at leads of 18–26 months for 
winter SIE predictions and leads of 5–11 months for summer 
SIE predictions. In contrast, OP predictions of pan-Arctic 
SIE have statistically significant skill at lead times of 0–5 
months, and are not highly skillful beyond lead-0. This nota-
ble skill gap indicates that pan-Arctic SIE predictions could 
be improved in all months of the year, with particularly large 
opportunities for improvements in winter SIE predictions. 
Given that winter sea ice covaries strongly with the NAO 
(e.g. Deser et al. 2000) and that SIC anomalies can force an 
NAO response (Deser et al. 2004; Sun et al. 2015), improv-
ing winter SIE predictions has the potential to improve win-
ter NAO predictions. For example, recent work by Wang 
et al. (2017) shows that fall SIC is an important predictor of 
the winter NAO index, attributing their NAO skill to persis-
tence of fall SIC conditions.

The uniform seasonal coverage of PM start dates 
employed by this study has allowed us to shed additional 
light on the spring predictability barrier for pan-Arctic SIE 
proposed by Day et al. (2014). We have found that PM pre-
dictions of pan-Arctic SIV display a spring predictability 
barrier related to rapid error growth during the early melt 
season, in which predictions initialized prior to June lose 
skill much faster than those initialized post June. Unlike 
SIV, we have found that pan-Arctic SIE does not display a 
clear spring predictability barrier. This finding, which may 
be model-dependent, suggests that there is not an optimal 
month in which to initialize pan-Arctic SIE predictions. 
While the spring barrier is not present for pan-Arctic SIE, 
we have found clear evidence of spring predictability barri-
ers in certain Arctic regions. In particular, the Laptev, East 
Siberian, and Beaufort Seas each display spring prediction 
skill barriers in both the PM and OP predictions, suggesting 
that these barriers are a fundamental predictability feature 
of these regions. These barriers suggest that summer SIE 
predictions in these regions should be initialized May 1 or 
later, since skill is substantially lower for predictions initial-
ized prior to May 1.

In nearly all Arctic regions, we have identified substan-
tial skill gaps between PM and OP predictions of Arctic 
regional SIE. While their absolute skill values are differ-
ent, the PM and OP regional predictions generally display 
similar correlation skill structures, indicating that similar 

physical mechanisms are contributing to both PM and OP 
skill. We have found that PM predictions in the Barents 
and GIN Seas are highly skillful at lead times beyond 24 
months, whereas OP predictions have statistically signifi-
cant skill at 5–11 months but are not highly skillful beyond 
1 month lead times. In both the PM and OP predictions, 
the North Pacific sector has lower winter SIE skill than 
these North Atlantic regions, suggesting that the North 
Pacific is fundamentally less predictable. This finding is 
consistent with the PM study of Day et al. (2014) and the 
statistical prediction study of Yuan et al. (2016), and is 
relevant for fisheries industries active in these regions that 
could benefit from skillful winter SIE predictions.

We have found that regional winter SIE is generally 
more predictable than summer SIE. PM predictions 
of regional summer SIE in the Laptev, East Siberian, 
Chukchi, and Beaufort Seas are highly skillful at leads 
of 1–5 months, displaying similar correlation structures 
to their OP counterparts. The PM/OP skill gap suggests 
that substantial improvements are possible at these 1–5 
month lead times, but that long-lead skillful predictions 
are not possible in these regions. This finding is relevant 
for the predictability of summer shipping lanes along the 
Northern Sea Route, implying that these lanes could be 
skillfully predicted from May 1, but not earlier.

This study has identified a striking skill gap between OP 
and PM predictions made with the GFDL-FLOR model, 
suggesting that skillful long-lead predictions of SIE are 
possible in many regions of the Arctic. The large gap 
in lead-0 prediction skill indicates a clear potential for 
improved predictions via improved initialization. Addi-
tionally, the rapid decay of OP prediction skill relative to 
the PM experiments indicates that improved model physics 
and/or more balanced ICs are required in future predic-
tion systems. It is important to note that these findings 
are based upon a single GCM and similar studies with 
other seasonal prediction systems are required to solidify 
these results. This work has provided a robust compari-
son of regional PM and OP prediction skill, but has not 
investigated the physical mechanisms underlying this skill. 
Future work exploring these mechanisms, and identifying 
the key modeling and observational deficiencies in current 
dynamical prediction systems, is required in order to close 
the gap between PM and OP skill identified in this study.
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Appendix

