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ABSTRACT
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How the globally uniform component of sea surface temperature (SST)

warming influences rainfall in the African Sahel remains under-studied, de-

spite mean SST warming being among the most robustly simulated and the-

oretically grounded features of anthropogenic climate change. A prior study

using the NOAA Geophysical Fluid Dynamics Laboratory (GFDL) AM2.1

atmospheric general circulation model (AGCM) demonstrated that uniform

SST warming strengthens the prevailing northerly advection of dry Saharan

air into the Sahel. The present study uses uniform SST warming simulations

performed with seven GFDL and ten CMIP5 AGCMs to assess the robustness

of this drying mechanism across models and uses observations to assess the

physical credibility of the severe drying response in AM2.1.

In all seventeen AGCMs, mean SST warming enhances the free-

tropospheric meridional moisture gradient spanning the Sahel and with it the

Saharan dry air advection. Energetically, this is partially balanced by anoma-

lous subsidence, yielding decreased precipitation in fourteen of the seventeen

models. Anomalous subsidence and precipitation are tightly linked across the

GFDL models but not the CMIP5 models, precluding the use of this relation-

ship as the start of a causal chain ending in an emergent observational con-

straint. For AM2.1, cloud-rainfall covariances generate radiative feedbacks on

drying through the subsidence mechanism and through surface hydrology that

are excessive compared to observations at the interannual timescale. These

feedbacks also act in the equilibrium response to uniform warming, calling

into question the Sahel’s severe drying response to warming in all coupled

models using AM2.1.
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1. Introduction38

The hydrological cycle of the semi-arid Sahel reflects a competition between the year-round39

drying influence of the Sahara Desert to the north and the wetting influence of moist tropical cir-40

culations expanding from the south during boreal summer [comprising the West African Monsoon41

in the western Sahel (e. g. Nicholson 2013) and continental convection in the eastern Sahel (e. g.42

Nicholson 2018)]. The relative strengths of these drying and moistening influences have varied on43

interannual (e. g. Pomposi et al. 2016), decadal (e. g. Biasutti and Giannini 2006), and millennial44

(e. g. Tierney et al. 2017) timescales, as indicated by corresponding variations in precipitation and45

other hydrological variables. Anthropogenic global warming is also likely to alter this balance,46

but general circulation model (GCM) projections of future Sahelian hydrological cycle change are47

uncertain even in sign, with little decrease in spread across the past two model generations (see48

review by Rodrı́guez-Fonseca et al. 2015).49

For at least one atmospheric GCM (AGCM) — NOAA Geophysical Fluid Dynamics Laboratory50

AM2.1 — the global mean (i. e. uniform) component of SST warming induces severe drying in the51

Sahel that dominates its rainfall change in coupled simulations under future anthropogenic forcing52

(Held et al. 2005; Lu and Delworth 2005). Hill et al. (2017, hereafter H17) use the column-53

integrated moist static energy (MSE) budget to show that this is driven by an enhancement of54

the prevailing MSE and moisture differences between the Sahel and the Sahara acted upon by55

prevailing northerly winds in the free troposphere: the resulting anomalous advection of dry, low-56

MSE air into the Sahel inhibits moist convection. This “upped-ante”-like mechanism of drying57

along a convection zone margin under global warming (Chou and Neelin 2004) relies solely on58

climatological northerly free tropospheric flow, the climatological meridional moisture gradient,59
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and an enhancement of that gradient under global warming — the latter a robust feature of warming60

simulations (Mitchell et al. 1987; Held and Soden 2006).61

It thus seems plausible that this mechanism operates robustly across models and in the real world62

as global mean temperature increases. Indeed, Gaetani et al. (2017) document reduced wet-season63

precipitation in the Sahel in all Coupled Model Intercomparison Project, Phase 5 (CMIP5; Taylor64

et al. 2012) AGCMs subjected to uniform 4 K SST warming. On the other hand, H17 also show65

that the magnitude of the anomalous dry advection and its attendant impact on precipitation are66

sensitive to how moist convection is parameterized — Sahelian precipitation in AM2.1 increases67

slightly under uniform SST warming if an alternate convective parameterization is used. Given the68

diversity of formulations of convective physics (and all other processes) across AGCMs and their69

crudity compared to the real-world, it thus also seems plausible that this mechanism is, in fact, not70

robust.71

H17 also speculate that the Sahelian rainfall response to SST warming depends on the climato-72

logical depth of convection locally as follows: (1) the height to which the additional near-surface73

heat and water vapor generated by SST warming gets transported should increase with the depth of74

the prevailing convection locally; (2) the meridional MSE gradient spanning the Sahel and Sahara75

will therefore be enhanced over a greater depth of the troposphere if the climatological ascent pro-76

file in the Sahel is more “top-heavy”; (3) this causes the anomalous column-integrated northerly77

low-MSE advection to be greater; (4) this is balanced by greater anomalous subsidence, ultimately78

yielding (5) greater reductions in precipitation. Globally, Chen et al. (2016) demonstrate similar79

behavior in their analysis of climatological convecting regions in which precipitation increases80

under future warming simulations): ascent is typically enhanced where the climatological ascent81

profile is top-heavy (i. e. deep) and typically suppressed where it is “bottom-heavy” (i. e. shallow).82
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If verified, such a correlation between the drying response and the present-day circulation could83

lead to an “emergent constraint,” i. e. an observed real-world field that can falsify model responses84

whose corresponding fields in present-day simulations are sufficiently removed from the observa-85

tional value. Among other factors, this requires a sufficiently quantitatively accurate relationship86

between the fields involved at each intermediate step of the proposed causal chain (see review87

by Klein and Hall 2015). For the H17 mechanism, the first step is the link between anomalous88

subsidence and anomalous precipitation.89

Central to the severity of the Sahelian drying response to warming in AM2.1 is the Sahel’s weak90

top-of-atmosphere (TOA) radiative response (H17): given enhanced northerly low-MSE advec-91

tion, less anomalous subsidence would be required if the net column energetic forcing (for land92

regions, equivalent to the TOA radiative flux) also decreased.1 No theory has been posited for this93

TOA radiative response, and simulations in AM2.1 with a wide range of imposed uniform SST94

perturbations suggest that it is sensitive to the imposed SST warming magnitude (H17). Cloud95

radiative changes can also influence precipitation in semi-arid regions through their influence on96

surface radiative fluxes, for example if cloud loss yields increased surface radiative fluxes onto a97

desiccated surface, thereby driving surface warming and reduced boundary layer relative humidity.98

It is therefore important to assess the TOA and surface radiative response in other models and, to99

1This can be seen from the perturbation MSE budget diagnosed for AM2.1 by H17:{
(δω)

∂h
∂ p

}
+
{

u·∇(δh)
}
≈ δFnet,

where h is MSE, overbars denote monthly averages, curly brackets denote column integrals, δ denotes the equilibrium difference between the +2 K

and control simulations averaged over July-August-September, and all other notation is standard. Omitted in this expression are the anomalous

energy storage and transient eddy MSE flux divergence terms, which were comparatively weak (see their Table 2). The anomalous net energetic

forcing, δFnet, was also weak, leading to a leading-order balance between the anomalous advection terms, requiring descent (δω > 0) in the mid-

to upper troposphere where ∂ph < 0. Supposing that instead δFnet < 0 and for the same horizontal advection anomaly, then δω will be smaller,

presumably resulting in a weaker precipitation reduction. See Eq. 3 of H17 and corresponding text for further details.
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the extent possible, in observations. The latter is possible using observations of interannual co-100

variances of Sahelian precipitation and radiative fluxes — provided that the interannual variations101

and the equilibrium response to warming can be demonstrated to involve the same mechanisms.102

Here, we address these issues by extending the analyses of H17 to six other GFDL model103

variants and ten CMIP5 models and comparing them to observational data. After detailing our104

methodology (Section 2), we present the hydrological (Section 3) and MSE budget (Section 4)105

results of uniform SST warming simulations in the GFDL and CMIP5 models. All seventeen106

models examined exhibit the H17 mechanism to some degree, including an enhanced meridional107

MSE gradient, increased northerly dry advection, and anomalous subsidence over an appreciable108

depth of the free troposphere. These lead to reduced precipitation in the Sahel in all models ex-109

cept three from GFDL that share a particular convective parameterization. Of the fourteen drying110

models, AM2.1 is the only one in which the net energetic forcing of the Sahel does not decrease111

appreciably with warming.112

We then demonstrate that, despite this mechanism’s qualitative robustness, the link between113

anomalous precipitation and anomalous subsidence is not sufficiently accurate across the CMIP5114

models to form the basis for an emergent observational constraint (Section 5). Finally, we show115

that the Sahel’s TOA and surface radiative flux responses to warming in AM2.1 that positively feed116

back on drying depend on cloud radiative changes that also emerge on the interannual timescale117

and are excessive compared to observations (Section 6). We conclude with a discussion (Section 7)118

and summary (Section 8).119
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2. Methodology120

a. GFDL models and simulations121

We examine present-day control and uniform 2 K SST warming simulations in the seven GFDL122

model variants listed in Table 1. AM2.1 is as described in H17; briefly, it features a finite-volume,123

