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Abstract
General circulation models have been amply used to quantify Arctic sea-ice predictability. While models share some com-
mon aspects of predictability loss with increasing forecast lead time, there is significant model spread in the magnitude 
and timing of predictability loss. Here we show that inter-model differences in predictability are linked to inter-model dif-
ferences in the persistence timescales of sea-ice anomalies that are unique to each model, with models that exhibit longer 
persistence having higher potential predictability. Given this result and previous work showing that in a single model control 
simulation the magnitude of persistence fluctuates between multi-annual periods of high and low persistence, we assess 
whether initial-value predictability is dependent on the persistence state of the initial conditions. We find that predictability 
is not clearly impacted by the persistence state of the initial conditions, suggesting that predictability may be robust within 
a constant climate mean state.
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1  Introduction

Over the last decade, a growing effort has taken place in 
the sea-ice research community to quantify and understand 
sea-ice predictability, in part spurred by recent Arctic sea-
ice loss and a growing stakeholder interest in the region 
(Guemas et al. 2016; Jung et al. 2016). Operational environ-
mental forecasting centers are beginning to include sea-ice 
variables as forecast output and assimilate sea-ice informa-
tion into their initial conditions (e.g., Hebert et al. 2015), 
novel forecast techniques are being developed both using 
dynamical and statistical models (e.g., Wang et al. 2013; 
Merryfield et al. 2013; Sigmond et al. 2013; Msadek et al. 
2014; Schröder et al. 2014; Peterson et al. 2015; Yuan et al. 
2016; Bushuk et al. 2017; Petty et al. 2017), and since 2008 
September Arctic sea-ice extent forecasts produced in the 
preceding months are regularly collected and disseminated 

by the Sea Ice Prediction Network (SIPN, http://www.arcus​
.org/sipn/sea-ice-outlo​ok).

One of the foundations underpinning our understand-
ing of the mechanisms and limits of sea-ice predictability 
has been the use of ‘perfect-model’ experiments (PMEs) 
run with fully-coupled general circulation models (GCMs) 
(e.g., Koenigk and Mikolajewicz 2009; Holland et al. 2010; 
Blanchard-Wrigglesworth et al. 2011b; Day et al. 2014, 
2016; Tietsche et al. 2014; Germe et al. 2014). These experi-
ments assess the inherent predictability present in a GCM 
since forecast initial conditions (ICs) are known perfectly 
and there are no model physics uncertainties, in the sense 
that the model is used to predict itself. The chaotic growth 
of infinitesimal errors that are added to the ICs is the only 
source of forecast error growth, and thus the predictability 
skill found in perfect-model studies is considered to be the 
upper limit of predictability for a specific GCM (e.g., Col-
lins 2002).

Studies performing PMEs using different GCMs have 
found varying degrees of initial-value predictability of sea-
ice area (SIA) and sea-ice volume (SIV). While Blanchard-
Wrigglesworth et al. (2011b) and Tietsche et al. (2014) 
found that most pan-Arctic SIA and SIV predictability is 
lost after 1–2 years and 3–4 years respectively, Germe et al. 
(2014) found longer predictability that in some seasons and 
regions could last up to 8–9 years.

 *	 E. Blanchard‑Wrigglesworth 
	 ed@atmos.washington.edu

1	 Department of Atmospheric Sciences, University 
of Washington, Seattle, WA 98195‑1640, USA

2	 Geophysical Fluid Dynamics Laboratory, NOAA, Princeton, 
NJ, USA

3	 University Corporation for Atmospheric Research, Boulder, 
CO, USA

http://orcid.org/0000-0002-2608-0868
http://www.arcus.org/sipn/sea-ice-outlook
http://www.arcus.org/sipn/sea-ice-outlook
http://crossmark.crossref.org/dialog/?doi=10.1007/s00382-018-4461-3&domain=pdf


	 E. Blanchard‑Wrigglesworth, M. Bushuk 

1 3

Fewer studies have assessed how sea-ice predictability 
may be mean-state and model dependent. Holland et al. 
(2010) examined predictability in a greenhouse-gas forced 
GCM simulation and found that predictability of summer 
sea ice was lower in the 2010s compared to the 1970s, and 
attributed this change in predictability to a transition to a 
thinner ice mean state in the model. Similarly, Tietsche et al. 
(2013) found lower predictability of a mid twenty-first cen-
tury sea-ice anomaly compared to a present-day anomaly. 
Tietsche et al. (2014) and Day et al. (2014) found that pre-
dictability skill differs across GCMs—while the patterns of 
loss of skill with increased forecast lead time are qualita-
tively similar, the magnitude of predictability skill for the 
same forecast lead time differs by a factor of two for forecast 
lead times of just one season.