Reliability condition for ensemble forecasts

Claim The PM MSE given by Eq. (8) satisfies the necessary 
condition for forecast reliability:

Proof The mean intra-ensemble variance, �2
e
 , is given by

where ⟨�j(�)⟩ is the ensemble mean of the jth ensemble. The 
MSE is given by

First, we note a relation between the ensemble mean ⟨�j(�)⟩ 
and the ensemble mean with the ith member removed 
⟨�îj(𝜏)⟩ . These ensemble means are defined respectively as

and

and are related by:

Therefore,
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j=1

1

N − 1

N�

i=1

�
⟨�j(�)⟩ − xij(�)

�2

,

(20)
MSE(𝜏) =

∑M

j=1

∑N

i=1

�
⟨�îj(𝜏)⟩ − xij(𝜏)

�2

MN
.

(21)⟨�j(�)⟩ =
1

N

N�

k=1

xkj(�),

(22)⟨�îj(𝜏)⟩ =
1

N − 1

N�

k≠i

xkj(𝜏),

(23)

⟨�j(𝜏)⟩ =
1

N

N�

k=1

xkj(𝜏) =
xij(𝜏)

N
+

1

N

N�

k≠i

xkj(𝜏)

=
xij(𝜏)

N
+

N − 1

N
⟨�îj(𝜏)⟩.

(24)
�2

e
(�) =

∑M

j=1

∑N

i=1

�
⟨�j(�)⟩ − xij(�)

�2

M(N − 1)

(25)
=

∑M

j=1

∑N

i=1

�
1

N
xij(𝜏) +

N−1

N
⟨�îj(𝜏)⟩ − xij(𝜏)

�2

M(N − 1)

(26)
=

∑M

j=1

∑N

i=1

�
N−1

N
⟨�îj(𝜏)⟩ −

N−1

N
xij(𝜏)

�2

M(N − 1)

Relation of perfect model skill metrics to other 
metrics

PPP

A commonly used PM skill metric is the potential prognostic 
predictability (PPP, Pohlmann et al. 2004), which compares 
the ensemble variance, �2

e
(�) , to the climatological variance, 

�2
c
 . The PPP is defined as

which has a similar form to the MSSS defined in Eq. (11). 
Since MSE =

N

N−1
�2
e
 , for any finite N, MSSS < PPP and 

MSSS → PPP as N → ∞ . For most typical values of N, the 
PPP and MSSS will be quite similar and share the same 
qualitative interpretations. However, we believe that the 
MSSS metric provides a more natural comparison with the 
MSSS metric used in OP predictions. In the PPP formula-
tion, the ensemble mean ⟨xj⟩ is used to predict a given truth 
member xij . This implies that the prediction has knowledge 
of the observed value, since the xij truth member is included 
in the ensemble mean computation. This is an undesirable 
property for a skill metric, and will tend to bias skill scores 
high. The MSSS does not suffer from this issue, as only 
non-truth members are used to predict a given truth member.

RMSE

In the PM MSE formula given in Eq. (8), we have used 
the (N − 1)-member ensemble mean to predict a given truth 
member. In general, we could use an E-member ensemble 
mean to make this prediction, where 1 ≤ E ≤ N − 1 . It can 
be shown that an MSE based on an E-member ensemble 
mean satisfies MSE =

E+1

E
�2
e
 , where the proof uses the Cen-

tral Limit Theorem and follows the same approach as that 
of Jolliffe and Stephenson (2012). The formula in 6.1 is the 
special case when E = N − 1 . The PM RMSE definition of 
Collins (2002), uses 1-member ensembles to predict a given 

(27)=

�
N − 1

N

�2
∑M

j=1

∑N

i=1

�
⟨�îj(𝜏)⟩ − xij(𝜏)

�2

M(N − 1)

(28)
=

N − 1

N

∑M

j=1

∑N

i=1

�
⟨�îj(𝜏)⟩ − xij(𝜏)

�2

MN

(29)=
N − 1

N
MSE(�).

