# Arctic Sea Ice Prediction and Predictability

Presented by: Mitch Bushuk

Geophysical Fluid Dynamics Laboratory Review October 29-31, 2019



### **Need for Seasonal Sea Ice Predictions in a Changing Arctic**





Melia et al. 2016, GRL

 Sea ice predictions are needed by: northern communities, shipping industries, fisheries, ecotourism, oil and gas industries, scientific logistics, wildlife management

Geophysical Fluid Dynamics Laboratory Review October 29-31, 2019

Extent (millions of square kilometers)



## **Skillful Seasonal Predictions of Arctic Sea Ice**

#### September Predictions; Lead 2 months

#### All target months, leads 0-11 months



- Retrospective seasonal forecasts made with GFDL-FLOR spanning 1980-2019
- Initialized via Ensemble Kalman Filter Coupled Data Assimilation (ECDA)
- September sea ice extent predictions submitted to the "Sea Ice Outlook" since 2014
- Sea ice predictions submitted each month to "Extended SIPN" since 2018



## **Regional Prediction Skill For Winter Sea Ice**



 Subsurface ocean temperature initialization provides key source of winter prediction skill

r(Observed Barents SIE<sub>Jan</sub>, Ocean Temperature IC<sub>Jan - lead</sub>)



Geophysical Fluid Dynamics Laboratory Review October 29-31, 2019

#### Bushuk et al. 2017, GRL



### **Importance of Ocean Observations**

#### **Observing System Experiments**

**(OSEs)** to quantify value of different classes of oceanic and atmospheric observations



### Total NRMSE

CTD data provides improvements in climatology

#### **Detrended ACC**

SST data provides the key source of interannual variability

### <u>Total ACC</u>

SST Only

Argo and XBT data provides improved trends



0 1 2 3 4 5 6 7 8 9 1011

Lead (months)

— Obs

- Control -

- No CTD —— No Subsurface

Bushuk et al. 2019, J. Climate

Uninit.

- Atm. Only -



Geophysical Fluid Dynamics Laboratory Review October 29-31, 2019

### **Regional Prediction Skill For Summer Sea Ice**



- Laptev and East
  Siberian Seas have
  spring prediction
  skill barrier:
  Predictions
  initialized May 1 and
  later are skillful;
  those initialized prior
  to May 1 are not
- Sea ice thickness initialization provides key source of summer prediction skill

Geophysical Fluid Dynamics Laboratory Review October 29-31, 2019



#### The Sea-Ice Prediction Gap: Comparison of Perfect Model and Real-time Prediction Skill



- Suite of perfect model experiments run with GFDL-FLOR provide direct comparison with initialized predictions
- Large skill gap between perfect model and initialized prediction skill
- Similar regional skill structure. Skill gaps related to errors in initial conditions and model biases

Geophysical Fluid Dynamics Laboratory Review October 29-31, 2019



### A Spring Predictability Barrier for Regional Arctic Sea Ice



- A springtime predictability barrier for regional sea ice is a robust feature across CMIP5 GCMs
- There is a distinct diagonal feature — where correlation values drop off significantly after the month of May or June
- Satellite thickness data is only currently available until Mid-April. Need to extend thickness observations to June 1 to maximize benefit for seasonal predictions.

Geophysical Fluid Dynamics Laboratory Review October 29-31, 2019



## **Preliminary results from SPEAR reforecasts**



- Sea ice initial conditions from new SPEAR initialization system
- Prediction skill attributable to sea ice thickness initial conditions; may also benefit from atmospheric initialization



0.6

0.4

0.2

0

0

2

1

## Summary

- GFDL-FLOR seasonal predictions skillfully predict pan-Arctic and regional sea-ice extent at lead times of 0-11 months depending on region and target month
- Perfect model experiments suggest substantial skill improvements are possible in most regions
- Subsurface ocean heat content key source of skill for winter sea ice predictions. Assimilation of surface and subsurface ocean observations improves seasonal prediction skill.
- Sea ice thickness key source of skill for summer sea ice. Spring predictability barrier for regional summer predictions.
- Current work on sea ice data assimilation techniques, impact of sea ice model physics on predictability, and mechanisms of predictability