∼200 km resolution, latitude-longitude dynamical core, 24 vertical levels extending to 10 hPa,124

the RAS convection scheme (Arakawa and Schubert 1974; Moorthi and Suarez 1992), prescribed125

monthly aerosol burdens, and the LM2 land model (Milly and Shmakin 2002). Both the standard126

AM2.1 and the variant from H17 that replaces RAS with the University of Washington convective127

parameterization (UW; Bretherton et al. 2004) are included in this study; they are hereafter referred128

to respectively as AM2.1 and AM2.1-UW. AM3 (Donner et al. 2011) features a finite-volume,129

∼200 km cubed-sphere dynamical core, 48 vertical levels extending to 1 hPa, the Donner deep130

(Donner 1993; Donner et al. 2001) and UW shallow convective parameterizations, comprehensive131

atmospheric chemistry, online interactive aerosols, a cloud microphysical parameterization that132

depends on aerosol burdens for stratiform clouds (Ming et al. 2006, 2007), and the LM3 land133

model (Donner et al. 2011; Milly et al. 2014). c180-HiRAM (Zhao et al. 2009) features the same134

dynamical core as AM3 but with ∼50 km horizontal resolution, 32 vertical levels extending to135

10 hPa, the UW convection scheme for both deep and shallow convection (though with much136

convection handled at the grid scale), a relatively simple diagnostic cloud fraction scheme, the137

LM3 land model, and all other settings taken from AM2.1. Essentially, AM3 was developed from138

AM2.1 by increasing physical complexity but not resolution, and c180-HiRAM was developed139

from AM2.1 by increasing resolution but not physical complexity.140

The remaining three GFDL AGCMs are alternate-resolution versions of AM2.1, AM3, and141

c180-HiRAM. AM2.5 (Delworth et al. 2011) is a ∼50 km resolution, modestly re-tuned ver-142
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sion of AM2.1, but using the cubed-sphere dynamical core, 32 vertical levels, and the LM3 land143

model. c90-AM3 is identical to AM3 other than roughly doubled horizontal resolution; the “c90”144

notation signifies that each of the six faces of the cubed-sphere grid houses 90×90 grid cells. The145

standard AM3 resolution is c48. c48-HiRAM (Zhao 2014) is a ∼200 km resolution version of146

c180-HiRAM (whose resolution is c180), with a reduction in the land-ocean entrainment parame-147

ter ratio as described in Zhao et al. (2009) and in H17 for AM2.1-UW.148

Each model has a pair of standard control and +2 K simulations, although among models there149

are differences in their duration, the underlying SST dataset, and the years averaged over to gen-150

erate the climatological annual cycle of SSTs repeated each year (Table 1).2 We have tested the151

sensitivity to these differences by repeating the control and +2 K simulations in AM2.1 with each152

SST field used by other models. The Sahel precipitation responses are similar in each case (not153

shown), and we assume this holds for the other models.154

b. CMIP5 models and simulations155

We examine the “amip” and “amip4K” CMIP5 experiments in ten AGCMs for which the nec-156

essary data is available, listed in Table 2.3 These simulations use a timeseries of observed SSTs157

from the Hurrell et al. (2008) dataset spanning 1979-2008. Atmospheric composition is also time-158

varying, with the same inputs as in the coupled “historical” CMIP5 simulation. In the +4 K159

simulation, 4 K is added uniformly to this timeseries of SSTs. Averages are taken over the full160

30 year period.161

2In c180-HiRAM, the applied SST perturbation was inadvertently +2.04 K rather than exactly 2 K. In AM3, aerosol emissions (rather than

burdens) are prescribed at near-present-day climatological values, due to that model’s online treatment of aerosols.
3Two of these, BCC-CSM1 and NCAR-CCSM4, are among the CMIP5 models identified by Zhou et al. (2015) as exhibiting an erroneous zonal

oscillation in the TOA downwelling shortwave radiation. This does not affect the Sahel rainfall climatologies or responses in any immediately

identifiable way.
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Because the imposed SST warming differs between the GFDL and CMIP5 ensembles, we162

present all responses normalized by the imposed SST warming. However, as we will discuss163

below, there is evidence that the two ensembles of models behave distinctly from each other even164

with this normalization.165

c. Interpolation, region definition, and hydrological fields used166

All fields are computed on the native horizontal grid of the model’s output and then regridded167

to a common 1◦×1◦ grid via bilinear interpolation before plotting or regionally averaging. As in168

H17, we analyze the Sahel wet-season of July-August-September (JAS) and use a conventional169

definition of the Sahel as land points spanning 10-20◦N, 18◦W-40◦E.170

Though we focus on precipitation, Scheff et al. (2017) demonstrate that there is no single catch-171

all notion of “drying” or “wettening” that fully characterizes a region’s hydrological or vegetative172

response to global temperature change. As such, we also present convective precipitation, large-173

scale precipitation, evapotranspiration, precipitation minus evapotranspiration, relative humidity174

at 925 hPa, and potential evapotranspiration, the latter computed as 80% of the net radiative flux175

directed into the surface (Milly and Dunne 2016).176

d. MSE budget computations177

We use monthly, pressure-interpolated data for all vertically defined quantities. The lack of high-178

frequency data available for the CMIP5 simulations and some of the GFDL simulations prevents179

the use of the adjustment method of H17 (see their Appendices A and B) to ensure budget closure.180

The large budget residuals (Seager and Henderson 2013) when using unadjusted data preclude181

meaningful quantitative analysis of individual budget terms as in H17. For this reason, we do not182

present column-integrated budget quantities apart from the directly outputted top-of-atmosphere183
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(TOA) radiative fluxes. Instead, we present vertical profiles of the horizontal and vertical MSE184

advection and their components. Comparison in AM2.1 of the vertical profiles computed using the185

adjusted, high frequency data on model-native coordinates and the solid ice component as in H17186

versus the more approximate method here indicate qualitative insensitivity to these differences187

throughout the free troposphere (not shown).188

In the GFDL models, we use non-frozen MSE, h≡ cpT +gz+Lvq in the calculations of moist189

static stability and vertical MSE advection, where all notation is standard. For the CMIP5 mod-190

els, the available data comprises timeseries of pressure-interpolated, monthly averages and in191

most cases lacks geopotential height and the specific mass of ice water. As such, we compute192

the MSE horizontal gradients using the sum of the sensible and latent heat terms (i. e. for the193

meridional direction ∂yh ≈ ∂y(cpT +Lvq)), where ∂y is a meridional derivative). Comparison of194

the Sahel region-mean gradient computed with and without the geopotential term in the GFDL195

control models confirm that this is reasonably accurate (not shown). Conversely, for vertical196

MSE advection, we attempted to compute geopotential height using the hypsometric equation:197

gz = Rd
∫ psfc

p Tv dln p, where Tv is virtual temperature and all other notation is standard. Though198

differences in the GFDL models between MSE using the model-outputted height and this calcula-199

tion are small (generally a few percent or less), they lead to large errors in the vertical advection200

calculations (not shown). Therefore, we do not present moist static stability or vertical MSE ad-201

vection for the CMIP5 models.202

e. Observational data203

We analyze TOA radiative fluxes from the CERES-EBAF v4.0 satellite-based observational204

dataset (Loeb et al. 2018), which spans 2000-2017. These include the all-sky net radiative flux, the205

clear-sky net radiative flux, and the net, shortwave, and longwave cloud radiative effect (i. e. the206
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difference between the all-sky and clear-sky values), all signed positive into the atmosphere. For207

precipitation and surface temperature, we use the Climate Research Unit (CRU) TS v4.01 dataset208

(Harris et al. 2014). Climatologies are computed as averages over 1980-2005, chosen to overlap as209

well as possible with the various periods used for the SSTs, c. f. Table 1. All observational values210

are reinterpolated to the same grid as the models before regional averages are performed.211

f. “Extended AMIP” simulations212

We examine “extended AMIP” simulations in AM2.1 and AM3 respectively spanning 1870-213

1999 and 1870-2005. As in the CMIP5 “amip” specification, the atmospheric composition (or214

emissions for AM3) vary in time according to historical estimates, as do the SSTs and sea ice.215

We also compare to a standard CMIP5-protocol 1979-2009 “amip” simulation in c180-HiRAM216

[note that the SST dataset used is HadISST rather than Hurrell et al. (2008), c. f. Flannaghan217

et al. (2014)]. Results are re-interpolated to the same 1◦×1◦ grid described above. Multiple218

ensemble members are available for each of these simulations (10, 3, and 2 in AM2.1, AM3, and219

HiRAM, respectively); we present results from the first member of each ensemble, but results are220

qualitatively insensitive to the choice of member or if the ensemble average is used (not shown).221

3. Hydrological responses to uniform SST warming222

Figure 1 shows precipitation in the control simulations and its response to 2 K SST warming in223

the GFDL models, and Table 3 lists the corresponding Sahel region-mean values. Figure 2 and224

