
Getting started with the MDTF package

Yi-Hung Kuo (UCLA), Dani Coleman (NCAR). Last update: 3/14/2019

This document provides directions for downloading, installing and running a test of the Model

Diagnostics Task Force (MDTF) Process-Oriented Diagnostics package using sample model data.

For descriptions of the Process-Oriented Diagnostic modules (referred to as PODs hereafter) included in

the package, and sample output, visit the MDTF main page. The package is provided as-is. Questions

about individual PODs should go to the contributing groups.

For developers contributing a POD to the package, see Developers’ Walkthrough.

Summary of steps for running the package:

I. Download (a) code package, (b) pre-digested observational data, and (c) two sets of sample

model data. See section 1.

II. Install (a) NCL and (b) Python with libraries. See section 2.

III. Run the package by executing python mdtf.py namelist in a terminal. See section 3.

Below, sections 1-4 summarize steps for testing the package with provided samples. For advanced users,

sections 5-6 detail how to run the package with your own model data. Section 7 is a very short list for

troubleshooting.

1. Download the package code and sample data for testing

Download the MDTF code package, pre-digested observational data, and two sets of sample model data

from the links in the Downloading and Running section on the MDTF main page. After downloading,

untar the files:

 % tar xf MDTF_$ver.var_code.tar1

 % tar xf MDTF_$ver.obs_data.tar

 % tar xf model.QBOi.EXP1.AMIP.001.tar

 % tar xf model.GFDL.CM4.c96L32.am4g10r8.tar

This creates a directory named mdtf containing sub-directories for the code package and input data.

Execute:

 % ls mdtf

the following directories and files under mdtf will appear:

 MDTF_$ver:

 LICENSE.txt mdtf.py namelist var_code/

 inputdata:

 model/ obs_data/

1 Throughout this document, % indicates the UNIX/LINUX command line prompt and is followed by command to be
executed in a terminal, and $ indicates strings to be substituted, e.g., the string $ver here should be substituted by
the actual version in the tar file name.

http://www.cesm.ucar.edu/working_groups/Atmosphere/mdtf-diagnostics-package/index.html
http://www.cesm.ucar.edu/working_groups/Atmosphere/mdtf-diagnostics-package/index.html
http://www.cesm.ucar.edu/working_groups/Atmosphere/mdtf-diagnostics-package/index.html
http://www.cesm.ucar.edu/working_groups/Atmosphere/mdtf-diagnostics-package/index.html
http://www.cesm.ucar.edu/working_groups/Atmosphere/mdtf-diagnostics-package/Developers_walkthrough_v2.0.pdf
http://www.cesm.ucar.edu/working_groups/Atmosphere/mdtf-diagnostics-package/Developers_walkthrough_v2.0.pdf
http://www.cesm.ucar.edu/working_groups/Atmosphere/mdtf-diagnostics-package/index.html
http://www.cesm.ucar.edu/working_groups/Atmosphere/mdtf-diagnostics-package/index.html

 make_tars.sh

Here, the main script mdtf.py will call POD scripts under var_code following the settings specified in

namelist. The observational data is stored under obs_data. The sample model data, one from a

particular run of the NCAR CESM (CASENAME: QBOi.EXP1.AMIP.001), and another from a GFDL CM4 run

(CASENAME: GFDL.CM4.c96L32.am4g10r8), are under model.

The default test case uses the QBOi.EXP1.AMIP.001 sample. The GFDL.CM4.c96L32.am4g10r8 sample is

only for testing the MJO Propagation and Amplitude POD, see section 3. For instructions on using your

own data set, see section 5.

2. Install the necessary programming languages and modules

The MDTF package is primarily written in Python, with some of its PODs written in NCL. Thus, running

the complete MDTF package requires installing both languages.