Our goal in this work is to investigate inter-model dif-
ferences in sea-ice predictability, and to determine whether 
the mechanisms that contribute to inter-model predictabil-
ity differences may also result in intra-model differences in 
predictability. To do this, we consider two complementary 
sets of GCM experiments: (1) a multi-model suite of PMEs 
designed to investigate initial-value sea-ice predictability; 
and (2) a suite of PMEs performed with a single GCM 
whose ICs are chosen to sample different persistence states.

2 � Inter‑model predictability: insights 
from APPOSITE

A plausible metric that may offer insights into the range of 
predictability skill found across GCMs is the timescale of 
persistence of sea-ice anomalies. Day et al. (2014) found that 
seasonal fluctuations in the timescales of SIA persistence 
could help explain the different rates of perfect-model pre-
dictability loss for different initialization months in a single 
GCM, providing a link between persistence and predict-
ability. Globally, inter-model differences in perfect model 
predictability of sea surface temperatures (SSTs) have been 
linked to inter-model differences in SST autocorrelation 
(Kumar et al. 2014).

We expand on these ideas by investigating the link 
between sea ice persistence and initial-value predictability in 
the Arctic Predictability and Prediction on Seasonal-to-Inter-
annual TimEscales (APPOSITE) set of PMEs (Day et al. 
2014; Tietsche et al. 2014; Day et al. 2016). APPOSITE 
quantifies initial-value sea-ice predictability in 6 different 
GCMs in a modern climate mean state (constant radiative 
forcing taken from 1990 to 2005 depending on the model). 
All model simulations include prognostic sea-ice compo-
nents. The runs consist of century-long control simulations 
run under constant radiative forcing from which the PMEs 
are initialized after a spin-up phase of 100 years. Figure 1a 

shows the normalized root mean square error (NRMSE) of 
SIA for all APPOSITE PMEs. NRMSE is defined as:

where ⟨⟩i denotes the expectation value, calculated by sum-
ming over the specified index with appropriate normaliza-
tion, xij(t) is either SIA or SIV at lead time t, index j indi-
cates the ensemble, and indices i and k indicate the ensemble 
member. The � in the denominator is the standard deviation 
in the control run calculated after detrending. An NRMSE 
of 1 indicates no predictability skill relative to a climatologi-
cal forecast.

While the tendency in all models is for NRMSE to 
increase with longer lead times (i.e., for predictability to 
decrease), there is clear model spread in NRMSE as docu-
mented by Tietsche et al. (2014). Interestingly, there are also 
seasonal fluctuations in NRMSE that vary across models. 
Some models tend to have higher predictability in the winter 
(e.g., E6F and HadGEM1-2), others have higher predictabil-
ity in the summer (e.g,. EC-Earth2.2) while others do not 
show any seasonal fluctuations (e.g., MPI-ESM).

Can persistence help explain inter-model spread in 
NRMSE across lead time and seasons? To address this we 
characterize persistence with two metrics: the year-to-year 
(Y2Y) autocorrelations of September and March SIA (here-
after referred to as Y2Y Sep and Y2Y Mar, respectively). 
We calculate the Y2Y metrics from the detrended September 
and March SIA timeseries of the APPOSITE control runs. 
In Fig. 1b, c we show scatter plots of NRMSE and the Y2Y 
metrics for forecast lead times of 1 through 16 months (see 
the supplementary material for timestep animations). Both 
persistence metrics are correlated with NRMSE at differ-
ent times of the year. Y2Y Sep is correlated with NRMSE 
outside the winter maximum sea ice months (June through 
December), while Y2Y Mar is correlated with NMRSE dur-
ing the winter maximum sea ice months (February through 
May) (Fig. 1d)—in other words, GCMs with high Y2Y Sep 
(Mar) persistence tend to have higher summer (winter) pre-
dictability. Interestingly, there is no correlation between the 
two Y2Y metrics across the APPOSITE models (Fig. 1e), 
which helps explain the different seasonal patterns of 
NMRSE predictability across models, as high Y2Y Sep val-
ues (and thus high summer predictability) do not imply high 
Y2Y Mar values, and vice versa. Exploring the relationship 
between Y2Y Sep and Y2Y Mar across all CMIP5 mod-
els shows that they are only weakly related ( R2 = 0.13 , see 
Fig. 1e and Fig. S1 in the supplementary information), and 
that the APPOSITE models reasonably sample the CMIP5 
state space of Y2Y autocorrelations. Interestingly, detrended 
observations (for which we use NSIDC’s sea ice index, [10]) 

