Hydroclimate variability, predictability, and extremes

Sarah Kapnick

Geophysical Fluid Dynamics Laboratory Review
October 29-31, 2019

Stakeholder needs: Understanding Wet Years

Stakeholder needs: Understanding Dry Years

The Seamless Prediction Approach

- 1 Validate the model in control simulations and targeted experiments against observations, identify bias
- 2 Explore variability and trends in historical simulations
- 3 Use the same system to provide seasonal predictions, explore the skill of phenomena with increasing complexity. Expand to multi-annual to decadal
- 4 Extend the transient climate simulations for decadal projections to understand future climate
- 5 Use of seamless system to perform risk assessments

Hydroclimate Validation & Improved Understanding

- Targeted modeling experiments allow us to pinpoint sources of hydroclimate bias
- SST biases:
 - Annual precipitation (Johnson et al., J Clim, 2019)
 - North American monsoon (Pascale et al. J Clim, 2016; Pascale et al. Nature Climate Chg, 2017)

Hydroclimate Validation & Improved Understanding

- Targeted modeling experiments allow us to pinpoint sources of hydroclimate bias
- SST biases:
 - Annual precipitation (Johnson et al., J Clim, 2019)
 - North American monsoon (Pascale et al. J Clim, 2016; Pascale et al. Nature Climate Chg, 2017)
- Role of resolution:
 - Precipitation extremes (van der Wiel et al. J Clim, 2016; Pascale et al., J Clim, 2016)

Prediction Skill: Role of Initial Conditions

Correlation with Observations

Initial conditions upgrades beyond current system improve:

- Winter western US precipitation
- Global temperature, precipitation
- Tropical cyclone frequency
- Dust

Prediction Skill: New Skill Identified

- We are successively looking at more complex prediction problems
 - Start with precipitation & temperature (Jia et al. J Clim, 2015, 2016, 2017;
 Zhang & Delworth, Nature Comm, 2018)
 - Extratropical storm tracks (Yang et al., J Clim, 2015)
 - Snowpack (Kapnick et al., PNAS, 2018)
 - Dustiness (Pu et al, GRL 2019)
- Improvements in prediction systems allow us to push the limit of prediction for phenomena, regional scope, & lead time

Projections: Traditional & New Phenomena

- Heatwaves (Jia et al., J Clim, 2016)
- Droughts / extreme water (Zhang & Delworth, Nature Comm, 2018;
 Zhang & Delworth, J Clim, 2018; Van der Wiel et al., J Clim, 2016, Van der Wiel et al., HESS, 2017; Delworth & Zhang, Nature Geo, 2014)
- Mild Weather (Van der Wiel et al., Climatic Change, 2017)
- Snowfall & high winds (Janoski et al., J Clim, 2019, Hollings Scholar)
- North American Monsoon (Pascale et al., J Clim, 2018)

Risk Assessmant: Utility of Samless System

- Long model simulations (100s or 1,000s of years) provide reductions in uncertainty for risk assessment:
 - Before an event happens: Calculate present or future risks of events for infrastructure / resilience planning
 - After a major event happens: Can isolate causes or risk of a specific event (Van der Wiel et al., HESS, 2017; Murakami et al., GRL, 2019)
- A seamless system allows for extreme risk assessment and validation across timescales to improve verification and understanding

Sources: Van der Wiel et al. J. Hydrometeo, 2018;

Key takeaways

- Stakeholder needs: need to know the past, present and future risks, improve prediction skill & transfer to operations(e.g. via data, understanding, code)
- Research feeds back on model development from prediction to projection: the research fundamentally explains what can be modeled to understand where to best focus efforts
- Novel science: Improve current understanding and develop new research areas
- Models provide a risk assessment testbed: 50+ km resolution for regional problems and develop probabilistic estimates of risk and prediction in a way not possible with observations alone

The new frontier:

- Development of SPEAR to address questions raised by the past prediction (e.g. reduced SST bias, L65 prediction model)
- Targeted experiments to seamlessly explore hydroclimate
- Creative research to explore different kinds of "extremes"
- Expand quantification capabilities of weather & climate risks; expand to applications (e.g. climate finance, infrastructure)