1) NCL installation

On a Linux machine, we recommend the users to install NCL (version 6.4.0; tested) by downloading the

precompiled binaries through the link:

https://www.earthsystemgrid.org/dataset/ncl.640.dap/file.html

A newer version 6.5.0 is also available (change 640 in the above link to 650). Choose a download option

according to the Linux distribution and hardware, unzip the file (results in 3 folders: bin, include, lib),

create a folder ncl under the directory /usr/local (requires permission) and move the 3 unzipped folders

into /usr/local/ncl. Then add the following lines to the .bashrc script (under the user’s home directory;

may be different if using shells other than bash, e.g., .cshrc for csh):

export NCARG_ROOT=/usr/local/ncl

export PATH:$NCARG_ROOT/bin:$PATH

2) Python installation

The MDTF package requires Python (currently tested for version 2.7; update to 3 is planned to be done

after this release) and additional modules (e.g., netcdf4, networkx, and numba) that may not be

included in the standard Python installation. We thus recommend that users use Anaconda2 ─ a non-

proprietary Python package manager ─ to manage the Python modules.

The Anaconda 2 installer, version 5.0.1, available at https://repo.continuum.io/archive/, has been tested

for the MDTF package. Since some of the MDTF package plotting scripts are sensitive to the matplotlib

module whose version changes with the installer, we recommend that users use this version. The

installer, by default, will install Anaconda, Python and common modules in the users’ home directory.

Toward the end of the installation process, the installer will add the following line to .bashrc (requires

the users’ consent):

export PATH=”home/user/anaconda2/bin:$PATH”

2 Official website: https://www.anaconda.com. The networkx and numba modules will be included in the default
Anaconda installation.

https://www.earthsystemgrid.org/dataset/ncl.640.dap/file.html
https://www.earthsystemgrid.org/dataset/ncl.640.dap/file.html
https://repo.continuum.io/archive/
https://repo.continuum.io/archive/
https://www.anaconda.com/
https://www.anaconda.com/

Subsequently, the additional Python modules, e.g., netcdf4, required for the MDTF package can be

installed by executing the following line in the terminal:

% conda install netcdf4

3. Execute the MDTF package

Go to the mdtf/MDTF_$ver directory. The main script mdtf.py therein reads all input settings from a text

file namelist given as an argument on the command line:

% cd mdtf/MDTF_$ver

% python mdtf.py namelist3

Running the test case set by the default namelist file will take up to 8GB of RAM and ~30 min. This

default case will execute through all the available PODs except for the Diurnal Cycle of Precipitation POD

(and MJO Propagation and Amplitude POD which uses the GFDL.CM4.c96L32.am4g10r8 sample).

To run the Diurnal Cycle of Precipitation POD (tagged as precip_diurnal_cycle in the code), edit the

namelist by deleting the # sign at start of the line #POD precip_diurnal_cycle, then execute the mdtf.py

script again as instructed above. This will take up to 16GB of RAM and another ~10 min. Conversely, to

skip any PODs from the default, simply comment out the POD lines with a # sign.

To test the MJO Propagation and Amplitude POD, use the other namelist file namelist_mjo_pro by

executing python mdtf.py namelist_mjo_pro. Comparing the two available namelist examples, the latter

one has a different CASE statement CASE GFDL.CM4.c96L32.am4g10r8 AM4 1977 1981 and an

additional POD MJO_prop_amp line with all the other POD lines commented out.

4. View the results

The package writes output into mdtf/MDTF_$vers/wkdir/MDTF_QBOi.EXP1.AMIP.0014. Each POD writes

a webpage (i.e., an html file) to link to the figures and their observational counterparts.

The users can view the results by simply using a web browser (e.g., Firefox/Chrome/Safari) to open

mdtf/MDTF_$vers/wkdir/MDTF_QBOi.EXP1.AMIP.001/index.html, and then clicking through the links.

In case the code package is run on a sever without GUI, the users can copy the tarball of wkdir (.tar;

created by default) to a local machine using the scp command, and view the results through a browser:

% scp mdtf/MDTF_$vers/wkdir/MDTF_QBOi.EXP1.AMIP.001.tar $localmachine:$dir5

login to the local machine

% cd $dir

% tar xf MDTF_QBOi.EXP1.AMIP.001.tar

view MDTF_QBOi.EXP1.AMIP.001/index.html using a browser

The results should match this sample webpage output of the package.