(1)NRMSE =

�
⟨(xkj − xij)⟩2i,j,k≠i

√
2�2
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Fig. 1   a NRMSE of SIA in APPOSITE, b, c lead scatter plot of 
NRMSE and SIA Y2Y September and March autocorrelation respec-
tively for forecast lead times of 1–16 months, d R2 of the linear fits 
in b and c; and e scatter of Y2Y September and March autocorrela-
tions, including values for the 1300-year long CCSM4 control used in 

the paper, CMIP5 models and observations. The CCSM4 cross-lines 
indicate the range of autocorrelations using centennial data. CMIP5 
model correlations are calculated from detrended 1850–1955 data 
(see Fig S3 for further details)
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show lower values in both Y2Y persistence metrics than the 
models. Using the anomaly correlation coefficient metric 
(ACC, see Eq. 4) to quantify predictability shows similar 
results (see Figure S2 in the supplementary information).

The two Y2Y metrics of persistence are linked to the 
two mechanisms of SIA anomaly re-emergence (Blanchard-
Wrigglesworth et al. 2011a), which result from different 
physical processes at play in geographically distinct regions 
(Y2Y Sep driven by sea-ice thickness anomalies in the cen-
tral Arctic, Y2Y March by upper-ocean heat anomalies in 
the sub-Arctic seas) which likely helps explain their uncou-
pled nature.

3 � Intra‑model persistence: variability 
and predictability

In recent work, Bushuk et al. (2015) and Bushuk and Gian-
nakis (2015) have found that in a long control GCM simu-
lation these Y2Y memory re-emergence events have sig-
nificant temporal variability, characterized by fluctuating 
periods of strong and weak re-emergence that may last sev-
eral years. Since inter-model variations in persistence/mem-
ory re-emergence can help explain inter-model variations 
in initial-value predictability, would intra-model variations 
in persistence lead to different predictability within a given 
model? Would predictability be significantly higher when 
the system is in a strong re-emergence regime? To explore 

this question, we perform two sets of PMEs with a GCM, 
initializing forecast ensembles from ICs that are taken at 
different times of both high and low memory re-emergence 
in a millennium-long control run. To further understand the 
model results we also build a simple auto-regressive statisti-
cal model of SIA that replicates the persistence of sea ice in 
the GCM and quantify its predictive skill.

3.1 � Model and experiment design

We use model output from a 1300-yr equilibrated control 
integration of the Community Climate System Model ver-
sion 4 (CCSM4, see Gent et al. 2011, see https​://www.earth​
syste​mgrid​.org/datas​et/ucar.cgd.ccsm4​.joc.b40.1850.track​
1.1deg.006.html). The simulation (hereafter referred to as 
the control) is run under constant ‘pre-industrial’ radiative 
forcing with a CO2 concentration of 280ppm, employs fully 
coupled atmosphere, ocean, sea ice, and land components 
with a nominal 1 ◦ resolution, and has quasi-equilibrated 
northern hemisphere ice cover throughout the simulation 
(see Fig. 2a, b).