(30)PPP(�) = 1 −
�2
e
(�)

�2
c

,
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truth member, and therefore satisfies MSE = 2�2
e
 . At long 

lead times, the PM RMSE of Collins (2002) converges to √
2�c (note that this is strictly true only if the normalization 

of MN(N − 1) − 1 used in Collins (2002) is replaced with 
MN(N − 1)).

This factor of 
√
2 is a potential source of confusion, since 

in the PM literature a “no skill” forecast has RMSE =
√
2�c , 

whereas in the OP literature a “no skill” (climatological) 
forecast has an RMSE of �c . This can lead to confusion when 
quoting PM RMSE in physical units, or when comparing PM 
and OP RMSE values (e.g. as done in Blanchard-Wriggles-
worth et al. 2015; Tietsche et al. 2014). In particular, the 
RMSE values obtained via the formula of Collins (2002) are 
too large, since they do not benefit from ensemble averaging. 
If ensemble means are used for the PM prediction, this issue 
is greatly ameliorated, since the PM RMSE values converge 
to 

√
N

N−1
�c , allowing for cleaner comparison with OP 

predictions.

References

Anderson JL (2001) An ensemble adjustment Kalman filter for data 
assimilation. Mon Weather Rev 129(12):2884–2903

Bitz C, Holland M, Weaver A, Eby M (2001) Simulating the ice-
thickness distribution in a coupled climate model. J Geophys Res 
Oceans 106(C2):2441–2463

Bitz C, Roe G (2004) A mechanism for the high rate of sea ice thinning 
in the Arctic Ocean. J Clim 17(18):3623–3632

Blanchard-Wrigglesworth E, Armour KC, Bitz CM, DeWeaver E 
(2011) Persistence and inherent predictability of Arctic sea ice in 
a GCM ensemble and observations. J Clim 24:231–250

Blanchard-Wrigglesworth E, Barthélemy A, Chevallier M, Cullather 
R, Fučkar N, Massonnet F, Posey P, Wang W, Zhang J, Ardilouze 
C et al (2017) Multi-model seasonal forecast of Arctic sea–ice: 
forecast uncertainty at pan-Arctic and regional scales. Clim Dyn 
49(4):1399–1410

Blanchard-Wrigglesworth E, Bitz C, Holland M (2011) Influence of 
initial conditions and climate forcing on predicting Arctic sea ice. 
Geophys Res Lett 38(18)

Blanchard-Wrigglesworth E, Cullather R, Wang W, Zhang J, Bitz 
C (2015) Model forecast skill and sensitivity to initial con-
ditions in the seasonal Sea Ice Outlook. Geophys Res Lett 
42(19):8042–8048

Bretherton CS, Widmann M, Dymnikov VP, Wallace JM, Bladé I 
(1999) The effective number of spatial degrees of freedom of a 
time-varying field. J Clim 12(7):1990–2009

Bushuk M, Giannakis D (2015) Sea-ice reemergence in a model hier-
archy. Geophys Res Lett 42:5337–5345

Bushuk M, Giannakis D (2017) The seasonality and interannual vari-
ability of Arctic sea–ice reemergence. J Clim 30:4657–4676

Bushuk M, Giannakis D, Majda AJ (2015) Arctic sea–ice reemergence: 
the role of large-scale oceanic and atmospheric variability. J Clim 
28:5477–5509

Bushuk M, Msadek R, Winton M, Vecchi G, Gudgel R, Rosati A, 
Yang X (2017) Skillful regional prediction of Arctic sea ice on 
seasonal timescales. Geophys Res Lett 44

Bushuk M, Msadek R, Winton M, Vecchi G, Gudgel R, Rosati A, 
Yang X (2017) Summer enhancement of Arctic sea–ice volume 
anomalies in the September-ice zone. J Clim 30:2341–2362

Cavalieri DJ, Parkinson CL, Gloersen P, Zwally HJ (1996) Sea ice 
concentrations from Nimbus-7 SMMR and DMSP SSM/I-
SSMIS Passive Microwave Data, Version 1. NASA DAAC at the 
Natl. Snow and Ice Data Cent. https ://doi.org/10.5067/8GQ8L 
ZQVL0 VL

