
1

Developers’ walkthrough for the MDTF Diagnostic Framework v2.0: an example

using the Convective Transition Diagnostic module

Yi-Hung Kuo,a Dani Coleman,b Chih-Chieh Jack Chen,b Andrew Gettelman,b J. David Neelin,a Eric Maloney.c

(a: UCLA; b: NCAR; c: CSU) Last update: 3/11/2019

This walkthrough contains a brief overview on the structure of the framework, with emphasis on the

pseudo-code―structural level—rather than on the implementation details, although tips on

implementation and testing are included. The purpose of this walkthrough is to provide guidelines

facilitating the development of the package toward the end phase when modules by the participating

groups are integrated into the framework. This walkthrough accompanies a code package including

example modules. Visit the MDTF main page for more about this framework.

The MDTF Diagnostic Framework consists of multiple Process-Oriented Diagnostic (POD) modules, each

of which is developed by an individual research group. For clarity, the framework is the structure

provided by the coordinating team, and the PODs (or modules) are developed by individual groups (or

developers). PODs are independent of each other. Each POD: (1) will produce its own html file (webpage)

as the final product, (2) consists of a set of process-oriented diagnostics, and (3) each such diagnostic

will produce figure(s) that can be displayed by the html file in a browser.

For the rest of this walkthrough, the Convective Transition Diagnostic POD developed by the UCLA group

is used as a concrete example to illustrate how a POD is implemented and integrated into the

framework. We assume that the POD developers (1) have developed their own set of working scripts

that read in model output and pre-digested observations and produce figures displaying the diagnostic

analysis results, and (2) have successfully tested the MDTF code package following the Getting-Started

document.

As the developer learned in the Getting Started document, the package directory structure is:

mdtf/MDTF_v2.01 (DIAG_HOME containing the mdtf.py script)

 mdtf/MDTF_v2.0/var_code (VARCODE containing directories for each POD’s source code)

 mdtf/inputdata/obs_data (VARDATA containing directories for each POD’s observational data)

 mdtf/inputdata/model (DATADIR)

DATADIR contains model output for the QBOi.EXP1.AMIP.0012 sample with the following sub-directories:

DATADIR/mon

DATADIR/day

DATADIR/6hr

DATADIR/3hr

DATADIR/1hr

1 Directories/files/scripts/codes are in Italics. Here, DIAG_HOME, VARCODE, VARDATA, and DATADIR are

environment variables. All environment variables are listed in Appendix 1 at the end of this walkthrough.

2 Here QBOi.EXP1.AMIP.001 is the case name of the sample model run to be analyzed, set by the CASE string in the

text file given as input to mdtf.py (by default, namelist). Python scripts later called by mdtf.py can access this

variable through os.environ[“CASENAME”].

ftp://ftp.cgd.ucar.edu/archive/mdtf/MDTF_v2.0.var_code.tar
ftp://ftp.cgd.ucar.edu/archive/mdtf/MDTF_v2.0.var_code.tar
http://www.cesm.ucar.edu/working_groups/Atmosphere/mdtf-diagnostics-package/index.html
http://www.cesm.ucar.edu/working_groups/Atmosphere/mdtf-diagnostics-package/index.html
http://www.cesm.ucar.edu/working_groups/Atmosphere/mdtf-diagnostics-package/Getting_started_v2.0.pdf
http://www.cesm.ucar.edu/working_groups/Atmosphere/mdtf-diagnostics-package/Getting_started_v2.0.pdf
http://www.cesm.ucar.edu/working_groups/Atmosphere/mdtf-diagnostics-package/Getting_started_v2.0.pdf
http://www.cesm.ucar.edu/working_groups/Atmosphere/mdtf-diagnostics-package/Getting_started_v2.0.pdf

2

1. Get started with the code package

The code package is available at the MDTF main page (see Downloading and Running), along with the

pre-digested observations and sample model data. The POD developers should test the code package

following instructions in the Getting-Started document to ensure they understand the structure and

have the required environment.