We begin by assessing the time-varying persistence of the 
control. We do this in two ways. First, we calculate the lead 
correlation r of SIA anomalies for all months (out to lead of 
23 months) for consecutive 35 year periods as defined in Eq. 2. 
Second, we calculate the lead pattern correlation p of sea-ice 

Fig. 2   January SIA (a), SIV (c) and July SIA (b), SIV (d) for years 
300–1200 in the control, and indices of SIA persistence R

isl
 (black) 

and SIC pattern correlation P
isl

 (red) and the aggregate memory index 
R
isl
+ P

isl
 (blue) for the summer-limb (e) and R

iwl
,P

iwl
,R

iwl
+ P

iwl
 for 

winter-limb (f). The blue and red circles are the years from which the 
high memory and low memory forecast ensembles are initialized in 
each PME

https://www.earthsystemgrid.org/dataset/ucar.cgd.ccsm4.joc.b40.1850.track1.1deg.006.html
https://www.earthsystemgrid.org/dataset/ucar.cgd.ccsm4.joc.b40.1850.track1.1deg.006.html
https://www.earthsystemgrid.org/dataset/ucar.cgd.ccsm4.joc.b40.1850.track1.1deg.006.html
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concentration (SIC) anomalies for all months (also out to a 
lead of 23 months) and for all years as defined in Eq. 2.

where i, m and � are the year, initial month, and time lead in 
months respectively, ai,m is the 35-year time series of SIA 
anomalies centered around year i and month m and ci,m are 
the sea-ice concentration anomalies in year i and month m.

The time series of r and p offer complementary insights on 
decadal and annual sea-ice persistence variability respectively, 
as r is calculated using a multi-decadal time period (35 years) 
and p is calculated over a seasonal-to-annual period (from a 
predictor month to a target month at leads of 0 to 23 months). 
We use them together to pinpoint periods of high and low 
persistence. Since both metrics are of monthly resolution, to 
obtain yearly indexes of memory re-emergence R and P we 
average the lead correlation values along the ‘summer-limb’ 
and ‘winter-limb’ of memory re-emergence as follows

(2)

rim(�) =
cov(ai,m, ai,m+�)

�ai,m�ai,m+�

,

pim(�) =
cov(ci,m, ci,m+� )

�ci,m�ci,m+�

,

(3)
Risl = ⟨rim(�)⟩,Pisl = ⟨pim(�)⟩
Riwl = ⟨rim(�)⟩,Piwl = ⟨pim(�)⟩

where � = {11, 9, 7, 5, 3, 1} for m = {3, 4, 5, 6, 7, 8} 
for the summer-limb ( Risl,Pisl ) and � = {12, 10, 8, 6} for 
m = {9, 10, 11, 12} for the winter-limb ( Riwl,Piwl—see Fig. 3 
for a visual representation of these month-lead pairs). These 
month-lead pairs represent the strongest signal of memory 
re-emergence that takes place between melt (spring/summer) 
and posterior freeze-up (fall) months (the summer-limb) and 
between freeze-up (fall) and posterior melt months (spring/
summer) months (the winter-limb, Blanchard-Wrigglesworth 
et al. 2011a and Bushuk et al. 2015) and are respectively related 
to the Y2Y Mar and Y2Y Sep metrics described above (note 
that Y2Y Mar and Y2Y Sep are equal to rm(�) for � = 12 and 
m = 3 and m = 9 respectively, and that performing the APPO-
SITE analysis shown in Fig. 1 with the limb metrics yields the 
same results, see Figure S3). Figure 2e, f shows the normalized 
yearly time-series of area persistence R and pattern correla-
tion P in the control for both limbs of memory re-emergence. 
In accordance with Bushuk et al. (2015), SIA persistence and 
pattern correlation fluctuate in magnitude over both short and 
long timescales. Over the full control run, the non-normalized 
timeseries of R + P exhibit almost identical variability for both 
limbs of memory re-emergence (not shown), indicating that the 
variability in persistence state is comparable for both limbs.

We create overall memory metrics (one for each limb) that 
capture both SIA persistence and pattern correlation by sum-
ming the normalized R and P timeseries. We next select periods 

Fig. 3   Lead pattern correlation p in the control averaged over the 
years following the IC dates used in the high memory and low mem-
ory summer-limb PMEs (a, b), winter-limb PMEs (d, e) and the dif-
ference between the high and low memory in each PME (c, f). Filled 
black circles indicate the month pairs m and � in Eq. 3 along which 