Chen Z, Liu J, Song M, Yang Q, Xu S (2017) Impacts of assimilat-
ing satellite sea ice concentration and thickness on Arctic sea 
ice prediction in the NCEP Climate Forecast System. J Clim 
30(21):8429–8446

Cheng W, Blanchard-Wrigglesworth E, Bitz CM, Ladd C, Stabeno 
PJ (2016) Diagnostic sea ice predictability in the pan-Arctic and 
US Arctic regional seas. Geophys Res Lett 43(22)

Chevallier M, Salas y Mélia D (2012) The role of sea ice thickness 
distribution in the Arctic sea ice potential predictability: a diag-
nostic approach with a coupled GCM. J Clim 25(8):3025–3038

Chevallier M, Salas y Mélia D, Voldoire A, Déqué M, Garric G 
(2013) Seasonal forecasts of the pan-Arctic sea ice extent 
using a GCM-based seasonal prediction system. J Clim 
26(16):6092–6104

Collins M (2002) Climate predictability on interannual to decadal time 
scales: the initial value problem. Clim Dyn 19:671–692

Collow TW, Wang W, Kumar A, Zhang J (2015) Improving Arctic sea 
ice prediction using PIOMAS initial sea ice thickness in a coupled 
ocean–atmosphere model. Mon Weather Rev 143(11):4618–4630

Day J, Tietsche S, Hawkins E (2014) Pan-Arctic and regional sea 
ice predictability: initialization month dependence. J Clim 
27(12):4371–4390

Day JJ, Goessling HF, Hurlin WJ, Keeley SP (2016) The Arctic pre-
dictability and prediction on seasonal-to-interannual timescales 
(APPOSITE) data set version 1. Geosci Model Dev 9(6):2255

Delworth TL, Broccoli AJ, Rosati A, Stouffer RJ, Balaji V, Beesley JA, 
Cooke WF, Dixon KW, Dunne J, Dunne K et al (2006) GFDL’s 
CM2 global coupled climate models. Part I: Formulation and 
simulation characteristics. J Clim 19(5):643–674

Delworth TL, Rosati A, Anderson W, Adcroft AJ, Balaji V, Benson 
R, Dixon K, Griffies SM, Lee HC, Pacanowski RC et al (2012) 
Simulated climate and climate change in the GFDL CM2. 5 high-
resolution coupled climate model. J Clim 25(8):2755–2781

Deser C, Magnusdottir G, Saravanan R, Phillips A (2004) The effects 
of North Atlantic SST and sea ice anomalies on the winter cir-
culation in CCM3. Part II: Direct and indirect components of the 
response. J Clim 17(5):877–889

Deser C, Walsh JE, Timlin MS (2000) Arctic sea ice variability in 
the context of recent atmospheric circulation trends. J Clim 
13:617–633

Dirkson A, Merryfield WJ, Monahan A (2017) Impacts of sea ice thick-
ness initialization on seasonal Arctic sea ice predictions. J Clim 
30(3):1001–1017

Drobot SD (2007) Using remote sensing data to develop seasonal out-
looks for Arctic regional sea–ice minimum extent. Remote Sens 
Environ 111(2–3):136–147

Drobot SD, Maslanik JA, Fowler C (2006) A long-range forecast of 
Arctic summer sea–ice minimum extent. Geophys Res Lett 33(10)

Germe A, Chevallier M, y Mélia DS, Sanchez-Gomez E, Cassou C 
(2014) Interannual predictability of Arctic sea ice in a global cli-
mate model: regional contrasts and temporal evolution. Clim Dyn 
43(9-10):2519–2538

Griffies S (2012) Elements of the modular ocean model (MOM), GFDL 
Ocean Group Technical Report. Tech. Rep. No. 7, NOAA/Geo-
physical Fluid Dynamics Laboratory

Griffies SM, Winton M, Donner LJ, Horowitz LW, Downes SM, Farneti 
R, Gnanadesikan A, Hurlin WJ, Lee HC, Liang Z et al (2011) The 

https://doi.org/10.5067/8GQ8LZQVL0VL
https://doi.org/10.5067/8GQ8LZQVL0VL


 M. Bushuk et al.

1 3

GFDL CM3 coupled climate model: characteristics of the ocean 
and sea ice simulations. J Clim 24(13):3520–3544