3 Or python mdtf.py namelist >> mdtf.log to capture output in log file mdtf.log.
4 The name of the directory and the tarball file mentioned below change with the CASENAME set in namelist.
5 Here, $localmachine and $dir are to be substituted with the actual local machine address and directory for saving
the tarball.

http://www.cgd.ucar.edu/cms/bundy/Projects/diagnostics/mdtf/mdtf_figures/MDTF_QBOi.EXP1.AMIP.001.save/
http://www.cgd.ucar.edu/cms/bundy/Projects/diagnostics/mdtf/mdtf_figures/MDTF_QBOi.EXP1.AMIP.001.save/

5. Using your own model data

To run the diagnostics on your own model data, the following steps are explained below:

1. Place model data in the expected directory structure with the expected filenames.

2. Create a namelist file for the MDTF package specifying your case name and time bounds.

1) Place model data in the expected directory structure with the expected filenames

One can refer to the sample model data directories and filenames as an example. The model data to be

analyzed should be stored in the directory mdtf/inputdata/model/CASENAME, under which the time-

frequency sub-directories (1hr, 3hr, day, mon) can be found. The files should be in the NetCDF format

with the specific filename structure:

CASENAME.VARNAME.FREQ.nc

where

CASENAME = the name of the model experiment (must match the directory under

mdtf/inputdata/model/)

VARNAME = the variable name as specified in

mdtf/MDTF_$ver/var_code/util/set_variables_$model.py6

FREQ = the time frequency (must match the name of its directory)

For example, using f.e.20 as the casename, with monthly mean data already in $mydir written in CESM

timeseries files:

% cd mdtf/inputdata/model

% mkdir f.e.20

% cd f.e.20

% mkdir 1hr 3hr day mon

% cd mon

% ln -s $mydir/atm/proc/tseries/month_1/f.e.20.cam.h0.PRECT.000101-000512.nc \

f.e.20.PREC.mon.nc

The last line creates a link f.e.20.PREC.mon.nc under mdtf/inputdata/model/f.e.20/mon to an existing

file f.e.20.cam.h0.PRECT.000101-000512.nc.

2) Create a namelist file for the MDTF package specifying your case name and time bounds

The default settings for the code package are given in mdtf/MDTF_$ver/namelist. You can modify this

file directly or copy it to a new file and give that as an argument to mdtf.py.

The case information is specified in namelist by names with CASE at the front of them in the following

format:

CASE CASENAME model FIRSTYR LASTYR

6 Here, $model is to be substituted with the actual name of the model, e.g., CESM or AM4. The script
set_variables_CESM.py specifies variable names following the CESM naming convention. There is also an example
script set_variables_CMIP.py following the CMIP convention.

For example, using our previous case:

% cp namelist namelist_f.e.20

edit CASE line in namelist_f.e.20 to read: CASE f.e.20 CESM 2001 2005

% python mdtf.py namelist_f.e.20

Please note that the code package is currently only capable of running one case at a time. See section 6

for more regarding the namelist files.

6. Modifying package settings

Namelist file usage

All settings should be made in the namelist file given as an argument to mdtf.py. If no argument is given,

mdtf.py will look for a file called namelist, but users can use other filenames for multiple invocations,

e.g.,

% python mdtf.py namelist_f.e.20

Namelist file example

Comment out anything with # at start of line

CASE CASENAME model FIRSTYR LASTYR

CASE QBOi.EXP1.AMIP.001 CESM 1977 1981

Packages are specified with POD tag at the start of the line

POD Wheeler_Kiladis

POD EOF_500hPa

POD precip_diurnal_cycle

POD convective_transition_diag

POD MJO_suite

POD MJO_teleconnection

#POD Something-else-we-don’t-want-to-run-so-we-commented-it-out

List any envvars to be set here with VAR tag at the start of the line

These will override any settings in mdtf.py

VAR make_variab_tar 1

VAR verbose 1 # 0-minimal,1-normal,2-copious,3-debug

#VAR NCARG_ROOT "/glade/u/apps/ch/opt/ncl/6.4.0/intel/17.0.1" #ncar only

VAR CLEAN 0 # don't remove existing files

VAR test_mode False #True = script just reports what it would do, doesn't call actual packages

Namelist file overview

The namelist file has 3 types of entries, tagged by the first word in the line: CASE, POD, or VAR.