R
isl
,P

isl
 (summer-limb PME, top row) and R

iwl
,P

iwl
 (winter-limb 

PME, bottom row) are calculated. Xs indicate statistical significance 
at the 95% threshold, calculated with a t-test in a, b, d, e and a z-test 
using the Fisher transform in c and f 
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of high and low memory in the control run from which to ini-
tialize a summer-limb PME and a winter-limb PME. For each 
PME, we produce two sets of forecast ensembles (FEs), each 
set consisting of 6 individual ensembles initialized from control 
run years of high and low memory respectively. We initialize 
the high memory (low memory) summer-limb FEs on Janu-
ary 1 from years 587, 589, 593, 813, 815 and 817 (359, 361, 
363, 1139, 1141 and 1143). The high memory (low memory) 
winter-limb FEs are initialized on July 1 from years 755, 759, 
761, 765, 767 and 769 (1125, 1131, 1139, 1147, 1157, 1159, 
see Fig. 2). Each individual FE is 16-months long, and is com-
posed of 10 members that differ only in their atmospheric ICs, 
which are taken from consecutive days centered around the start 
date. Table 1 summarizes the PMEs, and Fig. 3 shows the lead 
pattern correlation p for the control in the months following the 
ICs that make up the high and low memory PMEs (averaged 
over all IC years), illustrating the marked difference in persis-
tence and memory re-emergence between the two sets of ICs. 
We assess statistical significance using a 95% confidence level. 
For NRMSE we use an F-test. For ACC and pattern correla-
tion, we use a t-test to assess significance relative to zero, and 
a z-test using a Fisher’s Z-transformation to assess significance 
of the difference between PME values. For relative entropy 
we solve for the mean and standard deviation of a population 
that is significantly different to the climatology at exactly the 
95% level in an analogous manner to Blanchard-Wrigglesworth 
et al. (2011b).

3.2 � Results: Pan‑Arctic predictability

We begin by evaluating the growth of the ensemble spread by 
calculating the NRMSE of monthly Arctic SIA and SIV, shown 
in Fig. 4a, e (Fig. 4i, m) for the summer-limb (winter-limb) 
PME. As expected from earlier studies (e.g., Blanchard-Wrig-
glesworth et al. 2011b; Day et al. 2014), the NRMSE of SIA 
grows faster than that of SIV, indicating higher predictability 
of SIV over SIA. Importantly, there are no significant differ-
ences in NRMSE of SIA and SIV between the high and low 
memory PMEs, suggesting that predictability skill as quantified 
by NRMSE is not dependent on the background persistence in 
the control run from which the PMEs are initialized.

We next consider the anomaly correlation coefficient (ACC) 
of the PMEs. The ACC is defined as follows:

(4)ACC =
⟨(xij − �j)(xkj − �j)⟩i,j,k≠i

⟨(xij − �j)⟩2
,

where �j is the climatological mean at the time of the jth 
ensemble prediction. An ACC of 0 indicates no predict-
ability. We show the ACC for SIA and SIV in Fig. 4b, f 
(Fig. 4i, n) for the summer-limb (winter-limb) PMEs. For 
the summer-limb PME, the high memory FE shows higher 
SIA ACC values than the low memory FE, indicating higher 
predictability as quantified by the ACC. Interestingly, the 
ACC for SIV shows the opposite, lower ACC values for the 
high memory FE relative to the low memory FE. We further 
explore this below in the discussion section. For the winter-
limb PME, both high and low memory FEs show similar 
predictability.

While the NRMSE and ACC quantify different aspects 
of forecast skill (predictability of the spread versus pre-
dictability of the anomaly, respectively), a useful metric 
that can quantify both aspects simultaneously is relative 
entropy (Kleeman 2002). Relative entropy (RE), in its uni-
variate form, is defined as follows:

where �c and �e are standard deviations of the control and 
PME respectively, and �c and �e are the mean of the con-
trol and PME respectively. The first two and fourth terms in 
Eq. 5 are known as the dispersion component (predictability 
of the spread) and the third term as the signal component 
of RE (predictability of the mean). RE provides the infor-
mation content (in bits) of the prediction ensemble relative 
to the climatological distribution. High RE values indicate 
high predictability and an RE value of zero indicates no 
predictability. We show the summer-limb PME RE for SIA 
for both FEs in Fig. 4c, d and for SIV in Fig. 4g , h. For SIA, 
the high memory FE shows higher RE values than the low 
memory FE which results from higher levels in the signal 
component. For SIV, the low memory FE shows higher RE 
values than the high memory FE which again results from 
higher levels in the signal component. These results agree 
with our findings above using NRMSE and ACC, as only 
the signal component, associated with deviations from the 
climatological mean, shows different levels of predictabil-
ity across the summer-limb high and low memory PMEs. 
For the winter-limb PME (Fig. 4k, l, o, p), both high and 
low memory FEs show similar levels of RE and thus no 