Guemas V, Chevallier M, Dqu M, Bellprat O, Doblas-Reyes F 
(2016) Impact of sea ice initialisation on sea ice and atmos-
phere prediction skill on seasonal timescales. Geophys Res Lett 
43(8):3889–3896

Hawkins E, Tietsche S, Day JJ, Melia N, Haines K, Keeley S 
(2016) Aspects of designing and evaluating seasonal-to-inter-
annual Arctic sea–ice prediction systems. Q J R Meteorol Soc 
142(695):672–683

Holland MM, Bailey DA, Vavrus S (2011) Inherent sea ice predictabil-
ity in the rapidly changing Arctic environment of the Community 
Climate System Model, version 3. Clim Dyn 36(7–8):1239–1253

Holland, M.M., Stroeve, J.: Changing seasonal sea ice predictor rela-
tionships in a changing arctic climate. Geophys Res Lett 38(18)

Hunke E, Dukowicz J (1997) An elastic-viscous-plastic model for sea 
ice dynamics. J Phys Oceanogr 27(9):1849–1867

Jia L, Yang X, Vecchi G, Gudgel R, Delworth T, Fueglistaler S, Lin 
P, Scaife AA, Underwood S, Lin SJ (2017) Seasonal prediction 
skill of northern extratropical surface temperature driven by the 
stratosphere. J Clim 30(1):4463–4475

Jia L, Yang X, Vecchi GA, Gudgel RG, Delworth TL, Rosati A, Stern 
WF, Wittenberg AT, Krishnamurthy L, Zhang S et al (2015) 
Improved seasonal prediction of temperature and precipitation 
over land in a high-resolution GFDL climate model. J Clim 
28(5):2044–2062

Johnson C, Bowler N (2009) On the reliability and calibration of 
ensemble forecasts. Mon Weather Rev 137(5):1717–1720

Jolliffe IT, Stephenson DB (2012) Forecast verification: a practitioner’s 
guide in atmospheric science, 2nd edn. Wiley

Jung T, Gordon ND, Bauer P, Bromwich DH, Chevallier M, Day JJ, 
Dawson J, Doblas-Reyes F, Fairall C, Goessling HF et al (2016) 
Advancing polar prediction capabilities on daily to seasonal time 
scales. Bull Am Meteorol Soc. https ://doi.org/10.1175/BAMS-
D-14-00246 .1

Kapsch ML, Graversen RG, Economou T, Tjernström M (2014) 
The importance of spring atmospheric conditions for predic-
tions of the Arctic summer sea ice extent. Geophys Res Lett 
41(14):5288–5296

Kauker F, Kaminski T, Karcher M, Giering R, Gerdes R, Voßbeck M 
(2009) Adjoint analysis of the 2007 all time Arctic sea–ice mini-
mum. Geophys Res Lett 36(3)

Koenigk T, Mikolajewicz U (2009) Seasonal to interannual climate 
predictability in mid and high northern latitudes in a global cou-
pled model. Clim Dyn 32(6):783–798

Krikken F, Schmeits M, Vlot W, Guemas V, Hazeleger W (2016) Skill 
improvement of dynamical seasonal Arctic sea ice forecasts. Geo-
phys Res Lett

Kumar A, Peng P, Chen M (2014) Is there a relationship between 
potential and actual skill? Mon Weather Rev 142(6):2220–2227

Leutbecher M, Palmer TN (2008) Ensemble forecasting. J Comput 
Phys 227(7):3515–3539

Lin SJ (2004) A vertically Lagrangian finite-volume dynamical core for 
global models. Mon Weather Rev 132(10):2293–2307

Lindsay R, Zhang J, Schweiger A, Steele M (2008) Seasonal predic-
tions of ice extent in the Arctic Ocean. J Geophys Res Oceans 
113(C2)

Martinson DG (1990) Evolution of the Southern Ocean winter mixed 
layer and sea ice: open ocean deepwater formation and ventilation. 
J Geophys Res Oceans 95(C7):11641–11654