2. To-do list

The following are the necessary 6 steps for the module implementation and integration into the

framework. Here the POD name tag is convective_transition_diag.3 It is to be replicated with different

POD name tags. All the modules currently included in the code package have the same structure, and

hence the descriptions below apply:

1. Provide all the scripts for the convective_transition_diag POD in the sub-directory

DIAG_HOME/var_code/convective_transition_diag. Among the provided scripts, there should be a

template html file convective_transition_diag.html,4 and a main script convective_transition_diag.py

that calls the other scripts in the same sub-directory for analyzing, plotting, and finalizing html.

2. Provide all the pre-digested observation data/figures in the sub-directory

DATA_IN/obs_data/convective_transition_diag.

3. Add a line of code POD convective_transition_diag to the POD section of the namelist file (in

DIAG_HOME) so that the mdtf.py script will call the convective_transition_diag.py script.

4. A section of code should be added to the end of the script convective_transition_diag.py5 for

copying and modifying the template convective_transition_diag.html, inserting a line into index.html,

and, if necessary, converting figures in postscript format into PNG.

5. Provide documentation following the templates:

1) Provide a comprehensive POD documentation, including a one-paragraph synopsis of the

POD, developers’ contact information, required programming language and libraries, and

model output variables, a brief summary of the presented diagnostics as well as references in

which more in-depth discussions can be found (see an example).

3 The POD name tag used in the code should closely resemble the full POD name but should not contain any space

bar or special characters. Note that the convective_transition_diag tag here is used repeatedly and consistently for

the names of sub-directories, script, and html template. Please follow this convention so that mdtf.py can

automatically process through the PODs.

4 One can create a new html template by simply copying and modifying the example templates in

DIAG_HOME/var_code/html/html_template_examples. Note that scripts therein are exact replications of the html-

related scripts in the example PODs, serving merely as a reference, and are not called by mdtf.py.

5 An example can be found at the end of convective_transition_diag.py (or scripts for the other PODs). In the sub-

directory DIAG_HOME/var_code/html/html_template_examples, the script set_html.py contains a copy of the last

sections of code from some PODs.

ftp://ftp.cgd.ucar.edu/archive/mdtf/MDTF_v2.0.var_code.tar
http://www.cesm.ucar.edu/working_groups/Atmosphere/mdtf-diagnostics-package/index.html
ftp://ftp.cgd.ucar.edu/archive/mdtf/MDTF_v2.0.obs_data.tar
ftp://ftp.cgd.ucar.edu/archive/mdtf/model.QBOi.EXP1.AMIP.001.tar
http://www.cesm.ucar.edu/working_groups/Atmosphere/mdtf-diagnostics-package/Getting_started_v2.0.pdf
http://www.cgd.ucar.edu/cms/bundy/Projects/diagnostics/mdtf/mdtf_figures/MDTF_QBOi.EXP1.AMIP.001.save/convective_transition_diag/MDTF%20Documentation%20-%20Convective%20Transition%20Diagnostic%20Package.pdf
http://www.cgd.ucar.edu/cms/bundy/Projects/diagnostics/mdtf/mdtf_figures/MDTF_QBOi.EXP1.AMIP.001.save/convective_transition_diag/MDTF%20Documentation%20-%20Convective%20Transition%20Diagnostic%20Package.pdf

3

2) All scripts should be self-documenting by including in-line comments. The main script

convective_transition_diag.py should contain a comprehensive header providing information

that contains the same items as in the POD documentation, except for the "More about this

diagnostic" section.

3) The one-paragraph POD synopsis (in the POD documentation) as well as a link to the Full

Documentation should be placed at the top of the template convective_transition_diag.html

(see example).

6. Test before distribution. It is important that developers test their POD before sending it to the MDTF

contact. Please take the time to go through the following procedures:

1) Test how the POD fails. Does it stop with clear errors if it doesn’t find the files it needs? How

about if the dates requested are not presented in the model data? Can developers run it on

data from another model? If it fails, does it stop the whole mdtf.py script? (It should contain

an error-handling mechanism so the main script can continue). Have developers added any

code to mdtf.py? (Do not change mdtf.py! — if you find some circumstance where it is

essential, it should only be done in consultation with the MDTF contact).

