Mixing for the ocean surface boundary layer and WAVEWATCH III model

B. Reichl

Geophysical Fluid Dynamics Laboratory Review
October 29-31, 2019

Introduction

Focus: Improving representation of air-sea interface physics in GFDL's climate models

- Developed an energetic Planetary Boundary Layer (ePBL)
 ocean surface mixing framework for climate simulation
- Used a process level approach to introduce Langmuir turbulence to ePBL, reducing bias in ocean vertical mixing
- Examining wave coupled models at GFDL and NCEP to enhance NOAA weather and climate simulation capabilities

Upper Ocean Mixing For Climate Models

- Parameterized mixing schemes should be efficient & robust
- ePBL uses 1st order approach trained with 2nd moment & LES results

ePBL: Implicit Numerics

ePBL uses an implicit, non-local energetic mixing constraint Why? Robust to numeric constraints (grid & time step)

1-d Wind-driven Simulations $\tau = 0.25 \text{ N/m}^2$ $f = 2\Omega \sin(60) \text{ s}^{-1}$

 $\Delta Z = 1 \text{ m}, \Delta T = 30 \text{ s}$

 $\Delta Z = 20 \text{ m}, \Delta T = 30 \text{ s}$

 $\Delta Z = 1 \text{ m}, \Delta T = 7200 \text{ s}$

 $\Delta Z = 20 \text{ m}, \Delta T = 7200 \text{ s}$

ePBL: Accurate Physics

- Mixing constraints for ePBL validated from Large Eddy Simulations
- LES also used to add wave effects on mixing (ePBL → ePBL-LT)

Ocean Mixing in GFDL Climate Models

ePBL helps improve simulated ocean mixed layer depth

Ocean Mixing in GFDL Climate Models

ePBL helps improve simulated ocean mixed layer depth

GFDL-NCEP Collaboration & WAVEWATCH III

- Ocean waves are critical component of air-sea physics
- Yet, waves are not explicitly represented routinely in models
- Wave coupled models are critical to understand their impacts in Earth System Models

Summary

Improved representation of upper ocean physics

- ePBL in GFDL "4th generation" models (OM4, CM4, ESM4)
 - Implicit numerics w/ realistic physics
 - Wave-driven mixing for realistic Southern Ocean
- WAVEWATCH III coupling for surface wave simulation

Future Work

- Apply ePBL principles continuously through water column
 - Bottom boundary layers
 - Breaking internal gravity waves
 - Internal tides
- Wave coupling
 - Improve air-sea flux parameterizations (e.g. momentum, gases [CO₂, Reichl and Deike, in revision], heat, mass)
 - Represent wave/cryosphere interactions (sea ice, icebergs)
 - Sea-state dependent sea-salt aerosols
 - Weather vs climate scale: Wave variability and extremes