Merryfield W, Lee WS, Wang W, Chen M, Kumar A (2013) Multi-
system seasonal predictions of Arctic sea ice. Geophys Res Lett 
40(8):1551–1556

Milly PC, Malyshev SL, Shevliakova E, Dunne KA, Findell KL, Glee-
son T, Liang Z, Phillipps P, Stouffer RJ, Swenson S (2014) An 

enhanced model of land water and energy for global hydrologic 
and earth-system studies. J Hydrometeorol 15(5):1739–1761

Msadek R, Vecchi G, Winton M, Gudgel R (2014) Importance of initial 
conditions in seasonal predictions of Arctic sea ice extent. Geo-
phys Res Lett 41(14):5208–5215

Murakami H, Vecchi GA, Delworth TL, Wittenberg AT, Underwood S, 
Gudgel R, Yang X, Jia L, Zeng F, Paffendorf K et al (2017) Domi-
nant role of subtropical pacific warming in extreme Eastern Pacific 
hurricane seasons: 2015 and the future. J Clim 30(1):243–264

Murphy AH (1988) Skill scores based on the mean square error and 
their relationships to the correlation coefficient. Mon Weather Rev 
116(12):2417–2424

Owens WB, Lemke P (1990) Sensitivity studies with a sea ice-mixed 
layer-pycnocline model in the Weddell sea. J Geophys Res Oceans 
(1978–2012) 95(C6):9527–9538

Palmer T, Buizza R, Hagedorn R, Lawrence A, Leutbecher M, Smith L 
(2006) Ensemble prediction: a pedagogical perspective. ECMWF 
Newslett 106:10–17

Peterson KA, Arribas A, Hewitt H, Keen A, Lea D, McLaren A (2015) 
Assessing the forecast skill of Arctic sea ice extent in the GloSea4 
seasonal prediction system. Clim Dyn 44(1–2):147–162

Petty AA, Schröder D, Stroeve J, Markus T, Miller J, Kurtz N, Feltham 
D, Flocco D (2017) Skillful spring forecasts of September Arc-
tic sea ice extent using passive microwave sea ice observations. 
Earth’s Future 5(2):254–263

Pohlmann H, Botzet M, Latif M, Roesch A, Wild M, Tschuck P (2004) 
Estimating the decadal predictability of a coupled AOGCM. J 
Clim 17(22):4463–4472

Putman WM, Lin SJ (2007) Finite-volume transport on various cubed-
sphere grids. J Comput Phys 227(1):55–78

Schröder D, Feltham DL, Flocco D, Tsamados M (2014) September 
Arctic sea-ice minimum predicted by spring melt-pond fraction. 
Nat Clim Change

Schweiger A, Lindsay R, Zhang J, Steele M, Stern H, Kwok R (2011) 
Uncertainty in modeled Arctic sea ice volume. J Geophys Res 
Oceans 116(C8)

Sigmond M, Fyfe J, Flato G, Kharin V, Merryfield W (2013) Seasonal 
forecast skill of Arctic sea ice area in a dynamical forecast system. 
Geophys Res Lett 40(3):529–534

Sigmond M, Reader M, Flato G, Merryfield W, Tivy A (2016) Skillful 
seasonal forecasts of Arctic sea ice retreat and advance dates in a 
dynamical forecast system. Geophys Res Lett 43

Stock CA, Pegion K, Vecchi GA, Alexander MA, Tommasi D, Bond 
NA, Fratantoni PS, Gudgel RG, Kristiansen T, OBrien TD et al 
(2015) Seasonal sea surface temperature anomaly prediction for 
coastal ecosystems. Prog Oceanogr 137:219–236

Stroeve J, Hamilton LC, Bitz CM, Blanchard-Wrigglesworth E (2014) 
Predicting September sea ice: ensemble skill of the SEARCH sea 
ice outlook 2008–2013. Geophys Res Lett 41(7):2411–2418

Sun L, Deser C, Tomas RA (2015) Mechanisms of stratospheric and 
tropospheric circulation response to projected Arctic sea ice loss. 
J Clim 28(19):7824–7845