2) Make a clean tar file. For distribution, a tar file with obs_data/, var_code/, namelist, and

model data that developers have thoroughly tested is needed. These should not include any

extraneous files (output NetCDF, output figures, backups, pyc, *~, or # files). The model data

used to test (if different from what is provided by the MDTF page) will need to be in its own

tar file. Use tar -tf to see what is in the tar file. Developers might find it helpful to consult the

script used to make the overall distributions mdtf/make_tars.sh.

3) Final testing: Once a tar file is made, please test it in a clean location where developers

haven’t run it before. If it fails, repeat steps 1)-3) until it passes. Next, ask a colleague or

assign a group member not involved in the development to test it as well — download to a

new machine to install, run, and ask for comments on whether they can understand the

documentation.

4) Post on an ftp site and/or email the MDTF contact.

3. The workflow

When mdtf.py is executed, among other things, it creates the following new sub-directories:

A. DIAG_HOME/wkdir

B. DIAG_HOME/wkdir/MDTF_QBOi.EXP1.AMIP.0016

In sub-directory (B), each POD will create its own sub-directory, named after the POD, under which the

html and figures produced by the POD will be saved (see subsection I below).

6 In general, DIAG_HOME/wkdir/MDTF_CASENAME. This sub-directory is set to be the environment variable

variab_dir in mdtf.py (and WKDIR = DIAG_HOME/wkdir).

http://www.cgd.ucar.edu/cms/bundy/Projects/diagnostics/mdtf/mdtf_figures/MDTF_QBOi.EXP1.AMIP.001.save/convective_transition_diag/convective_transition_diag.html
mailto:bundy@ucar.edu?subject=MDTF%20support%20inquiry
mailto:bundy@ucar.edu?subject=MDTF%20support%20inquiry

4

The script mdtf.py then creates the file index.html in sub-directory (B) through which the html files

created by the individual PODs are linked. This index.html file (also a script) will be subsequently

modified by the PODs called by mdtf.py through the code added in step 4 (see subsection II below).

I. mdtf.py calls convective_transition_diag.py (i.e. the POD)

Through the POD line added to namelist in step 3, mdtf.py then calls convective_transition_diag.py. The

latter script creates the following new sub-directories:

C. DIAG_HOME/wkdir/MDTF_QBOi.EXP1.AMIP.001/convective_transition_diag

D. DIAG_HOME/wkdir/MDTF_QBOi.EXP1.AMIP.001/convective_transition_diag/model

E. DIAG_HOME/wkdir/MDTF_QBOi.EXP1.AMIP.001/convective_transition_diag/obs

If developers chooses to save the analyzed model or obs results (not including figures; referred to as the

intermediate output) produced by the POD for later analysis or plotting, the following 2 additional sub-

directories will be created by convective_transition_diag.py:

F. DIAG_HOME/wkdir/MDTF_QBOi.EXP1.AMIP.001/convective_transition_diag/model/netCDF

G. DIAG_HOME/wkdir/MDTF_QBOi.EXP1.AMIP.001/convective_transition_diag/obs/netCDF

in which the intermediate output (netCDF format recommended), for model and obs will be saved

respectively. Similarly, if developers chooses to save the figures in postscript (.ps) format for later

publication, the following 2 additional sub-directories will be created in which the postscript figures will

be saved:

H. DIAG_HOME/wkdir/MDTF_QBOi.EXP1.AMIP.001/convective_transition_diag/model/PS

I. DIAG_HOME/wkdir/MDTF_QBOi.EXP1.AMIP.001/convective_transition_diag/obs/PS

If a group chooses not to produce intermediate output or postscript figures, sub-directories (F)-(I) can be

skipped.

Next, convective_transition_diag.py analyzes the model output and plots figures, by calling scripts

provided in step 1, and saves the intermediate output (if any) for model in sub-directory (F). The

corresponding model figures are saved in sub-directory (D). The same script also plots obs figures by

reading data provided in step 2 and saves them in sub-directory (E). 7 If the obs figures are already

provided in step 2, the script can simply copy the figures to the sub-directory.