Table 4 show the same for the CMIP5 simulations. Figure 1 also shows the CRU observational225

estimate of the JAS climatological precipitation. The control precipitation distributions are broadly226

similar across the models, featuring precipitation decreasing over the continent moving northward227

into the Sahel as in the observations, with AM2.1-UW exhibiting the most zonal heterogeneity.228
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The control simulation region-mean precipitation varies over a narrower range across the GFDL229

models than across the CMIP5 models (2.5-4.6 mm day−1 and 1.3-5.5 mm day−1, respectively),230

and the GFDL ensemble is, on average, wetter than the CMIP5 ensemble (multi-model means 3.4231

and 2.8 mm day−1, respectively). These ensemble means bracket the CRU observational estimate232

of 3.0 mm day−1.233

In the three GFDL models that use the UW convection scheme (c180-HiRAM, c48-HiRAM, and234

AM2.1-UW), Sahel region-mean precipitation either responds weakly (c180-HiRAM) or increases235

— fairly uniformly over the southern Sahel in AM2.1-UW, and primarily in the central Sahel where236

climatological precipitation values are large in c48-HiRAM.4 But in all fourteen other models,237

precipitation decreases, from -0.08 mm day−1 K−1 in IPSL-CM5A-LR to -0.67 mm day−1 K−1
238

in AM2.1. Precipitation reductions generally span the whole width of the Sahel and are larger in239

the south where rainfall is also climatologically greater (with NCAR-CCSM4 an exception). In240

contrast to the drying over much of West Africa in most models, precipitation increases over some241

portion of the Atlantic ITCZ in all seventeen models, highlighting that the continental convection242

is not merely an extension onto land of the adjacent oceanic ITCZ (although this apparent shift of243

moist convection from land to ocean is likely partly an artifact of warming SSTs without changing244

the radiative forcing agents, e. g. He and Soden 2017).245

In each higher resolution GFDL model variant, control simulation rainfall in the Sahel is greater246

than the lower resolution counterpart, but there is no clear relationship between model resolution247

and the precipitation response to SST warming (Table 3), nor between the control simulation248

precipitation and the response.5249

4All nine members of the c48-HiRAM perturbed physics ensemble of Zhao (2014) are drier in the control (2.4 to 3.3 mm day−1) and wetten

the region more (+5 to +22%) than c180-HiRAM (not shown).
5Printed in each panel of Figures 1 and 2 is that model’s Sahel region-mean fractional change in precipitation (i. e. the precipitation change

divided by the control simulation value). Whereas the ranking of the GFDL models is identical whether fractional or absolute responses are used,
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Tables 3 and 4 also list control and perturbation values of all other surface hydroclimatic fields250

analyzed. In the UW convection models, the non-negative total precipitation response is driven by251

increased convective precipitation — large-scale precipitation, as in all other models, decreases.252

Evapotranspiration also increases, in AM2.1-UW and c180-HiRAM at a faster rate than precipi-253

tation, such that as measured by P−E, the Sahel actually dries; c48-HiRAM is the only model254

in which P−E increases. Of the fourteen models in which total precipitation decreases, evapo-255

transpiration increases slightly in MIROC5 and NCAR-CCSM4, and potential evapotranspiration256

increases in all GFDL models and in five of the ten CMIP5 models. All other hydroclimatic257

responses in all models signify drying. This robust drying response to uniform SST warming258

stands in sharp contrast to the wide spread in models noted previously in coupled future emis-259

sions scenario simulations and to the robust increase in precipitation in fixed SST simulations with260

quadrupled CO2 (Gaetani et al. 2017).261

As expected, surface warming is generally larger in models in which the drying is stronger. Ro-262

bust decreases in large-scale precipitation seem straightforwardly linked to reduced relative humid-263

ity. In most models, that potential evapotranspiration increases while evapotranspiration decreases264

can be interpreted through supply-limited evaporative dynamics: when precipitation is sufficiently265

low, evapotranspiration is limited not by atmospheric demand but by the supply of moisture to the266

soil by precipitation (e. g. Roderick et al. 2014; Lintner et al. 2015). This also provides a straight-267

forward explanation for the increase in evapotranspiration in the three UW convection models, in268

which total precipitation also increases. Note, however, that these purely supply-limited arguments269

are imperfect: in most models precipitation is not substantially smaller than potential evapotran-270

there is no correspondence between the fractional and absolute changes in the CMIP5 models. Even for the GFDL models, the precipitation response

does not scale with the climatological value — c180-HiRAM has the second largest control precipitation value (3.9 mm day−1) of the GFDL models,

but this does not affect its ranking in terms of fractional changes because the absolute change is simply very small (+0.02 mm day−1 K−1).
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spiration (c. f. Tables 3 and 4), indicating an intermediate regime in which evapotranspiration can271

be sensitive both to moisture supply by precipitation and atmospheric demand.272

Figure 3(a) shows the Sahel region-mean precipitation change in each model (panel b will be273

discussed in Section 4). The precipitation responses per unit imposed SST warming span a larger274

range across the GFDL models than across the CMIP5 models, but this stems partly from the dif-275

ference in the imposed SST warming (+2 K for GFDL, +4 K for CMIP5). The unfilled markers276

overlaid for AM2.1, AM3, and AM2.1-UW are the responses per unit imposed SST warming in277

uniform 4 K SST warming simulations performed in those models, and they span a narrower range278

than the corresponding +2 K simulations (though still wider than that of the ten CMIP5 models).279

As described by H17, the Sahel rainfall response in AM2.1 “saturates” as SSTs are warmed be-280

yond roughly 1 K (c. f. Figure 13b of H17), but in AM2.1-UW it remains linear with the imposed281

SST change from the control to at least a 6 K warming (c. f. Figure 14b of H17). We have repli-282

cated a subset of these simulations in AM3 (not shown); like AM2.1, the Sahel rainfall response283

essentially saturates as SSTs are warmed beyond 1 K. Thus, it is reasonable to suspect that at least284

some of the CMIP5 models would likewise exhibit stronger Sahelian drying per unit imposed SST285

warming were they subjected to smaller magnitude warming, though we lack a means of predict-286

ing which models and by how much. Despite this difference in spread within either ensemble, the287

two ensemble mean responses are nearly identical (-0.19 and -0.18 mm day−1 K−1 for GFDL and288

CMIP5, respectively).289

4. GFDL and CMIP5 model MSE budget responses to uniform SST warming290

Given that Sahelian precipitation decreases in fourteen of the seventeen models (increasing only291

in the closely related GFDL model variants all using the UW scheme), we now attempt to deter-292

mine if that drying arises from the mechanism posited by H17. Specifically, we analyze the Sahel293
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region-mean vertical profiles of the MSE advection terms as well as the column-integrated source294

term (i. e. the TOA radiative fluxes). The H17 mechanism would be evinced by: an increased295

meridional MSE gradient; anomalous export of MSE through meridional advection; anomalous296

subsidence in the free troposphere; and a weak response in the TOA radiative flux. We will show297

that all but the last of these hold in every model analyzed.298

a. Horizontal advection299

Figure 4 shows the control and perturbation Sahel region-mean profiles of meridional wind,300

meridional MSE gradient, and horizontal (meridional plus zonal) MSE advection in the GFDL301

models; Figure 5 shows the same for the CMIP5 models. Figures S1 and S2 in the Supplemental302

Materials show the same but with the meridional (rather than meridional plus zonal) MSE advec-303

tion profiles.304

The first-order behavior in the control simulations is consistent across all models. The merid-305

ional wind is generally southerly in the boundary layer, upper troposphere, and stratosphere and306

northerly in the lower and middle free troposphere [Figures 4(a) and 5(a)]. The meridional MSE307

gradient is negative (i. e. MSE decreases moving northward) at nearly all levels, with the largest308

values in the lower troposphere [Figures 4(b) and 5(b)]. MSE divergence through horizontal ad-309

vection peaks in the lower troposphere and steadily decreases towards zero in the mid- to upper-310

troposphere [Figures 4(c) and 5(c)].311

In response to uniform SST warming, meridional wind responds differently in different models312

with generally weak magnitudes, at most ±0.3 m s−1 K−1 at any tropospheric level [Figures 4(d)313

and 5(d)]. In contrast, the prevailing meridional MSE gradient increases in magnitude over most314

or all of the troposphere in all models [Figures 4(e) and 5(e)]. Combined, horizontal MSE advec-315

tion primarily responds with anomalous MSE divergence, especially in the mid- and lower free316
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troposphere [Figures 4(f) and 5(f)]. Of the GFDL models, AM2.1 has the strongest enhancement317

of the meridional MSE gradient over most of the free troposphere.318

Variations in Sahel rainfall are often thought to be determined by variations in the strengths of319

local meridional overturning circulations, both the West African Monsoon and the shallow, dry320

“Sahara heat low” circulation (e. g. Evan et al. 2015; Gaetani et al. 2017). A relationship does321

exist in the GFDL models between the vertical structure of their meridional wind responses and322

their precipitation responses: the Sahel dries more in models such as AM2.1 in which the wind323

anomaly is more northerly in the lower troposphere and more southerly in the upper troposphere324

[Figure 4(d)]. However, at least in AM2.1, near surface northerly anomalies are in fact partly a325

response to surface warming driven by the reduced evaporative cooling (H17). There is also no326

discernible link between the two fields in the CMIP5 models [Figure 5(d)] — a discrepancy be-327

tween the ensembles we do not understand. Also, note that the depth of the anomalous northerlies328

suggests, if anything, a link to the deep, moist circulation rather than the dry, shallow, heat-low329

circulation (c. f. Shekhar and Boos 2017; Zhai and Boos 2017).330

In most models the meridional MSE advection dominates the total [compare Figure 4(c,f) to331