Tietsche S, Day J, Guemas V, Hurlin W, Keeley S, Matei D, Msadek 
R, Collins M, Hawkins E (2014) Seasonal to interannual Arctic 
sea ice predictability in current global climate models. Geophys 
Res Lett 41(3):1035–1043

Tivy A, Howell SE, Alt B, Yackel JJ, Carrieres T (2011) Origins and 
levels of seasonal forecast skill for sea ice in Hudson Bay using 
Canonical Correlation Analysis. J Clim 24(5):1378–1395

Vecchi GA, Delworth T, Gudgel R, Kapnick S, Rosati A, Wittenberg 
AT, Zeng F, Anderson W, Balaji V, Dixon K et al (2014) On the 
seasonal forecasting of regional tropical cyclone activity. J Clim 
27(21):7994–8016

Wang L, Ting M, Kushner P (2017) A robust empirical seasonal predic-
tion of winter NAO and surface climate. Sci Rep 7(1):279

https://doi.org/10.1175/BAMS-D-14-00246.1
https://doi.org/10.1175/BAMS-D-14-00246.1


Regional Arctic sea–ice prediction: potential versus operational seasonal forecast skill  

1 3

Wang L, Yuan X, Ting M, Li C (2016) Predicting summer Arctic sea 
ice concentration intraseasonal variability using a vector autore-
gressive model*. J Clim 29(4):1529–1543

Wang W, Chen M, Kumar A (2013) Seasonal prediction of Arctic 
sea ice extent from a coupled dynamical forecast system. Mon 
Weather Rev 141(4):1375–1394

Weigel AP, Liniger MA, Appenzeller C (2009) Seasonal ensemble 
forecasts: are recalibrated single models better than multimodels? 
Mon Weather Rev 137(4):1460–1479

Williams J, Tremblay B, Newton R, Allard R (2016) Dynamic pre-
conditioning of the minimum September sea–ice extent. J Clim 
29(16):5879–5891

Winton M (2000) A reformulated three-layer sea ice model. J Atmos 
Oceanic Technol 17(4):525–531

Yang X, Vecchi GA, Gudgel RG, Delworth TL, Zhang S, Rosati A, Jia 
L, Stern WF, Wittenberg AT, Kapnick S et al (2015) Seasonal pre-
dictability of extratropical storm tracks in GFDLs high-resolution 
climate prediction model. J Clim 28(9):3592–3611

Yeager SG, Karspeck AR, Danabasoglu G (2015) Predicted slowdown 
in the rate of Atlantic sea ice loss. Geophys Res Lett 42(24)

Yuan X, Chen D, Li C, Wang L, Wang W (2016) Arctic sea ice seasonal 
prediction by a linear markov model. J Clim 29(22):8151–8173

Zhang J, Rothrock D (2003) Modeling global sea ice with a thickness 
and enthalpy distribution model in generalized curvilinear coor-
dinates. Mon Weather Rev 131(5):845–861

Zhang S, Harrison M, Rosati A, Wittenberg A (2007) System design 
and evaluation of coupled ensemble data assimilation for global 
oceanic climate studies. Mon Weather Rev 135(10):3541–3564

Zhang S, Rosati A (2010) An inflated ensemble filter for ocean data 
assimilation with a biased coupled GCM. Mon Weather Rev 
138(10):3905–3931


	Regional Arctic sea–ice prediction: potential versus operational seasonal forecast skill
	Abstract
	1 Introduction
	2 Experimental design and prediction skill metrics
	2.1 The dynamical model
	2.2 The control integration
	2.3 Perfect model predictability experiments
	2.4 Retrospective seasonal prediction experiments
	2.5 Operational prediction skill metrics
	2.6 Perfect model skill metrics
	2.7 Significance testing

	3 Pan-Arctic predictability
	3.1 Pan-Arctic SIV
	3.2 State-dependence of predictability
	3.3 An unbiased estimate of perfect model ACC​
	3.4 Pan-Arctic SIE predictability

	4 Regional sea–ice predictability
	4.1 SIC predictability
	4.2 Regional SIE predictability
	4.3 Interpretation of the PMOP skill gap

	5 Conclusions and discussion
	Acknowledgements 
	References