1) Namelist file entry: CASE

Lines that start with CASE specify a model experiment. Note that, although the design allows the user to

enter more than one case, the package does no yet run more than one. The format is strict:

CASE CASENAME model FIRSTYR LASTYR

• CASENAME must exactly match the directory in mdtf/inputdata/model

• model = CMIP or CESM (or other model type), determines variable names as set in

mdtf/MDTF_$ver/var_code/util/set_variables_$model.py

• FIRSTYR and LASTYR specify the time period to be analyzed (only used by some PODs)

e.g.,

CASE QBOi.EXP1.AMIP001 CESM 1977 1981

2) Namelist file entry: POD

Lines that start with POD choose Process-Oriented Diagnostic modules to run. They expect the name of

a diagnostic module, which must exactly match the name of the directory in mdtf/MDTF_$ver/var_code.

There can be an unlimited number of modules requested and POD lines can be commented out with #

to quickly disable their execution.

For example:

POD Wheeler_Kiladis

POD EOF_500hPa

POD convective_transition_diag

#POD fortran_example #this will not be run

POD MJO_suite

3) Namelist file entry: VAR

Lines that start with VAR set environment variables used by mdtf.py and any of the packages (see

Developers’ Walkthrough for a complete list of environment variables). They expect 2 arguments with

the format:

VAR var-name var-value

For example:

VAR make_variab_tar 1 # make a tar file of wkdir when complete

VAR verbose 1 # 0-minimal,1-normal,2-copious,3-debug

VAR CLEAN 0 # don’t remove existing files

VAR test_mode True #True = reports what it would do, False = executes packages

VAR NCARG_ROOT "/glade/u/apps/ch/opt/ncl/6.4.0/intel/17.0.1" #ncar only

These are set as shell environment variables in the shell and available for the PODs to use. Note that

namelist var settings override any environ settings in mdtf.py, so the user can add lines to.

Required namelist settings

mdtf.py will fail if the required case variables, and any required environment variables (currently only

NCARG_ROOT, which sets the path for NCL) fail. If NCARG_ROOT is set in the environment [section 2,

1)], it does not need to be set in the namelist.

Namelist archival

A namelist file is written with every execution of mdtf.py in order to assist with reproducibility. This is

archived in mdtf/MDTF_$ver/MDTF_$CASENAME/namelist.YYYYMMDDHHMM.

7. Troubleshooting

http://www.cesm.ucar.edu/working_groups/Atmosphere/mdtf-diagnostics-package/Developers_walkthrough_v2.0.pdf
http://www.cesm.ucar.edu/working_groups/Atmosphere/mdtf-diagnostics-package/Developers_walkthrough_v2.0.pdf

Here we provide a short list of problems the MDTF team had previously encountered.

1) The error message “convert: not authorized …” shows up:

The MDTF package generates figures in the PostScript (PS) format, and then uses the convert command

(from the ImageMagick software suite) to convert the PS files to PNG files. The convert error can occur

after recent updates and can be solved as follows (requires permission):

In the file /etc/ImageMagick/policy.xml,7 change line

<policy domain=”coder” rights=”none” pattern=”PS” />

to

<policy domain=”coder” rights=”read|write” pattern=”PS” />

2) Convective transition diagnostic module is not executed properly, or does not generate figures, or

the figures are not adequately formatted:

The plotting scripts of this POD may not produce the desired figures with the latest version of matplotlib

(because of the default size adjustment settings). The matplotlib version comes with the Anaconda 2

installer, version 5.0.1 has been tested. The readers can switch to this older version. See section 2, 2).

7 The folder name ImageMagick may depend on its version, e.g., ImageMagick-6.