Figure S1(c,f), and Figure 5(c,f) to Figure S2(c,f)], especially from the surface through the mid-332

troposphere. Figures S3 and S4 show the corresponding zonal advection terms in the GFDL and333

CMIP5 models, respectively. Most models simulate easterlies over the whole free troposphere,334

including an African Easterly Jet in the mid-troposphere, and modest westerlies within the bound-335

ary layer, but the zonal MSE gradients vary across models such that zonal MSE advection is not336

of consistent sign across models. The signs of the responses to warming of the zonal wind, MSE337

gradient, and MSE advection are likewise inconsistent, apart from consistent westerly anomalies338

above∼400 hPa. In particular, there is no obvious link between the responses of the African East-339
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erly Jet and of precipitation, a claim made frequently in the literature (e. g. Cook 1999; Gaetani340

et al. 2017).341

b. Vertical advection342

Figure 6 shows the control and perturbation Sahel region-mean profiles of pressure velocity,343

moist static stability, and vertical MSE advection in the GFDL models. Figure 7 shows the pres-344

sure velocity profiles for the CMIP5 models (recall that moist static stability and vertical MSE345

advection were omitted for CMIP5, c. f. discussion in Section 2d). The first-order behavior in the346

control simulations is consistent across all models. Compared to the meridional [Figures 4(a) and347

5(a)] and zonal [Figures S3(a) and S4(a)] wind, there is more model spread in the ascent profiles348

[Figures 6(a) and 7(a)], which span from “top-heavy,” with ascent peaking in the upper tropo-349

sphere (e. g. AM2.5, CNRM-CM5) to “bottom-heavy”, with ascent peaking below 800 hPa (e. g.350

AM2.1-UW, NCAR-CCSM4). The moist static stability profiles have comparatively little spread,351

with ∂ph > 0 in the lower troposphere and ∂ph < 0 in the upper troposphere, reflecting a first baro-352

clinic mode MSE structure typical of low latitudes [Figure 6(b)]. As a result, vertical advection353

generally converges MSE in the lower free troposphere and diverges it aloft [Figure 6(c)].354

In response to SST warming, all models simulate a shallowing of the ascent profile as noted355

by H17 for AM2.1 and AM2.1-UW, with anomalous descent over much of the free troposphere356

overlying anomalous ascent near the surface [Figures 6(d) and 7(b)]. Responses of moist static357

stability are much more similar across the GFDL models, generally modestly enhancing and shift-358

ing upward the climatological profile. Combined, the circulation shallowing generally controls the359

vertical advection response, with anomalous MSE import throughout much of the free troposphere360

in most models [Figure 6(f)].361
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Analysis of the convective mass flux profiles in the GFDL models (except for c90-AM3 and362

AM2.1-UW, for which the field was inadvertently not saved) reveals that, like the ascent profiles,363

the mass flux profiles span a wide range in both the control and the response to SST warming364

(Figure S5). Of particular note, in both HiRAM variants (and, we suspect, in AM2.1-UW), the365

convective mass flux increases over a majority of the free troposphere. Thus, the UW convection366

scheme is apparently invigorated by the overall warming. All else equal, the increase in evapotran-367

spiration in these models would promote moist convection, but in a semi-arid region this is better368

considered a response to the precipitation change rather than a forcing. Moreover, as documented369

in H17 for AM2.1-UW (see their Figure 14), the region dries by essentially every other measure.370

The hypothesis set forth by H17 regarding the UW parameterization based on Zhao (2014) re-371

mains plausible and worth further study: the UW scheme represents the fractional lateral mixing372

rate as being inversely proportional to the convective depth. As the climate warms and convective373

depth tends to increase (e. g. Singh and O’Gorman 2012), this acts to decrease the lateral mixing,374

invigorating the parameterized convection.375

c. Net energetic forcing and its components376

Tables 5 and 6 list the control simulation net energetic forcing term and the contributions thereto377

from the clear-sky TOA radiative flux and net, shortwave (SW), and longwave (LW) TOA cloud378

radiative effect (CRE; recall this is the difference between the all-sky and clear-sky values) for the379

GFDL and CMIP5 ensembles, respectively, as well as the observational estimate from CERES-380

EBAF. The models bracket the observed all-sky TOA radiation of 45.8 W m−2, ranging from381

20.1 (MRI-CGCM3) to 61.3 W m−2 (AM2.5), and likewise for the clear-sky (39.2 W m−2 in382

CERES-EBAF; from 20.5 W m−2 in MRI-CGCM3 to 67.7 W m−2 in CNRM-CM5). But the net383

CRE is less positive than the CERES-EBAF value of +6.6 W m−2 in all but one model (IPSL-384
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CM5A-LR, +12.1 W m−2), with the lowest value of −28.7 W m−2 in NCAR-CCSM4. Only385

two models (high 40.5 W m−2, AM2.5) have LW CRE higher than the CERES-EBAF value of386

38.7 W m−2 (low 14.2 W m−2, IPSL-CM5B-LR), while eleven models are more negative and six387

models less negative than the CERES-EBAF −32.1 W m−2 value for SW CRE (−66.0 W m−2 in388

NCAR-CCSM4 to −10.4 W m−2 in IPSL-CM5B-LR). The ensemble mean net CRE differences389

vs. CERES-EBAF are similar (-15.2 and -12.8 W m−2 for GFDL and CMIP5, respectively), with390

similar contributions from LW and SW for GFDL but predominantly from LW CRE for CMIP5.6391

Figure 3(b) shows the region-mean net TOA radiative flux response in all models; recall this is392

equivalent to the net energetic forcing for a land region. The energetic forcing responds weakly in393

AM2.1 and c180-HiRAM (+0.18 and +0.33 W m−2 K−1, respectively) and increases in AM2.1-394

UW (+2.42 W m−2 K−1). In the other fourteen models, it decreases appreciably, by up to395

4.31 W m−2 K−1 in IPSL-CM5B-LR. In fact, the weak energetic forcing response is unique even396

in AM2.1 to the +2 K simulation; in the +4 K simulation in AM2.1, the forcing term does be-397

come appreciably more negative [see also Figure 13(i) of H17], as indicated by the overlaid +4 K398

simulation values in Figure 3(b). So, for the drying models other than AM2.1, the anomalous dry399

advection is balanced partly by reduced energetic forcing, necessitating less anomalous descent400

than if the TOA radiative response was weak as in AM2.1 (or positive).401

Tables 5 and 6 also list the perturbation values of these TOA fluxes. In AM2.1, the weak402

change in net TOA radiative flux with SST warming arises from cancellation between re-403

duced clear-sky radiation (−4.79 W m−2 K−1) and increased net CRE (+4.97 W m−2 K−1),404

the latter driven primarily by decreased cloudy-sky SW reflectance (i. e. increased SW CRE,405

6In GCMs, CRE and clear-sky fluxes are computed from the all-sky flux by repeating the radiative transfer calculation with all clouds removed,

but with the temperature and moisture soundings otherwise the same. In the satellite observations, this partitioning is computed based on conditional

sampling of pixels with and without clouds, which can lead to biases (Huang 2010). This may therefore lead to a secular difference between the

modeled and observational values.
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+6.69 W m−2 K−1), counteracted slightly by increased cloudy-sky OLR (i.e. decreased LW CRE,406

−1.72 W m−2 K−1). Across all models, clear-sky net TOA radiation almost necessarily decreases407

(−0.96 to −4.79 W m−2 K−1), as the warmed surface and troposphere emit more LW radiation408

that escapes to space. Shallowing of moist convection and concomitant cloud loss cause the LW409

CRE to become less positive in all models except c180-HiRAM (−3.33 to +0.49 W m−2 K−1)410

and the SW CRE to become more positive in all models (+0.63 to +6.69 W m−2 K−1). The411

LW and SW relative magnitudes vary, such that the net CRE response is not of consistent sign412

(−1.12 to +5.04 W m−2 K−1), although averaged within either ensemble it is positive (+1.69 and413

+0.36 W m−2 K−1 for GFDL and CMIP5, respectively). Combining the robustly negative clear414

sky net TOA radiative flux with the mixed response of net CRE yields the reduced all-sky TOA ra-415

diative flux into the Sahel in all models except AM2.1, c180-HiRAM, and AM2.1-UW described416

above.417

5. Toward an emergent observational constraint418

H17 speculate that if the climatological convection in the Sahel is especially deep, then the419

meridional MSE difference between the Sahel and Sahara will be enhanced over a greater depth420

with SST warming, and therefore the column-integrated anomalous dry advection, compensating421

subsidence, and precipitation reduction will all be stronger. Restricting to the GFDL models, the422

above results lend qualitative support to this picture: precipitation is generally reduced more in423

models with greater subsidence anomalies [Figure 6(d)], greater enhancement of the meridional424

