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 26 
A. Process Used to Develop the Assessment. 27 

The process used to develop the assessment was as follows.  A seven-member assessment task 28 
team was selected by the WMO’s Working Group on Tropical Meteorology Research within the 29 
World Weather Research Program.  In addition, four authors (Chan, Emanuel, Kossin, and Sugi) 30 
from the previous assessment (Knutson et al. 2010) agreed to participate as additional authors on 31 
the new assessment.  The full author team developed the assessment and deliberated on its 32 
content via email, with no in-person meetings.  Because unanimous agreement could not be 33 
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reached on some important issues, the opinions (confidence levels) of each individual author 34 
were elicited for a specific set of agreed-upon statements, as in Part I (Knutson et al. 2019).  The 35 
distribution of author opinion from this elicitation is summarized in the main text, and detailed in 36 
Supplemental Material Table 5.  Author elicitation responses were not anonymous and were 37 
distributed among all authors once available. Authors were permitted to alter their own 38 
elicitation table responses at any time up until final acceptance of the manuscript.   39 

 40 

B. Previous Assessment Summary of TCs and Climate Change: 41 

Previous global assessments of this topic include Knutson et al (2010), which was a WMO task 42 
team report, and the IPCC AR5 assessment (Christensen et al. 2013).   Some key aspects of the 43 
IPCC AR5 assessment on TC activity are reproduced here for reference and comparison to the 44 
current assessment. 45 

For TC projections, Christensen et al. (2013) concluded:  “Based on process understanding and 46 
agreement in 21st century projections, it is likely that the global frequency of occurrence of TCs 47 
will either decrease or remain essentially unchanged, concurrent with a likely increase in both 48 
global mean TC maximum wind speed and precipitation rates. The future influence of climate 49 
change on TCs is likely to vary by region, but the specific characteristics of the changes are not 50 
yet well quantified and there is low confidence in region-specific projections of frequency and 51 
intensity. However, better process understanding and model agreement in specific regions 52 
provide medium confidence that precipitation will be more extreme near the centres of TCs 53 
making landfall in North and Central America; East Africa; West, East, South and Southeast 54 
Asia as well as in Australia and many Pacific islands. Improvements in model resolution and 55 
downscaling techniques increase confidence in projections of intense storms, and the frequency 56 
of the most intense storms will more likely than not increase substantially in some basins.” 57 

 58 

C. Evaluation of Future Projections of TC-Relevant Environmental Parameters 59 
 60 

The reliability of future projections of the large-scale environment that affect TCs is a broad 61 
problem of climate science.  Since IPCC AR5 presented assessments of confidence in model 62 
projections for a number of key environmental variables of relevance to TC activity and its 63 
impacts (IPCC 2013; Collins et al. 2013), the reader is referred to that report for more detailed 64 
assessment of these, since the focus of our assessment is more narrowly on TC projections, 65 
rather than the related environmental parameters.  In this supplemental material, we provide a 66 
summary for some of the more relevant TC-related environmental variables. 67 
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The most confident projection and detection/attribution statements in IPCC AR5 were generally 68 
for temperature and closely related variables, such as atmospheric moisture content and sea level 69 
rise.  For example, Collins et al. conclude that global mean temperatures will continue to rise 70 
over the 21st century for high (unabated) emission scenarios, with a likely warming range of 71 
2.6°C to 4.8°C for the RCP8.5 scenario. They do not make as confident a projection statement 72 
about spatial details of surface warming, such as the relative SST warming of different tropical 73 
basins.  They note that a consistent enhanced equatorial Pacific warming pattern (distinct from El 74 
Nino-like warming) is seen in model projections, although estimates of even observed (twentieth 75 
century) trends in equatorial Pacific mean SST and the Walker Circulation remain uncertain 76 
(e.g., Vecchi et al., 2006; Deser et al. 2010; Solomon and Newman 2012).  IPCC (2013) 77 
concludes that there is only low confidence in any specific projected change in El Niño/Southern 78 
Oscillation.  An enhanced warming of the upper tropical troposphere relative to the surface is 79 
likely but with medium confidence according to Collins et al. – which is a climate change detail 80 
that appears very relevant for TC intensity change in a warming climate (e.g., Tuleya et al. 81 
2016).   82 

IPCC assessments have been very confident about future increases in water vapor in a warmer 83 
climate.  For example, in IPCC AR4, Randall et al. (2007) state that “In the planetary boundary 84 
layer, humidity is controlled by strong coupling with the surface, and a broad-scale quasi-85 
unchanged [relative humidity] response [to climate warming] is uncontroversial.”  A quasi-86 
unchanged relative humidity response implies higher water vapor content as the air temperature 87 
increases.  Related to this highly confident increase in moisture, IPCC AR5 projects that “over 88 
wet tropical regions, extreme precipitation events will very likely be more intense and more 89 
frequent in a warmer world” (Collins et al. 2013).   Concerning sea level rise, according to IPCC 90 
AR5, global mean sea level rise will continue through the 21st century, and it is very likely that 91 
the rate of sea level rise will exceed the rate observed during 1971–2010 (IPCC 2013), although 92 
the amount of rise expected at various locations remains uncertain (IPCC 2013; Garner et al. 93 
2017). 94 