(5)RE =
1

2

[
ln

(
�2
c

�2
e

)
+

�2
e

�2
c

+
(�e − �c)

2

�2
c

− 1

]
,

Table 1   Summary of PMEs

PME High memory IC FE Low memory IC FE Size, start date, length

Summer-limb 587, 589, 593, 813, 815, 817 359, 361, 363, 1139, 1141, 1143 10 members, Jan 1, 16 months
Winter-limb 755, 759, 761, 765, 767, 769 1125, 1131, 1139, 1147, 1157, 1159 10 members, Jul 1, 16 months
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differences in predictability, in line with the NRMSE and 
ACC results above.

We next show the lead pattern correlation p values from 
the PMEs in Fig. 5, calculated by averaging p across all 
ensemble members. In the summer-limb PME, there are 
only minor differences across both high and low memory 
FEs, with lead pattern correlation values only slightly 
higher for some months during the high memory FE. Com-
pared to the control IC years, re-emergence in the high 
memory FE is not as strong as re-emergence in the high 
memory control IC years (Fig. 5b, e), and re-emergence in 

the low memory FE is slightly stronger than re-emergence 
in the low control IC years, when it is zero or even slightly 
negative (Fig. 5a, d). Contrasting the differences between 
both (Fig. 5c, f) it is clear that most of the pattern correla-
tion signal seen at lags of 10–15 months from winter-to-
winter in the control IC years is lost in the summer-limb 
PMEs, and therefore is not predictable. The lead pattern 
correlation p values for the winter-limb PME show even 
greater similarity between the high memory and low mem-
ory FEs (Fig. 5g–i), indicating no differences in predict-
ability, and practically all the pattern correlation signal 

Fig. 4   Predictability metrics for the high and low memory PMEs of 
SIA and SIV: NRMSE (a, e, i, m), ACC (b, f, j, n), Relative entropy 
for the high and low memory PMEs of SIA (C, D, K, L) and SIV (g, 
h, o, p). Filled circles indicate values significantly different to 1 (for 

NRMSE) or 0 (for ACC and Rel. Ent.) at the 95% threshold. Black 
circles indicate PME ACC values that are significantly different to 
each other
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from summer-to-summer present in the control is lost in 
the FEs (contrast Fig. 5i, l).

3.3 � Results: regional predictability

We now turn our attention to SIA predictability in five 
regions: the Barents/Kara, Greenland/Iceland/Norwegian 
(GIN) and Labrador Seas in the Atlantic, and the Okhotsk 
and Bering Seas in the Pacific. We define the geographic 
boundaries of these seas following (Bushuk et al. 2015). To 
capture both predictability of the spread and signal we just 
show the RE for the summer-limb PME in Fig. 6. Higher 

RE in the high memory FE is seen in the Atlantic seas, par-
ticularly in the Barents and GIN Seas. As with pan-Arctic 
SIA, the difference in RE originates from larger values in the 
signal component. By contrast, the Bering and Okhotsk Seas 
show no obvious differences in RE between the two FEs. In 
Fig. 7 we show the RE for the winter-limb PME, in this case 
focusing on the Atlantic seas and the Arctic basin seas which 
show summer sea ice variability. As is the case with the 
summer-limb PME, regional predictability is similar in both 
high and low memory FEs, particularly at long lead times 
when we might expect re-emergence. Small differences arise 
in the signal component of RE predictability in the first few 

Fig. 5   Lead pattern correlation in the predictability ensemble low 
years (a), high years (b), difference (c) and in the control simulation 
years from which initial conditions for the predictability experiments 

are drawn [low (d), high (e) and difference (f)]. Xs indicate statistical 
significance at the 95% threshold
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months of the integration in the GIN, Chukchi & Beaufort, 
and Latpev & East Siberian Seas.

3.4 � Insights from a simple statistical model

To further explore the a priori un-expected result that 
NMRSE predictability in the high and low memory FEs 

is not significantly different, we calculate the benchmark 
skill provided by a simple statistical forecast of synthetic 
SIA time series that reflect the high and low persistence 
regimes of the control.