MSE gradient in the mid- and upper-troposphere [Figure 4(e)], and more top-heavy climatological425

ascent [Figure 6(a)]. It is thus worthwhile to quantify these relationships in both sets of models426

and across all of them.427
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The first step in this causal chain is a positive covariance between anomalous precipitation and428

anomalous descent. Figure 8 shows the responses of precipitation and ω at 500 hPa per K SST429

warming for each GFDL and CMIP5 model (results are similar at adjacent pressure levels or av-430

eraged over the mid-troposphere; not shown). For the GFDL models, the precipitation response is431

almost perfectly anti-correlated (r =−0.98) with the anomalous mid-tropospheric subsidence, as432

expected: insofar as the Sahel is close enough to the equator for Weak Temperature Gradient dy-433

namics to govern free tropospheric motions, precipitation and vertical velocities are tightly linked434

(Emanuel et al. 1994). However, for the CMIP5 models the linear relationship is much weaker,435

r = −0.55 and with an appreciably shallower slope. Though the combined ensemble exhibits436

a large correlation of r = −0.90, the different slopes and correlation coefficients imply that the437

statistics of the combined single seventeen member distribution may not be physically meaning-438

ful. Also, if fractional rather than absolute precipitation responses are used, the anti-correlation for439

GFDL remains nearly perfect (r = −0.99), but for the CMIP5 models the sign of the correlation440

reverses, r =+0.53 (not shown).441

This difference between the ensembles does not appear to stem purely from the difference in442

the imposed SST warming magnitude discussed previously. Overlaid on Figure 8 are the values443

from the +4 K simulations in AM2.1, AM3, and AM2.1-UW and the best fit line to this three444

member distribution. Though the responses per unit SST warming of both ω and precipitation445

change appreciably going from +2 to +4 K (particularly for AM2.1), they still obey the same446

linear relationship as in the +2 K simulations: the best fit line for these three +4 K simulations is447

nearly identical to that of the seven member GFDL +2 K ensemble. This is in contrast to the spread448

within either ensemble in the precipitation response, for which the magnitude of the imposed SST449

warming does matter (Section 3).450
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We do not fully understand why the CMIP5 and GFDL ensembles exhibit differing quantitative451

relationships among the various fields presented. As another example, while the evapotranspiration452

and precipitation responses to SST warming are highly correlated across the GFDL models (r =453

0.95), in the CMIP5 models there is effectively no relationship between the two fields (r = 0.09,454

not shown). A tight correspondence between evapotranspiration and precipitation is one of the455

hallmarks of semi-arid regions. However, we have experimented with excluding certain models456

based on such appeals to physical intuition and have not found correlations to be easily improved.457

Hill (2016, Chapter 4) examines all of the fields of potential relevance to our theory — horizontal458

MSE advection, vertical MSE advection, and the various radiative fluxes. Although essentially all459

of them qualitatively adhere to the dynamical arguments posed above (particularly for the GFDL460

models), for the combined ensemble the aforementioned mid-tropospheric ω response is the only461

one with a statistically significant correlation to the precipitation response. We offer potential462

means of extending these analyses relating to an emergent constraint in the Discussion section463

(Section 7) below.464

6. Relationships between precipitation and cloud radiative properties465

Section 4c showed that, of the fourteen models in which the Sahel-mean precipitation decreases466

with uniform SST warming, AM2.1 is the only one in which the region-mean TOA radiative forc-467

ing does not also decrease. Moreover, this weak net radiative response is the result of canceling468

clear-sky and CRE responses. In this section, we seek to determine the physical plausibility of469

these radiative responses through examining their interannual counterparts in a subset of mod-470

els and in observations. We then assess whether the interannual behavior can be linked to the471

equilibrium responses to imposed SST warming.472
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We compute annual timeseries of Sahel region-mean JAS TOA radiative fields using CERES-473

EBAF, precipitation using CRU TS (both over their common period of 2000-2016), and of both474

fields over the full durations of the “extended AMIP” simulations in AM2.1 and AM3 and in the475

standard AMIP simulation in c180-HiRAM described in Section 2f. In all cases, we remove any476

long-term linear trend before comparing across variables, although this has little impact on the477

results (not shown). We also subtract the time-mean of each field, in order to present values in478

terms of deviations from the long-term average. Note that the comparisons between observations479

and models are made imperfect by the fact that CERES data does not overlap at all with the AM2.1480

simulation, and in the AM3 and c180-HiRAM simulations for only 2000-2005 and 2000-2008,481

respectively.482

Figure 9 shows the relationships between Sahel precipitation and the net all-sky TOA radiative483

flux in the observations and in each model. The observations and AM3 adhere to classical ex-484

pectations (e. g. Neelin and Held 1987): precipitation and TOA radiative flux co-vary positively485

(3.6 and 8.1 W m−2 per mm day−1, respectively). But in c180-HiRAM, there is effectively no486

relationship, and in AM2.1 drier years are actually associated with greater net diabatic forcing of487

the column (−3.0 W m−2 per mm day−1).488

Figure 10 decomposes this all-sky radiative flux into clear-sky and cloudy sky components. The489

relationships between rainfall and clear-sky downward TOA flux are fairly consistent across mod-490

els and observations: the observations, AM2.1, AM3, and c180-HiRAM have slopes 4.7, 4.5,491

8.5, and 5.3 W m−2 per mm day−1, respectively [Fig. 10(a)-(d)]. This is likely due to water va-492

por: years with more precipitation plausibly have more water vapor under clear-sky conditions,493

increasing clear-sky LW absorption. Conversely, the observed net CRE becomes slightly less pos-494

itive as rainfall increases, at −1.1 W m−2 per mm day−1, but the relationship is not strong enough495

to be statistically significant (r2 = 0.10, p = 0.21 based on a two-sided Student’s t-test and treating496

24



each year as independent) [Fig. 10(e)]. The CRE-precipitation slope values are −7.6, −0.4, and497

−5.2 W m−2 per mm day−1 in AM2.1, AM3, and c180-HiRAM respectively [Fig. 10(f)-(h)]. So498

it is the excessive cloud radiative covariance with precipitation in AM2.1 that causes the all-sky499

precipitation-TOA radiation relationship to be of the wrong sign compared to observations.7500

Figure 11 decomposes the net CRE into SW and LW components. In all cases, the relationship501

between the net CRE and precipitation is the residual of canceling positive SW CRE and negative502

LW CRE relationships (Fig. 11). The observational LW CRE-precipitation slope is 3.5 W m−2
503

per mm day−1 [Fig. 11(a)], lower than the three models (5.2, 10.7, and 5.1 W m−2 per mm day−1,504

respectively) [Fig. 11(b)-(d)]. The corresponding relationships for SW CRE are −4.6 W m−2 per505

mm day−1 in the observations and −12.7, −11.0, and −10.3 W m−2 per mm day−1 in AM2.1,506

AM3, and c180-HiRAM, respectively [Fig. 11(e)-(h)]. So in all three models the SW shading by507

clouds varies at more than double the rate per unit precipitation change than observations, with508

AM2.1 the worst by a modest amount. However, the more modest LW slope in AM2.1 and c180-509

HiRAM causes the net to be severely negative, whereas the LW and SW variations largely cancel510

in AM3.511

7As a point of theoretical interest, we note that, in AM2.1 and c180-HiRAM, net CRE is negative in the Sahel JAS mean (Table 5) and becomes

more negative as precipitation increases at the interannual timescale [Figure 10(f,h)], as increased SW shading [Figure 11(f,h)] exceeds increased

LW trapping [Figure 11(b,d)]. Given an anomalously wet year, this implies that the concomitant cloud cover increase acts to decrease the net

TOA radiative flux, thereby increasing the efficiency of MSE divergence by the divergent circulation, i.e. the “effective gross moist stability”

(effective GMS) (Bretherton et al. 2006) — or, almost equivalently, the “drying efficiency,” c. f. Inoue and Back (2015). The opposite occurs in

an anomalously dry year: decreased cloud SW shading exceeds the decreased cloud LW trapping in magnitude, thereby increasing the net TOA

radiative flux and decreasing the effective GMS. This may be contrasted with the observations and AM3, in which net CRE is positive in the Sahel

JAS mean (Table 5) and co-varies insignificantly with precipitation on the interannual timescale, as well as with deep convecting regions, in which

cloud LW trapping exceeds cloud SW shading, and therefore growth of convective towers induces a radiative flux convergence that acts against the

MSE divergence by the circulation, thereby acting as a positive feedback on convective growth.
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Red squares in the model panels of Figures 9–11 signify the equilibrium response in the +2 K512

simulations. A negative offset from the interannual values is apparent in the clear-sky for all three513

models and is to be expected, as the globally warmed troposphere emits more LW radiation to514

space irrespective of the local hydrological state. In AM2.1 and AM3, this offset also appears in515

the all-sky field, due to the net CRE equilibrium response closely matching the interannual one;516

in c180-HiRAM the equilibrium net CRE response is somewhat positively offset. This correspon-517

dence provides evidence that the same mechanisms are acting in the forced equilibrium responses518

and the interannual variability.519

For semi-arid land regions such as the Sahel, surface evaporative dynamics complicates the520

influence of cloud radiative variations on precipitation. We have repeated these analyses using521

surface radiative fluxes from the CERES-EBAF Surface v4.0 observational dataset (Kato et al.522