Atmospheric circulation change projections are generally even less confident than the 95 
temperature projections.  For example, Collins et al. (2013) conclude: “In the tropics, the Hadley 96 
and Walker Circulations are likely to slow down. Poleward shifts in the mid-latitude jets of about 97 
1to 2 degrees latitude are likely at the end of the 21st century under RCP8.5 in both hemispheres 98 
(medium confidence), with weaker shifts in the NH. In austral summer, the additional influence 99 
of stratospheric ozone recovery in the Southern Hemisphere opposes changes due to GHGs there, 100 
though the net response varies strongly across models and scenarios ... The Hadley Cell is likely 101 
to widen, which translates to broader tropical regions…”  IPCC AR5 did not provide confidence 102 
statements on whether certain regional changes in circulation would occur, such as changes in 103 
steering flows or vertical wind shear that could alter TC tracks, genesis, or intensity.   104 

In summary, the large-scale TC-relevant environmental changes where IPCC AR5 has most 105 
confidence in future projections include surface temperatures (warming), atmospheric 106 
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temperatures (warming), atmospheric moisture content (increasing), and sea level rise 107 
(increasing).  Projections of changes in tropical and subtropical circulation features and regional 108 
patterns of SST change are in general less confident.  These findings have important implications 109 
for confidence in TC projections.  110 

 111 

 112 

D. Recommended metrics for future studies. 113 

As a step toward future progress in this topic area, we recommend that more standardized TC 114 
spatial occurrence metrics be used in future studies to facilitate comparison between studies and 115 
to facilitate constructing multi-model and/or multi-study ensemble findings.   116 

Basic information:   Model name/source, model resolution, forcing scenario, years of 117 
integrations, description of ocean coupling used.  Cite methodology used for TC detection. 118 

TC metrics:  provide a number or value in control run or present-day simulation, percent change 119 
in climate change experiment (except as noted below); report these for globe, NH, SH, and each 120 
of  the 6 following basins: 121 

Basin definitions: 122 

    North Atlantic:  ~265°E–360°E, eq–90°N*   123 

    NE Pacific:        180°E–~265°E, eq–90°N* 124 

    NW Pacific:       100°E–180°E, eq–90°N 125 

    North Indian:      30°E–100°E, eq–90°N 126 

    South Indian:      20°E–135°E, 90°S–eq 127 

    SW Pacific:       135°E–295°E, 90°S–eq 128 

    South Atlantic:  South America to Africa, 90°S-eq. 129 

 130 

 131 

* Note: the N. Atlantic/NE Pacific boundary is on a diagonal tracing a path through Mexico and 132 
Central America. 133 

 134 
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List of recommended metrics:  135 

 136 

1. Frequency (Cat 0-5 combined) 137 

2. Intense TC frequency (Cat 4-5 combined) 138 

3. Lifetime maximum TC intensity (10-m near-surface windspeed) 139 

4. Lifetime maximum TC intensity (percent change in pressure fall, which is the difference 140 
between central pressure and an environmental pressure; note that method used for estimating 141 
the environmental pressure should be consistent for the present-day and warm climate storms) 142 

5. Proportion of all TCs (Cat 0–5) that are very intense (Cat 4–5) 143 

6. Accumulated Cyclone Energy (ACE) 144 

7. Power Dissipation Index (PDI) 145 

8. TC Precipitation Rate (averaged within 100, 300, and 500 km of storm center) 146 

9. TC Size (radius of hurricane force wind; radius of 12 m/s wind) 147 

10. TC propagation speed (while storm is classified as a TC) 148 

11. TC duration (time classified as a TC) 149 

12.  Surge damage potential (Powell and Reinhold, BAMS, 2007) 150 

13.  Latitude of maximum intensity (in degrees latitude, not percent change) 151 

 152 

Further recommendations: 153 

We have noted in this assessment the difficulties in obtaining a clear consensus in projected TC 154 
track and occurrence, and the sensitivity of such projections for future patterns of SST change.  155 
To help address this issue encourage coordinated AGCM experiments using the same SST and 156 
climate forcing change across models (e.g., CMIP5 ensemble mean) and coupled GCM 157 
experiments nudged to the same future SST change.  This will facilitate quantification of at least 158 
the component of uncertainty in TC projections associated with the simulated TC response to a 159 
common SST change pattern. 160 

 161 

 162 
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E. Supplemental Projections Tables 163 

Detailed information on TC projections, as summarized in this report, is presented in 164 
Supplemental Tables 1–4 (see attached tables), where projections are provided for different 165 
cyclone domains, including the globe (all basins), by hemisphere, and for six individual TC 166 
basins.  In the tables, decreases are depicted by blue text, increases by red text, and bold numbers 167 
denote statistically significant results as reported by the original authors.  In some cases, highly 168 
idealized experiments are included in the table, such as 2xCO2 change only (with no change in 169 
SST) or uniform +2K increase in SST only, with no change in CO2 content.  These are flagged 170 
by using green text, indicating that they will not be included in the summary figures alongside 171 
more realistic projection types.   172 