II. convective_transition_diag.py finalizes convective_transition_diag.html

The last section of the script convective_transition_diag.py mentioned in step 4 copies the html

template convective_transition_diag.html (step 1) to sub-directory (C), and then modifies the copied

html template if the filenames of the figures just made and saved in sub-directories (D) and (E) depend

on some parameters (e.g., CASENAME) and hence are different from what were in the original template.

A link to convective_transition_diag.html is inserted to index.html through the same section of code

(using the echo command). If the figures are saved as postscripts (.ps) in sub-directories (H) and (I), this

section also converts the postscripts into PNG format (.png) and save the PNG figures for model and obs

7 Apparently, postscript figures will be saved in sub-directories (H) and (I).

5

respectively in sub-directories (D) and (E). When the environment variable CLEAN is set to “1” in

namelist,8 sub-directories (H) and (I) together with their contents will then be removed.

An example of how this section is coded can be found at the end of convective_transition_diag.py (or

the corresponding Python scripts for the other example PODs). Note that the html templates for some

PODs can be found in DIAG_HOME/var_code/html/html_template_examples, and the last sections of

code from these PODs are copied and saved as set_html.py therein, as a reference. The UCLA group,

though had no prior knowledge of the html syntax, was able to copy and modify the examples provided

by NCAR.

III. Back to mdtf.py

The last section of mdtf.py creates a tar file of sub-directory (B) as the final product of the code package.

Note that postscript figures and intermediate output in netCDF format (if any) will not be included in the

tar file.

IV. Summary

Subsections 3.I-III describe how the control is passed from mdtf.py to convective_transition_diag.py and

back to mdtf.py, and what the POD scripts are expected to do. The developers should closely follow the

example given here (e.g., the sub-directory structure). While developers can re-organize the structure

and change names of the sub-directories (D)-(I) depending on how they choose to present their

diagnostics, sub-directory (C) is mandatory, and POD scripts should never create/modify directories or

files outside sub-directory (C).

4. Required environment & A remark on installing NCL on a Linux machine

The current code package is developed and has been tested in Python 2.7. We recommend developers

to use Anaconda for the Python environment management. See the Getting-Started document for more

about this.

Note that Python 2 is planned to phase out by 2020, and the next iteration of the code package will

transition to Python 3. So, having the POD scripts be compatible with Python 3 would be much desirable.

The rest of this section regards a known issue of NCL installation on a Linux machine. The NCAR

Command Language (NCL) is required for some example PODs. In recent years, many Linux distributions

(e.g., Ubuntu 16.04, Mint 18, etc.) have offered an easy way of installing NCL through Synaptic Package

Manager or running the following command in a terminal (not recommended):

sudo apt install ncl9

With NCL being installed this way, the users may encounter errors when running the example PODs

provided by NCAR, even if the environment variables and search path have been added.10 Installing NCL

through Anaconda would not resolve this type of error either.

8 Default VAR CLEAN 0 in namelist.

9 The command apt is gradually replacing the traditional apt-get for Debian-based distributions, but both would

work. A Red Hat-based distribution (e.g., Fedora, CentOS) uses dnf instead.

http://www.cesm.ucar.edu/working_groups/Atmosphere/mdtf-diagnostics-package/Getting_started_v2.0.pdf
http://www.cesm.ucar.edu/working_groups/Atmosphere/mdtf-diagnostics-package/Getting_started_v2.0.pdf

6

If one encounter such errors, an easier solution is to install NCL by downloading the pre-compiled

binaries following instructions in Getting-Started document (see section 2 therein).11

5. Model output variable and filename convention

There are 4 environment variables assigned through the CASE line in namelist: CASENAME, model,

FIRSTYR, and LASTYR. For example, the CASE line for the sample QBOi.EXP1.AMIP.001 case reads

CASE QBOi.EXP1.AMIP.001 CESM 1977 1981

Here, FIRSTYR, and LASTYR specify the time period for analysis, CASENAME points to locations of the

model data (DATADIR = DATA_IN/CASENAME) and where the diagnostic analysis results are saved

(variab_dir = WKDIR/MDTF_CASENAME). Most example PODs also display the CASENAME in figures to

distinguish the results from observations or some reference model results.