To analyze the summer limb predictability, we first 
construct two sets of synthetic 16-month long time-series 

Fig. 6   Relative entropy in high and low memory summer-limb PMEs 
(denoted as high and low) in the Barents, GIN, Labrador, Bering 
and Okhotsk seas. Months in which the climatological SIA is close 

to zero are left blank (August through October in the Bering and 
Okhotsk seas, September in the Labrador sea)

Fig. 7   As in Fi. 6, but for the winter-limb PME
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using an AR(1) model in which a synthetic SIA anomaly 
at time t is computed as follows

where xt is the SIA anomaly at time t, �t is the auto-correla-
tion coefficient between December and the month at time t 
weighted by the ratio of standard deviation of SIA anoma-
lies in month t and December, and e = �tz , where �t is the 
standard deviation of SIA in month t and z is taken from a 
normal distribution with unit variance and zero mean (we 
select December since the summer-limb FEs are initialized 
on January 1). We compute two different sets of synthetic 
time series, one that takes the lead correlation rdec,t values 
in Eq. 6 from the highest and lowest rim(�) (for m = 12 and 
� = 1:16) values calculated from consecutive 100-year long 
time-series taken from the control.

Each set consists of 2000 independent iterations of Eq. 6 
(i.e., 2000 16 month-long time series for each set). Next, we 
calculate a simple persistence forecast of all time series in 
each set as follows:

where yt is the area forecast at lag t months from December. 
We also perform an analogous procedure to analyze winter 
limb predictability, computing two sets of synthetic time 
series, corresponding to high and low winter limb autocor-
relation regimes, respectively. Specifically, we compute lead 
correlations between June and month t, and define high and 

(6)

xdec = �decz,

xt = �txdec + e,

�t = rdec,t
�t

�dec

(7)yt = �txdec,

low memory regimes based on the highest and lowest rim(�) 
(m = 6 and � = 1:16) values calculated from consecutive 100 
year long time series taken from the control.

We show the NRMSE of the simple persistence forecasts 
for each set in Fig. 8. The NRMSE of the high persistence set 
is consistently lower than the NMRSE of the low persistence 
set, which loses all predictability by the first spring. This 
result suggests that one would indeed expect significantly 
different predictability skill to arise from the different per-
sistence/memory re-emergence regimes seen in the control, 
were these regimes predictable. We also show in Fig. 8 the 
NRMSE values from the summer-limb FEs above. The dif-
ference between the synthetic and the FE NRMSEs shows 
that there is enhanced predictability beyond that expected 
solely from persistence or memory re-emergence, echoing 
results in Day et al. (2014), and confirming that the PME 
predictability is independent of the IC state space with 
regards to persistence.

4 � Discussion and conclusions

Inter-model spread in initial value sea-ice predictabil-
ity is coupled to inter-model spread in sea-ice persistence 
across the APPOSITE set of models (Fig. 1). This link is 
modulated seasonally by the two different mechanisms of 
memory re-emergence: Y2Y March autocorrelation is cou-
pled to predictability during the winter sea ice maximum 
months, whereas Y2Y September autocorrelation is cou-
pled to predictability outside the winter sea ice maximum 
months. In the APPOSITE models, and to some extent in 
the CMIP5 models, these two autocorrelation metrics are 

Fig. 8   a NRMSE of a lead persistence forecast of synthetic high and low persistence set (dashed), together with the summer-limb PME high and 
low memory FE NRMSE values (taken from Fig. 4a, b) as in a, but for the winter-limb PME
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largely uncorrelated, helping explain why some models have 
either higher winter than summer predictability, vice versa, 
or no seasonal fluctuations in predictability. Since the Y2Y 
autocorrelations in the APPOSITE and CMIP5 models are 
higher than in detrended observations (a feature also seen 
across CMIP3, not shown), this poses the question whether 
predictability estimates from GCMs are biased high relative 
to the real world predictability, which could help explain a 
portion of the predictability gap between PMEs and real-
world forecasts (Blanchard-Wrigglesworth et  al. 2015). 
Identifying why GCMs show different persistence character-
istics and relating the relevant model processes to observed 
processes should be of high priority.

