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Sea ice predictions are needed by:
northern communities, shipping
industries, fisheries, ecotourism, oil
and gas industries, scientific
logistics, wildlife management
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Retrospective seasonal forecasts made with GFDL-FLOR spanning 1980-2019
Initialized via Ensemble Kalman Filter Coupled Data Assimilation (ECDA)

September sea ice extent predictions submitted to the “Sea Ice Outlook” since 2014
Sea ice predictions submitted each month to “Extended SIPN” since 2018
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* Subsurface ocean temperature initialization
provides key source of winter prediction skill
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Observing System Experiments
(OSEs) to quantify value of
different classes of oceanic and
atmospheric observations
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CTD data provides
improvements in
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climatology
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SST data provides the
key source of S
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Argo and XBT data
provides improved
trends
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Laptev Sea
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r(Observed East Siberian Sea SIE ,
target month
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Laptev and East
Siberian Seas have
spring prediction

skill barrier:
Predictions
initialized May 1 and
later are skillful;
those initialized prior
to May 1 are not

Sea ice thickness
initialization
provides key source
of summer
prediction skill



Perfect Model Skill (ACCU)
Pan Arctic GIN Seas Barents Sea Laptev Sea East Siberian Sea

" Suite of perfect model
- experiments run with
GFDL-FLOR provide
direct comparison with
initialized predictions
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* Large skill gap between
perfect model and
initialized prediction skill
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A springtime predictability
barrier for regional seaice is a
robust feature across CMIP5
GCMs

There is a distinct diagonal
feature — where correlation
values drop off significantly
after the month of May or June

Satellite thickness data is only
currently available until Mid-
April. Need to extend thickness
observations to June 1 to
maximize benefit for seasonal
predictions.
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e Prediction skill attributable to sea ice thickness initial
conditions; may also benefit from atmospheric initialization
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GFDL-FLOR seasonal predictions skillfully predict pan-Arctic and A
regional sea-ice extent at lead times of 0-11 months depending on : A
region and target month '
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Perfect model experiments suggest substantial skill improvements are
possible in most regions

Subsurface ocean heat content key source of skill for winter sea ice
predictions. Assimilation of surface and subsurface ocean observations
improves seasonal prediction skill.
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Sea ice thickness key source of skill for summer sea ice. Spring
predictability barrier for regional summer predictions.
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Current work on sea ice data assimilation techniques, impact of sea ice
model physics on predictability, and mechanisms of predictability