Note that models developed by different centers adopt different model output variable naming

conventions, e.g., precipitation rate is pr/PRECT/pr (case sensitive) in the CMIP/CESM/AM4 convention.

The environment variable model is used exclusively for specifying the naming convention by pointing to

the script set_variables_model.py under DIAG_HOME/var_code/util.12

The current version of the code package assumes the following filename structure for the model data

files:

CASENAME.VARNAME.FREQ.nc

For instance, the 3-hourly and daily precipitation rate data for the QBOi.EXP1.AMIP.001 sample have the

following filenames, respectively:

QBOi.EXP1.AMIP.001.PRECT.3hr.nc13

QBOi.EXP1.AMIP.001.PRECT.day.nc

These files are stored in separate sub-directories according to their time frequency as described in the

beginning of this walkthrough.

To summarize, in the filename structure, CASENAME is set in namelist, VARNAME (variable name)

follows the naming convention determined by model. As for FREQ (time frequency), developers should

specify the preferred time frequency for their PODs, or implement a mechanism to check through the

available frequencies, e.g., check for the preferred 3-hourly data; if unavailable, go for 6-hourly and so

on.

10 This is because the NCL scripts in the example modules would try to load the other NCL scripts in the sub-

directory $NCARG_ROOT/lib/ncarg/nclscripts/csm that comes with the NCL installation.

11 Remember to remove the NCL installation through Synaptic or apt before re-install.

12 Currently, there are 3 set_variable scripts in the code package, for CMIP, CESM, and AM4. These scripts do not

contain a complete list of model variables. Developers can add new variables to the existing list as needed or

create new set_variable scripts for other models, and submit the changes to the MDTF contact.

13 Here the variable name for precipitation rate is set by os.environ[“pr_var”] = “PRECT” in set_variables_CESM.py.

http://www.cesm.ucar.edu/working_groups/Atmosphere/mdtf-diagnostics-package/Getting_started_v2.0.pdf

7

6. Use environment variables

In the scripts mdtf.py and set_variables_CESM.py, many environment variables are defined through

setenv or os.environ, and many environment variables can be overwritten by adding new VAR lines to

namelist. These environment variables are to help make the PODs more robust. For instance, when the

interested model data is not saved under the default location DATADIR = DATA_IN/CASENAME, it

suffices to change the environment variable DATADIR pointing to where the model data are located by

inserting the following line into namelist:

VAR DATADIR path_to_directory_containing_data

Appendix 1 at the end of this walkthrough provides a list of environment variables the POD scripts can

access (e.g., using os.environ in Python or getenv in NCL). Developers can always overwrite the default

values through VAR lines in namelist.14 Please note that mdtf.py should never be changed without first

consulting the MDTF contact.

A common mistake made by previous POD developers, as being noted by the MDTF coordinating team,

is that the locations of POD scripts/model output/observational data, i.e., things that should be

expressed in terms of the environment variables, are hardwired in the scripts. And when such PODs are

submitted to the coordinating team, they cannot function as expected on a different machine and/or

with different model data. As such, developers should use the listed environment variables in their

scripts as much as possible. The coordinating team encourages developers to conduct the following

robustness tests:

I. Test the POD with another set of model data

Do not even need to prepare another set of data. Developers can simply change the names of the model

output files and directories to mimic a new dataset. The PODs should be able to handle this “new

dataset” by simply changing CASENAME in namelist.

Developers can also try to change the variable names (e.g., change PRECT to pr). PODs should be fine

with a modified set_variable script.

II. Change the directory containing POD scripts, etc.

For instance, if the var_code directory is moved, overwrite VARCODE should solve this. Similarly, if the

QBOi.EXP1.AMIP.001 sample data directory is in a different location, overwrite DATADIR (and VARDATA

for obs_data). To change the directory for saving the diagnostic results produced by the code package?

Overwrite variab_dir.