These results should be treated with some caution given 
the relatively small number of models contributing to 
APPOSITE, and should encourage current efforts to expand 
the number of models contributing to APPOSITE (Day, per-
sonal communication). We note that the link between per-
sistence and predictability is also present in Antarctica (see 
Figure S4), where interestingly only the winter-to-winter 
autocorrelation (Y2Y Sep in the austral calendar) is linked to 
winter predictability, possibly a result of the small summer 
sea-ice cover in Antarctica and the lack of summer memory 
re-emergence (note the much lower Y2Y Mar values in Ant-
arctica in Fig. S4 compared to the Y2Y Sep values for the 
Arctic) and summer predictability in general, which was also 
found by Holland et al. (2013).

In contrast, intra-model temporal variations in persistence 
do not have a clear impact on predictability in CCSM4. We 
have used initial conditions taken from a long CCSM4 con-
trol run to initialize perfect-model forecasts at times when 
the control run was in high and low persistence states. Fore-
casts of the ensemble spread, as quantified by the NRMSE 
and dispersion component of RE, are similar in the high and 
low memory FEs for both the summer and winter limb PMEs 
(Fig. 4), and the spatial pattern correlations lose most of the 
re-emergence signal present in the ICs (Fig. 5). Given the 
range in centennial persistence of the Y2Y autocorrelation 
metrics in CCSM4 (Fig. 1e), if the inter-model relationship 
between persistence and predictability applied to the intra-
model relationship, one would expect noticeable differences 
in intra-model predictability. This result suggests that perfect 
model NRMSE predictability in unforced (constant radiative 
forcing) GCM simulations is robust across initial conditions 
taken from different persistence regimes and complements 
(Day et al. 2016) who found the same result by comparing 
NRMSE predictability in high and low SIV initial condi-
tions. By extension, differences in NRMSE predictability 
across different models are likely to be robust and represent 
the impact of different model physics on predictability.

On the other hand, predictability of the signal, as 
quantified by the ACC and signal component of RE, is 

dependent on the initial conditions. We have found higher 
ACC SIA predictability in the high memory FE relative to 
the low memory FE in the summer-limb PME but, seem-
ingly counterintuitively, lower ACC SIV predictability in 
the high memory FE relative to the low memory FE in 
the same PME. We note that Day et al. (2016) found ACC 
predictability to be IC-dependent, with higher ACC when 
the ICs were anomalously high and low, reflecting a sta-
tistical artefact of the ACC metric. Considering the SIA 
and SIV anomalies in the summer-limb PMEs’ ICs, it is 
likely that this feature of the ACC metric plays a role in 
our findings: the high memory FE summer-limb PME ICs 
contain more anomalous SIA initializations than the low 
memory PME (4 ICs vs 1 IC at least 1 standard deviation 
away from climatology, Fig. 2a), and the reverse is true for 
SIV (2 vs 4 anomalous ICs, see Fig. 2c). Our findings in 
the winter-limb PME, where both FEs have similar ACC 
values and the ICs sample similar average SIA and SIV 
conditions (Fig. 2b, d), support this interpretation of ACC 
predictability. These findings suggest that PM skill com-
parisons should be made using spread-based metrics (such 
as NRMSE), as these metrics are much less sensitive to 
start date sampling biases than the ACC metric.

To summarize, we have found that in CCSM4, per-
sistence does not have a clear impact on predictability. 
Why is it that within one year the FEs lose most of the 
persistence and pattern correlations imprinted in the ICs? 
As discussed in Bushuk et al. (2015), one of the driv-
ing mechanisms of coherent patterns of SIC anomalies 
across separate, remote seas are planetary scale modes of 
atmospheric variability that induce synchronous sea-ice 
anomalies across remote regions. Considering the regional 
predictability results from individual seas in the summer-
limb PME, whereby only the Atlantic seas show differ-
ences between high/low memory FEs, it is likely that (1) 
the hemispheric modes of atmospheric forcing are mostly 
not predictable at seasonal-to-yearly timescales, and (2) 
the upper ocean can only force annual re-emergence of 
sea-ice anomalies in the Atlantic seas from winter-to-
winter. The key role of the atmosphere on the timescale 
of these seasonal-to-annual forecasts has recently been 
documented by Tietsche et al. (2016), who found that the 
atmosphere forced the majority of chaotic error growth in 
the first year of a forecast.
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