MOM6, SIS2 and OM4
(ocean-ice components of CM4)

Presented by
Alistair Adcroft (CIMES)

Contributions from Hallberg, Griffies, Zhang, Dunne, Winton, and the rest of the MOM6 and OWG teams
Modular Ocean Model, version 6 (MOM6)

- MOM6 unified the efforts of MOM4/5 and GOLD
 - Open development philosophy
 - Community model
 - Adopted by NCEP, NCAR, Universities, ...
- Arbitrary Lagrangian Eulerian method in the vertical
 - Used for general & hybrid coordinates
 - Lagrangian-remap method
 - Unconditionally stable and accurate
 - Wetting/drying
 - Reduced spurious heat uptake
- Global ice-shelf/ocean coupling
 - Requires ALE for wetting/drying
- Energetically consistent closures
 - Internal wave driven mixing (CPT)
 - Community software (CVmix)
 - Eddies in eddy-permitting models
 - Second order mesoscale closure
- Boundary layer physics
 - Mixed layers
 - Overflows
- Numerics and formulation
 - Transport schemes, Solvers
 - Dynamically integrated sea-ice
 - Reduced cost of bio-tracers
Sea-Ice Simulator, version 2 (SIS2)

- C-grid for compatibility with ocean
 - Permits single point channels
- Improved thermodynamics and radiative transfer (following CICE / IcePack)
- Can carry tracers
 - Evolving sea-ice salinity, ice age, ...
- Improved conservation
- Improved numerical stability
- Improved coupled stability
MOM6 open development via GitHub

- Developing MOM6 on GitHub has removed barriers to collaboration
- Complete openness has attracted partners
- Continual + independent development
 - No “release delays”
- Numerous activities
 - 89 forks (as of Oct ‘19)
 - 5 major hubs/partners
MOM6 collaborations

GODAS
SST (same scale)

1° MOM3 (circa 1999)

Hybrid-GODAS

GODAS

1/4° MOM6 (OM4 configuration, 2018)

1/12° MOM6 (GFDL)

NOAA-EMC

NCAR

Rutgers
FSU/Navy

ESPC

Courtesy Yan Xue, NCEP-CPC

Courtesy Gustavo Marques, NCAR

Alan Wallcraft, FSU

CCS from Curchitser & Hedstrom, Rutgers/UAF

HYCOM 1/12°

MOM6 1/12°

Geophysical Fluid Dynamics Laboratory Review
October 29-31, 2019
OM4.0: Resolution and DWBC

• Justification for $\frac{1}{2}^\circ$ and $\frac{1}{4}^\circ$ horizontal resolutions

Horizontal speed at 2500m depth [m/s]
OM4.0: Benefits of new algorithms

- Hybrid vertical coordinate significantly reduced spurious heat uptake

Horizontally averaged potential temperature change over 5 cycles of CORE-IAF

OM4 paper (Adcroft et al., 2019)
OM4.0: Role of eddies

- Transition of laminar to eddying motion at mid-latitudes happens between $\frac{1}{2}^\circ$-$\frac{1}{4}^\circ$ resolutions
- Mesoscale eddies partly control ocean heat uptake
 - parameterize at coarse resolution

OM4 paper (Adcroft et al., 2019)
Future directions: OM4.1 & fine resolution

• OM4.1 and fine-resolution
 • Scale aware parameterizations to unify physics of OM4 configurations across resolutions
 • Require finer than 1/8° to permit some ice-shelf cavities
 • Require < 1km resolution near grounding line

• Planning a hierarchy of fine resolutions starting with 1/8°
 • Better resolution of mesoscale at high latitudes
Future directions: MOM6 regional modeling

- Regional climate impacts / Process studies / Hi-res development
- Exploratory development in collaboration with Rutgers group
Summary

• MOM6 has grown up into a community model
 • NCEP, NCAR, Universities, ...

• Open development paradigm has resulted in multiple productive collaborations on both code and science

• Latest generation of ocean configurations (OM4.0):
 • Reduced spurious heat uptake
 • Better representation of mesoscale eddies
 • Reduced biases

• Future directions include
 • Continued improvement of global configurations
 • Fine-resolution global simulation with ice-shelf interactions
 • Regional MOM6 capability and applications