2018); the results are summarized in Figure S6. The results are similar to the results at TOA in the523

observations and across models. Thus, in AM2.1, cloud loss allows more radiation to impinge on524

a surface whose evapotranspiration is moisture limited, thereby warming and reducing the relative525

humidity of the boundary layer, further inhibiting moist convection (e. g. Derbyshire et al. 2004;526

Sobel and Bellon 2009; Wang and Sobel 2012).527

These arguments suggest two distinct pathways — one at TOA, one at the surface — through528

which cloud radiative changes in the Sahel feed back positively on drying in AM2.1 in a manner529

that is excessive compared to observations. We therefore argue that the drying itself is to some530

extent excessive, although we have not quantified that excess. To a lesser extent, the same would531

be expected in c180-HiRAM, yet c180-HiRAM’s precipitation response to uniform SST warming532

is weak, consistent with an interpretation that these cloud radiative variations amplify precipitation533

variations rather than cause them.534
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7. Discussion535

a. Implications of the response to uniform SST warming for the fully coupled response536

The end-of-21st century Sahel rainfall change in the CMIP5 RCP8.5 simulations spans roughly537

−1 to +2.5 mm day−1, with a positive multi-model mean (c. f. Figure 1 of Park et al. 2015). Across538

all seventeen CMIP5 and GFDL AGCMs analyzed, the span of Sahel rainfall responses to uniform539

SST warming (ignoring the difference in SST warming magnitude) is −1.4 to +0.4 mm day−1, or540

1.8 mm day−1, i. e. roughly half of the spread in the full 21st century simulation, with a negative541

multi-model mean. Assuming linearity in the response to uniform SST warming and all other542

perturbations (Chadwick et al. 2017), the fact that mean SST warming generally dries the Sahel543

implies that the combined effect of all other 21st century perturbations act to increase precipitation544

in the Sahel (otherwise the RCP8.5 ensemble would not be appreciably wetter on average than545

the uniform warming ensemble). This is consistent with prior reports of the general wettening546

influence in the Sahel of both the pattern of future SSTs (e. g. Park et al. 2015) and of increasing547

atmospheric CO2 concentrations (e. g. Dong and Sutton 2015). Gaetani et al. (2017) document a548

robust wettening response in the Sahel in models with fixed SSTs and abruptly quadrupled CO2,549

consistent with the broader impact of increased CO2 on land precipitation (Bony et al. 2013), for550

which vegetation likely plays a meaningful role through stomatal closure (Chadwick et al. 2017).551

For example, CM3, the CMIP5 coupled model using AM3 as its atmospheric component, wet-552

tens the Sahel in the 21st century under the high-emissions RCP8.5 scenario (Figure 3b of Biasutti553

2013), despite AM3’s drying response to uniform SST warming. Similarly, the fully coupled554

version of MIROC responds in the RCP8.5 simulation with the strongest increase in Sahel precip-555

itation across CMIP5 models (Figure 3b of Biasutti 2013). In models such as these, constraining556

the effect of mean SST warming evidently does not constrain the full response, unlike in cou-557
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pled models using AM2.1 (Held et al. 2005; Biasutti 2013). Untangling the roles of mean SST558

warming, SST spatial pattern changes, and direct forcing on Sahel rainfall remains an outstanding559

challenge; Chadwick et al. (2017) show that “timeslice” simulations may be a valuable tool. Spa-560

tial patterns of surface air temperature change over land also generate mechanisms of modifying561

precipitation over land (Byrne and O’Gorman 2015) that may also need to be considered.562

b. Implications for the physical plausibility of AM2.1’s projection of severe Sahelian drying563

Already established as the drying-most outlier in terms of precipitation, these results further564

highlight AM2.1’s peculiarity with respect to the Sahel. Precipitation decreases in the region565

with +2 K warming more than any of the other sixteen models analyzed, even those subjected566

to +4 K warming. Yet replacing the default, relaxed Arakawa-Schubert convection scheme with567

the UW scheme causes AM2.1 to go from having the most negative to the second-most positive568

precipitation response (behind c48-HiRAM) of all models.569

AM2.1 is also an outlier in response to climate perturbations in the “TRACMIP” project simu-570

lations: from Figure 11 of Voigt et al. (2016), the precipitation response of an aquaplanet version571

of AM2.1 to the introduction of a rectangular land-mass under solsticial forcing is a severe south-572

ward shift of the ITCZ at all latitudes, especially over the continent. This response is an outlier573

compared to all twelve other models shown.574

Nevertheless, we are reluctant to extrapolate these arguments relating to the Sahel to the realism575

of the hydroclimatic response of AM2.1 in other land regions. The Sahel’s proximity to the world’s576

largest desert is unique — even the leading order balances of the control and perturbation MSE577

budgets will undoubtedly differ across regions. We do not have a compelling explanation for the578

errant relationship between cloud radiative properties and precipitation in the Sahel in AM2.1, and579

thus no a priori reason to expect it to occur in other regions either. The downstream effect on580
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the hydrological cycle will also be modified by the surface energy and water budget — in less581

water-limited regions, excess shortwave radiation impinging on the surface with cloud loss may582

counteract the initial precipitation loss, if it drives increased evapotranspiration.583

c. On the emergent observational constraint approach584

Supposing that a physical link does exist between the precipitation response and the climato-585

logical ascent profile structure, to be revealed by e. g. more refined statistical methods, it is worth586

assessing the extent to which the real-world ascent profile structure can be ascertained. We have587

analyzed the Sahel JAS region-mean vertical velocity in three reanalyses products: ERA-Interim588

(Dee et al. 2011) averaged over 1979-2013, NASA-MERRA (Rienecker et al. 2011) averaged589

over 1979-2011, and NCEP-CFSR (Saha et al. 2010) averaged over 1979-2013. The resulting590

profiles are shown in Figure 12. All three exhibit ascent throughout the troposphere that peaks591

near ∼800 hPa. But otherwise they vary markedly from top-heavy (MERRA) to bottom-heavy592

(NCEP-CFSR), with their average (not shown) largely resembling ERA-Interim.593

This large spread among the three reanalysis products analyzed limits the strength of the result-594

ing observational constraint that could be inferred. Though they assimilate observational data from595

multiple sources, reanalyses also ultimately rely on a convective parameterization in their underly-596

ing dynamical model. The sensitivity of AM2.1 to the convective parameterization (H17) suggests597

that the reanalyses therefore may not provide a truly reliable constraint. Zhang et al. (2008) find598

large discrepancies among three reanalyses in their representation of shallow meridional circu-599

lations in multiple tropical regions, including West Africa, and speculate that differences in the600

convective parameterization, in particular their sensitivity to dry air intrusions, are a key factor. It601

is interesting to note that MERRA, which generates the most top-heavy profile, uses, like AM2.1,602
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the Relaxed Arakawa Schubert convective parameterization; ERA-Interim and NCEP-CFSR use603

the simplified Arakawa-Schubert and Tiedtke (1989) schemes, respectively.604

With these caveats in mind, we note that NCEP-CFSR’s profile is roughly as bottom-heavy605

as the models’ most bottom-heavy profiles (c48-HiRAM, BCC-CSM1-1, c. f. Figures 6(a) and606

7(a), respectively), but there are several models (AM2.1, AM2.5, CNRM-CM5, and MIROC5)607

that are more top-heavy than the most top-heavy reanalysis product (MERRA). Moreover, these608

models are among those in which SST warming causes the strongest anomalous descent in the free609

troposphere (Figures 6(d) and 7(b)) and precipitation decrease (Tables 3 and 4). This is broadly610

consistent with the argument that deeper climatological convection tends to generate greater drying611

responses to warming.612

One plausible factor contributing to the statistical weakness of the relationships between anoma-613

lous precipitation and other fields across the CMIP5 models is internally generated variability. The614

use of large ensembles and the “dynamical adjustment” technique that reduces the influence of in-615

ternal variability (Deser et al. 2016, and references therein) could therefore be a useful tool.616

d. Region definition617

In some models, e. g. BCC-CSM1-1 and IPSL-CM5B-LR, the sharp meridional gradients in618

precipitation and other hydrological fields that in the real world reside in (and essentially define)619

the Sahel sit instead along the southern border of the region as we have defined it. As such, the620

climate averaged over our Sahel “box” is essentially all desert, making the physical arguments621

we have proposed less relevant. It could thus prove fruitful to use a data-driven region definition622

in future model comparison efforts, e. g. defining the Sahel as African land points within ±10◦623

latitude of the northernmost 3mm day−1 precipitation isoline on the continent.624
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8. Summary625

We have investigated the hydrological responses in the Sahel region of Africa to uniform 2 K626

SST warming in seven NOAA Geophysical Fluid Dynamics Laboratory (GFDL) atmospheric gen-627

eral circulation model (AGCM) variants and to 4 K SST warming in ten AGCMs from the Coupled628

Model Intercomparison Project, 5th Phase (CMIP5). Four of seven GFDL AGCMs and ten of ten629