A remark on compound environment variables

For example, DATADIR (by default) is defined by 2 environment variables, i.e., DATA_IN and CASENAME,

thus referred to as compound. The other example is variab_dir. If these variables are set to be

overwritten in a namelist file simultaneously (e.g., as a remnant of previous runs), it may lead to a

14 In theory, all environment variables can be overwritten. But the MDTF coordinating team recommends against

overwriting DIAG_HOME, DIAG_ROOT, and RGB – the existing PODs may be broken unexpectedly.

8

conflict. The mdtf.py script will resolve this by overwriting only the compound environment variables

while discarding the other two variables.

7. Summary of things to be aware of

Here is a short list of tips on implementation:

I. Structure of the code package – Implementing the constituent PODs in accordance with the structure

described in sections 2 and 3 makes it easy to pass the package (or just part of it) to other groups.

II. Robustness to model file/variable names – Each POD should be robust to modest changes in the

file/variable names of the model output; see section 5 regarding the model output filename structure,

and section 6 regarding using the environment variables and robustness tests. Also, it would be easier to

apply the code package to a broader range of model output.

III. Save intermediate output – Can be used, e.g. to save time when there is a substantial computation

that can be re-used when re-running or re-plotting diagnostics. See section 3.I regarding where to save

the output.

IV. Self-documenting – For maintenance and adaptation, to provide references on the scientific

underpinnings, and for the code package to work out of the box without support. See step 5 in section 2.

V. Handle large model data – The spatial resolution and temporal frequency of climate model output

have increased in recent years. As such, developers should take into account the size of model data

compared with the available memory. For instance, the example POD precip_diurnal_cycle and

Wheeler_Kiladis only analyze part of the available model output for a period specified by the

environment variables FIRSTYR and LASTYR, and the convective_transition_diag module reads in data in

segments.

VI. Basic vs. advanced diagnostics (within a POD) – Separate parts of diagnostics, e.g, those might need

adjustment when model performance out of obs range.

VII. Avoid special characters (!@#$%^&*) in file/script name

9

Appendix 1: Environment Variables used by MDTF code package with their default settings

Variable name Default setting Where it is set
(anything can be
added to namelist to
override settings in
mdtf.py)

Description

CASENAME QBOi.EXP1.AMIP.001 namelist
(CASE entry 1)

Name of model run, default is downloadable
sample model data

model CESM namelist
(CASE entry 2)

Convention for variable names as determined by
$VARCODE/util/set_variables_$model.py
Currently options are CMIP, CESM, AM4.

FIRSTYR 1977 namelist
(CASE entry 3)

First year of model data for this case (default for
sample model data)

LASTYR 1981 namelist
(CASE entry 4)

Last year of model data for this case (default for
sample model data)

make_variable_tar 1 namelist Flag to either make (1) or not make (0) a tar file of
WKDIR upon package completion

verbose 1 namelist Determines how much text output comes from
the mdtf.py scripts: 0-minimal
1-normal
2-copious
3-debug level

test_mode False namelist True = mdtf.py script reports what it would do
instead of calling the actual packages
False = mdtf.py calls all requested packages

NCARG_ROOT none namelist Path to NCL installation

DIAG_HOME* mdtf/MDTF_v2.0 mdtf.py Where to invoke script
% python mdtf.py namelist

DIAG_ROOT* $DIAG_HOME/.. mdtf.py Where mdtf distribution was installed, one
directory above DIAG_HOME

DATA_IN mdtf/inputdata mdtf.py Contains all data in sub-directories obs_data/,
model/

DATADIR $DATA_IN/model/$CASENAME mdtf.py Contains model data (in CASENAME directories)

VARDATA $DATA_IN/obs_data mdtf.py Contains pre-digested observational data (in
module directories)

WKDIR $DIAG_HOME/wkdir mdtf.py Output from packages, created when run

VARCODE $DIAG_HOME/var_code mdtf.py Source code, including util/ and all PODs

RGB* $VARCODE/util/rgb mdtf.py Color tables used in NCL

variab_dir $WKDIR/MDTF_$CASENAME mdtf.py Output directory

*Environment variables should not be changed.

