Subseasonal to Seasonal (S2S) Prediction

Presented by Baoqiang Xiang

Geophysical Fluid Dynamics Laboratory Review
October 29-31, 2019

S2S prediction is a frontier but remains challenging

S2S: 10 days to one season

Multiagency and international efforts:

- 1) WWRP/WCRP S2S project
- 2) SubX (Participation in the NOAA/MAPP S2S Task Force)

> Falling into the time range of 'the Weather Act' in 2017 (hours~2 years)

Subseasonal TC prediction

FLOR-DPC

(Double-Plume Convection Scheme)

Two-week TC genesis prediction

30% of TCs can be skillfully predicted with 1-2 week lead time

Initialization: Nudging U,V,T,SLP and SST (11 y)

Jiang et al., J. Clim. 2018; Xiang et al., MWR 2015

Running a model in forecast mode provides important verification of the newly developed convection scheme (DPC)

HiRAM Monthly total hurricane activity

Anomalous Hurricane Activity Prediction

Gao et al., GRL 2019

Seasonal hurricane prediction skill: **r = 0.88** (Chen and Lin 2013)

Week 3-4 prediction of wintertime temperature

The dots denote the region with the correlation skill significant at the 5% significance level

Predictability sources: 1) MJO

3 weeks after MJO phase 3

MJO prediction skill

Predictability sources: 2) Stratospheric impact

One of the most predictable modes for t2m (NAO)

Stratospheric Polar Vortex

Xiang et al., GRL 2019

tratospheric Polar Vorte: from **initial condition**

Future Plans

➤ Goal: Improving our understanding and prediction skill of S2S prediction

MJO simulations in SHiELD and SPEAR

Lag-longitude diagram of intraseasonal precipitation anomalies (10S-10N)

Obs

Nested configuration of SHiELD improves MJO prediction

4km over Maritime Continent

During DYNOMO period (2011-12)

--- Kun Gao's poster

Challenges for S2S prediction

S2S prediction is still at its infancy and developing stage!

- Lack of understanding of predictability sources
- Intrinsic model errors
- Imperfect initial conditions (land, sea ice ...)
- No standard metrics
- High computational costs

• • • • •

Summary

- We have made progress in S2S prediction using the previous generation of GFDL models (FLOR-DPC, HIRAM): TC, MJO, temperature and predictability sources.
- Newly developed S2S prediction system (SHiELD and SPEAR) combines weather and climate perspective.
- Running a model in forecast mode provides important verification of a newly developed scheme, providing feedback to guide model development.