CMIP5 AGCMs respond to uniform SST warming with reduced wet-season total and convective630

precipitation in the Sahel. Sixteen of the seventeen AGCMs respond with reduced precipitation631

minus evapotranspiration and boundary layer relative humidity. All seventeen AGCMs respond632

with reduced large-scale precipitation and, over some appreciable fraction of the free troposphere,633

increased meridional MSE gradient and divergence of MSE by horizontal advection and anoma-634

lous subsidence. The three outlier GFDL models all use the Bretherton et al. (2004, i. e. UW)635

convective parameterization, which is apparently invigorated with warming, yielding moderately636

increased total precipitation, convective precipitation, and evapotranspiration. Otherwise, these637

consistent qualitative features bolster the credibility of the general arguments set forth in Hill et al.638

(2017), namely that the increased meridional MSE gradient that arises with mean SST warming639

acts to increase the horizontal advection of dry, low-MSE air from the Sahara into the Sahel,640

thereby suppressing Sahelian moist convection.641

Of the fourteen models in which Sahel region-mean precipitation decreases with warming, only642

in AM2.1 does the net column energetic forcing (equivalent to the net top-of-atmosphere radiative643

flux for a land region) not reduce appreciably with warming. Given some magnitude of anomalous644

low-MSE Saharan air meridional advection, this reduction in the other models enables column645

energy balance to be restored with less anomalous subsidence. As such, this weak forcing response646
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in AM2.1, which results from canceling clear-sky and cloudy-sky anomalies, helps explain the647

severity of the drying in AM2.1 relative to other models.648

The speculation by Hill et al. (2017) — that the depth of the climatological convection in the649

Sahel significantly contributes to how much the column-integrated MSE difference between the650

Sahel and the Sahara is enhanced with SST warming — is borne out qualitatively for the GFDL651

models and a subset of the CMIP5 models. As such, it is of interest that the top-heavy ascent652

profiles of AM2.1 and some of the other drying-most models are well removed from the estimates653

from three reanalysis products. Nevertheless, the quantitative relationship between anomalous654

subsidence and reduced precipitation in the Sahel, which is a necessary intermediate step in the655

link between climatological ascent and the precipitation response to warming, exhibits sufficient656

ambiguity across the GFDL and CMIP5 models that a formal emergent observational constraint657

based on this physical mechanism remains elusive.658

In terms of interannual variability, observed TOA radiative fluxes from CERES-EBAF and pre-659

cipitation observations from GPCP indicate that AM2.1 exhibits an excessive feedback on precip-660

itation variations through the accompanying cloud radiative variations. This mechanism also acts661

in AM2.1’s equilibrium response to uniform SST warming. All else being equal, this casts doubt662

on the physical plausibility of the strong future drying projections in the Sahel by coupled models663

using AM2.1.664
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TABLE 1. GFDL atmospheric models used in this study. Columns, from left to right: model name, publication

documenting the model; observational SST dataset and year range used to create the climatological annual cycle

of SSTs; and length of simulation in years.

905

906

907

Model Reference SST data Duration

AM2.1 GFDL Atmospheric Model Development Team (2004) Reynolds et al. (2002), 1981-1999 30

AM2.1-UW Hill et al. (2017) Reynolds et al. (2002), 1981-1999 30

AM2.5 Delworth et al. (2011) Reynolds et al. (2002), 1981-1999 20

AM3 Donner et al. (2011) Hurrell et al. (2008), 1981-2000 30

c90-AM3 None Hurrell et al. (2008), 1981-2000 10

c180-HiRAM Zhao et al. (2009) Rayner et al. (2003), 1981-2005 17

c48-HiRAM Zhao (2014) Rayner et al. (2003), 1981-2005 15
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TABLE 2. The names and modeling institutions of the CMIP5 AGCMs used in this study. CMIP5

model information and outputs are available through the Earth System Grid Federation archive (http://cmip-

pcmdi.llnl.gov/cmip5)

908

909

910

Model Institution

BCC-CSM1 Beijing Climate Center

CNRM-CM5 Centre National de

Recherches Meteorologiques

FGOALS-G2 Institute of Atmospheric Physics,

Chinese Academy of Sciences

IPSL-CM5A-LR Institut Pierre-Simon Laplace

IPSL-CM5B-LR Institut Pierre-Simon Laplace

MIROC5 Agency for Marine-Earth

Science and Technology

MPI-ESM-LR Max Planck Institute for Meteorology

MPI-ESM-MR Max Planck Institute for Meteorology

MRI-CGCM3 Meteorological Research Institute

NCAR-CCSM4 National Corporation for

Atmospheric Research
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TABLE 3. Sahel region-mean surface hydrological cycle fields in the GFDL model control simulations and

their response per unit imposed SST warming in the +2 K simulations. Values in the top row are from the CRU

TS v4.01 observational dataset averaged over 1980-2005. The remaining rows are the values from the GFDL

models, with the control simulation values listed to the left of the perturbation values per unit imposed SST

warming, in parentheses. From left to right: total precipitation, convective precipitation, large-scale precipita-

tion, precipitation minus evapotranspiration, evapotranspiration, potential evapotranspiration (all in mm day−1),

relative humidity at 925 hPa (percent), and surface air temperature (Kelvin). Models are ordered from top to

bottom based on their total precipitation response, from most negative to most positive.

911

912

913

914

915

916

917

918

P Pconv Pls P−E E Epot RH925 hPa Tsfc

CRU 3.0 303.2

Ensemble mean 3.4 (-0.19) 2.6 (-0.13) 0.8 (-0.07) 1.1 (-0.17) 2.3 (-0.03) 2.8 (+0.06) 56.8 (-1.89) 302.7 (+1.69)

AM2.1 3.8 (-0.67) 3.6 (-0.61) 0.2 (-0.07) 1.4 (-0.49) 2.3 (-0.19) 3.0 (+0.06) 60.3 (-4.79) 300.8 (+2.27)

AM2.5 4.6 (-0.49) 4.2 (-0.44) 0.5 (-0.05) 2.0 (-0.42) 2.6 (-0.07) 3.0 (+0.04) 65.4 (-2.39) 301.7 (+1.77)

c90-AM3 3.5 (-0.30) 3.3 (-0.24) 0.2 (-0.06) 0.8 (-0.24) 2.7 (-0.06) 3.1 (+0.03) 54.7 (-2.64) 303.4 (+1.94)

AM3 2.8 (-0.20) 2.5 (-0.08) 0.2 (-0.12) 0.4 (-0.05) 2.3 (-0.14) 2.8 (+0.02) 47.7 (-1.44) 305.0 (+1.76)

c180-HiRAM 3.9 (+0.02) 0.7 (+0.08) 3.2 (-0.06) 1.8 (-0.02) 2.1 (+0.04) 2.8 (+0.05) 62.8 (-0.79) 302.8 (+1.42)

AM2.1-UW 2.7 (+0.10) 1.9 (+0.22) 0.8 (-0.12) 0.3 (-0.05) 2.4 (+0.15) 2.7 (+0.15) 56.3 (-1.79) 299.4 (+1.39)

c48-HiRAM 2.5 (+0.19) 1.7 (+0.20) 0.7 (-0.01) 0.9 (+0.09) 1.6 (+0.09) 2.5 (+0.06) 50.1 (+0.63) 305.4 (+1.22)
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TABLE 4. Same as Table 3, but for the CMIP5 models.

P Pconv Pls P−E E Epot RH925 hPa Tsfc

CRU 3.0 303.2

Ensemble mean 2.8 (-0.18) 2.2 (-0.12) 0.6 (-0.07) 1.1 (-0.13) 1.7 (-0.05) 3.0 (+0.03) 52.0 (-1.71) 302.4 (+1.62)

FGOALS-G2 2.6 (-0.30) 2.0 (-0.18) 0.6 (-0.12) 0.8 (-0.16) 1.8 (-0.14) 3.1 (-0.00) 50.2 (-3.57) 302.5 (+2.00)

CNRM-CM5 4.5 (-0.27) 3.7 (-0.17) 0.8 (-0.10) 2.2 (-0.27) 2.3 (-0.00) 2.6 (+0.06) 63.7 (-2.04) 300.5 (+1.61)

MPI-ESM-MR 2.8 (-0.23) 2.4 (-0.15) 0.5 (-0.09) 1.4 (-0.16) 1.5 (-0.07) 3.0 (+0.03) 51.0 (-2.14) 303.5 (+1.71)

MRI-CGCM3 1.7 (-0.20) 1.5 (-0.19) 0.2 (-0.02) 0.2 (-0.06) 1.4 (-0.14) 2.7 (-0.03) 41.9 (-1.99) 304.7 (+1.79)

MIROC5 5.1 (-0.20) 3.0 (-0.12) 2.1 (-0.08) 2.9 (-0.21) 2.2 (+0.01) 3.4 (+0.04) 57.2 (-0.80) 303.4 (+1.32)

MPI-ESM-LR 2.6 (-0.18) 2.2 (-0.12) 0.4 (-0.06) 1.3 (-0.14) 1.3 (-0.04) 2.9 (+0.04) 50.3 (-1.74) 303.8 (+1.69)

IPSL-CM5B-LR 1.3 (-0.14) 1.1 (-0.11) 0.1 (-0.03) 0.1 (-0.04) 1.2 (-0.10) 3.4 (-0.10) 39.4 (-1.22) 301.7 (+1.57)

NCAR-CCSM4 3.6 (-0.14) 2.4 (-0.01) 1.2 (-0.13) 1.3 (-0.15) 2.3 (+0.01) 2.5 (+0.01) 69.0 (-1.44) 299.3 (+1.51)

BCC-CSM1 1.3 (-0.09) 1.0 (-0.05) 0.3 (-0.04) 0.1 (-0.03) 1.1 (-0.06) 2.6 (-0.06) 47.0 (-1.70) 302.9 (+1.64)

IPSL-CM5A-LR 2.6 (-0.08) 2.5 (-0.07) 0.1 (-0.02) 0.9 (-0.08) 1.7 (-0.01) 3.5 (-0.01) 50.5 (-0.43) 302.0 (+1.38)
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TABLE 5. Sahel region-mean net top of atmosphere (TOA) radiative flux and its components, all in W m−2

and signed positive into the atmosphere. Values in the top row are from the CERES-EBAF v4.0 observational

dataset averaged over 2000-2017. The remaining rows are the values from the GFDL models, with the multi-

model mean values in the second row and values for individual models in subsequent rows. Control simulation

values are listed to the left of the perturbation values per unit imposed SST warming, units W m−2 K−1, in

parentheses. From left to right: all-sky top-of-atmosphere (TOA) radiative flux, clear-sky TOA radiative flux,

cloud radiative effect (CRE), shortwave CRE, and longwave CRE.

919

920

921

922

923

924

925

TOA rad TOA rad, clear Net CRE SW CRE LW CRE

CERES-EBAF 45.8 39.2 6.6 -32.1 38.7

Ensemble mean 47.5 (-0.98) 56.2 (-2.67) -8.6 (+1.69) -40.8 (+3.15) 32.2 (-1.46)

AM2.1 54.5 (+0.18) 62.6 (-4.79) -8.4 (+4.97) -39.3 (+6.69) 31.2 (-1.72)

AM2.5 61.3 (-1.35) 64.5 (-2.43) -3.2 (+1.08) -43.7 (+2.76) 40.5 (-1.67)

c90-AM3 55.1 (-3.74) 50.2 (-3.74) 5.0 (-0.00) -34.4 (+3.26) 39.4 (-3.26)

AM3 48.6 (-3.81) 43.2 (-2.85) 5.5 (-0.96) -26.4 (+0.87) 31.9 (-1.82)

c180-HiRAM 40.4 (+0.33) 58.3 (-1.30) -17.8 (+1.63) -45.7 (+1.14) 27.9 (+0.49)

AM2.1-UW 34.8 (+2.42) 62.3 (-2.42) -27.6 (+5.04) -56.2 (+6.57) 28.7 (-1.54)

c48-HiRAM 37.9 (-0.89) 52.1 (-0.96) -14.2 (+0.07) -39.5 (+0.75) 25.3 (-0.68)
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TABLE 6. Same as Table 5, but for the CMIP5 models.

TOA rad TOA rad, clear Net CRE SW CRE LW CRE

CERES-EBAF 45.8 39.2 6.6 -32.1 38.7

Ensemble mean 39.0 (-2.75) 45.2 (-3.11) -6.2 (+0.36) -35.3 (+2.34) 29.1 (-1.97)

FGOALS-G2 27.2 (-2.30) 45.4 (-4.23) -18.1 (+1.93) -42.9 (+3.50) 24.8 (-1.57)

CNRM-CM5 54.3 (-1.95) 67.7 (-2.97) -13.4 (+1.03) -44.1 (+2.71) 30.7 (-1.69)

MPI-ESM-MR 47.1 (-3.40) 44.5 (-3.71) 2.5 (+0.31) -31.1 (+3.59) 33.6 (-3.28)

MRI-CGCM3 20.1 (-4.27) 20.5 (-3.15) -0.3 (-1.12) -23.1 (+0.22) 22.7 (-1.35)

MIROC5 50.7 (-2.21) 63.3 (-1.69) -12.6 (-0.52) -43.7 (+1.05) 31.1 (-1.58)

MPI-ESM-LR 47.2 (-3.35) 44.4 (-3.19) 2.8 (-0.16) -33.1 (+3.17) 35.9 (-3.33)

IPSL-CM5B-LR 33.2 (-4.31) 29.3 (-3.57) 3.8 (-0.74) -10.4 (+0.63) 14.2 (-1.37)

NCAR-CCSM4 28.3 (-1.46) 57.0 (-3.46) -28.7 (+2.00) -66.0 (+4.67) 37.3 (-2.67)

BCC-CSM1 37.4 (-1.71) 47.6 (-2.74) -10.1 (+1.04) -43.7 (+2.67) 33.6 (-1.63)

IPSL-CM5A-LR 44.4 (-2.54) 32.3 (-2.38) 12.1 (-0.16) -14.8 (+1.12) 26.9 (-1.28)
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FIG. 1. (Shaded contours in a-g) difference in precipitation per unit SST warming between simulation with

uniform 2 K SST warming and present-day control simulation, units mm day−1 K−1, and (grey contours in a-g)

precipitation in the control simulation, with contours starting at 3 mm day−1 and with a 3 mm day−1 interval, in

each of the seven GFDL models. The models are ordered (a) to (g) based on their precipitation response from

most negative to most positive within the GFDL ensemble (see Table 3). Values below the model name are that

model’s Sahel region-mean fractional precipitation change per unit SST warming. (h) 1980-2005 climatological

JAS precipitation over land in the CRU TS v4.01 dataset, with the same contouring interval as for the other

panels.
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FIG. 2. As in Figure 1(a-g), but for the ten CMIP5 models, and for 4 K warming rather than 2 K.
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FIG. 5. As in Figure 4, but for the CMIP5 models under 4 K warming.
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FIG. 6. For the GFDL models, Sahel region-mean profiles of (left column) pressure velocity, (center column)

moist static stability, and (right column) vertical MSE advection (positive values correspond to export of MSE)

in (top row) the control simulations and (bottom row) their responses per K of imposed SST warming. Note the

smaller horizontal axis spacing in the bottom row. Colors are as in Figure 4.
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FIG. 8. Scatterplot of Sahel region-mean (vertical axis) precipitation change as a function of (horizontal axis)

ω change at 500 hPa, both expressed per unit of imposed SST warming (mm day−1 K−1 and hPa day−1 K−1,

respectively). Each point corresponds to a single model, colored gold for GFDL and blue for CMIP5, and

with the number corresponding to the Sahel precipitation response ranking within that ensemble, with numbers

increasing from most negative to most positive (c. f. Tables 3 and 4). The color and text with the corresponding

curve are the best fit line and correlation coefficient for that ensemble. The black line and text are the linear best

fit for the combined GFDL and CMIP5 data. Gray points, line, and text correspond to the +4 K SST simulations

performed in AM2.1, AM3, and AM2.1-UW
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FIG. 9. Sahel region-mean (vertical axis) net all-sky TOA radiation, in W m−2, as a function of (horizontal

axis) precipitation, in mm day−1, in (a) CERES-EBAF and CRU observational data, and AMIP simulations

in (b) AM2.1, (c) AM3, and (d) c180-HiRAM. Each dot represents a single year, and the overlaid gray line

is the linear best fit. Also printed in each panel is the square of the Pearson correlation coefficient (r2), the

corresponding p-value based on a two-sided Student’s t-test assuming each year is independent, and the slope of

the best fit line, in W m−2 per mm day−1. Red squares in (b)-(c) denote the equilibrium response in the uniform

2 K SST warming simulation in mm day−1 (not normalized by the SST warming).

1024

1025

1026

1027

1028

1029

1030

60



 
8

6

4

2

0

2

4

6

8

W
 m

−
2

r2 = 0.76
p< 0.001

slope = 4.7

(a)

CERES & CRU

 
 

r2 = 0.74
p< 0.001

slope = 4.5

(b)

AM2.1

 
 

r2 = 0.86
p< 0.001

slope = 8.5

(c)

AM3

 
 

r2 = 0.66
p< 0.001

slope = 5.3

(d)

c180-HiRAM

-1.0 0.0 1.0
mm day−1

20

15

10

5

0

5

10

15

20

W
 m

−
2

r2 = 0.10
p= 0.210

slope = -1.1

(e)

-1.0 0.0 1.0
mm day−1

 

r2 = 0.34
p< 0.001

slope = -7.6

(f)

-1.0 0.0 1.0
mm day−1

 

r2 = 0.02
p= 0.150

slope = -0.4

(g)

-1.0 0.0 1.0
mm day−1

 

r2 = 0.40
p< 0.001

slope = -5.2

(h)

FIG. 10. As in Figure 9, but with net (top row) clear-sky TOA radiative flux or (bottom row) net cloud radiative

effect as the vertical axis, signed positive into the atmosphere. Note different vertical axis spacing in each row.
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FIG. 11. As in Figure 9 but with TOA radiation replaced with (top row) longwave or (bottom row) shortwave

cloud radiative effect. Note different vertical axis spacing in each row.
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FIG. 12. Sahel region-mean JAS profile of vertical velocity in three reanalysis products. Shaded range denotes

±1 standard deviation. Horizontal lines on the vertical axis denote the vertical centroid over the 100-1000 hPa

range of the corresponding dataset.
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