To create our summary projection figures (Figs. 1–4), we use published results from a substantial 173 
number of available modeling studies to inform our estimates.  The separate studies and 174 
projection details are provided in Tables 1–4 and accompanying supplemental references.  The 175 
“raw projections” from individual studies shown in Tables 1–4 provide a traceable account of 176 
published results we used to develop our projection summaries and assessment statements, 177 
although we needed to use judgement and some subjectivity in combining information from the 178 
multiple available studies into summary ranges or other summary information for various TC 179 
metrics, as discussed in the main text.   180 

 181 

Table 1 for TC (Cat 0–5) frequency of occurrence shows that, at the global scale, the vast 182 
majority of separate projection estimates from the various studies are blue, showing the dominant 183 
tendency for current models to project a decrease in overall TC frequency as the climate warms.  184 
Twenty two out of 27 studies report that global TC frequency decreases in greenhouse warming 185 
scenarios, while five studies project an increase or mixed changes in global TC frequency.  186 
Among these five studies, one study (Emanuel 2013) finds an increase in global TC frequency 187 
using a statistical downscaling framework—in one of five CMIP3 models (A1B scenario) and in 188 
all six CMIP5 models (RCP8.5 scenario).   Some other studies that examined CMIP5 model 189 
results find mixed changes in global TC frequency.  Camargo et al. (2013) finds increased global 190 
frequency in 6 of 12 CMIP5 models (RCP4.5 and RCP8.5 scenario), while Murakami et al. 191 
(2014) finds increased global frequency upon downscaling 3 of 11 climate models (RCP8.5 192 
scenario), but in none of 11 CMIP5 models (RCP4.5 scenario).  Tory et al. (2013) also examined 193 
CMIP5 model results with an alternative detection scheme and finds a decrease in global TC 194 
frequency in all eight CMIP5 models (RCP8.5 scenario).   It should be noted that different 195 
studies find different (opposite sign) TC frequency changes for the same CMIP5 model in some 196 
cases (e.g., for CCSM4, 8% decrease in Tory et al. 2013 but 8% increase in Murakami et al. 197 
2014; and for MPI-ESM-LR, 15% increase in Camargo et al. 2013, but 15% decrease in 198 
Murakami et al. 2014).  This indicates that there are uncertainties in TC detection algorithms, 199 
particularly for tropical storm strength storms and for low resolution models.  Therefore, 200 
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projection results for tropical storms from such models have some degree of uncertainty.    201 
Another model resolution-related issue was found in Wehner et al. (2015) who simulated 202 
increased TC global frequency but only after degrading their global model resolution from 25 km 203 
grid (which has decreased global frequency) to a 100 km grid version.  On the other hand, a 204 
recent study by Bhatia et al. (2018) projects an increase in global TC frequency using a global 205 
coupled model with a 25 km grid atmosphere (RCP4.5 scenario),  in contrast to a decrease in 206 
global TC frequency projected by all other high resolution dynamical models that we are 207 
currently aware of. 208 

Table 2 presents projections of the frequency of intense (Category 4–5) TCs.  Owing to concern 209 
about model resolution and intensity, the entries in Table 2 are generally organized with higher 210 
resolution models located toward the top of the table and lower resolution models toward the 211 
bottom.  In some cases, results from dynamical models have been statistically downscaled in an 212 
effort to achieve a more realistic distribution of TC intensities.  Table 2 shows that, in contrast to 213 
overall TC frequency (Table 1), for the intense TCs an increased frequency at the global scale is 214 
projected, at least for the case of higher resolution models.  Specifically, an increase in the global 215 
frequency of higher intensity TCs under climate warming was reported in eight of nine 216 
dynamical modeling studies using models with grid spacing of 28 km or finer and also for 217 
Emanuel’s (2013) empirical/statistical downscaling study.  For these relatively higher resolution 218 
models, the category 4+ range is often being explicitly modeled, at least in terms of maximum 219 
near-surface windspeeds of the modeled storms. In contrast, future intense TC frequency 220 
projections are much more mixed for lower resolution models, as shown by the results from the 221 
models with relatively coarser resolution (e.g., grid spacing of 50 km and larger) in Table 2. 222 

Table 3 presents the TC intensity projections from published studies.  In the table, the higher 223 
resolution model results are grouped toward the top of the table and the lower resolution model 224 
results, in which we have relatively less confidence, are grouped toward the bottom.  The 15 225 
global estimates included in Fig. 3a are all positive, with a mean increase of about 5% and a 226 
range of +1% to +10%.  According to the modeled intensity projections details in Supplemental 227 
Table 3, average intensity at the global scale is projected to increase in eight of eight studies that 228 
using dynamics models with grid spacing of 60 km or finer, and an also in Emanuel et al. (2008) 229 
study with a statistical-dynamical framework.  Thus, at least the relatively higher resolution 230 
models agree on an increase in global averaged TC intensity, in contrast to their general 231 
agreement on a decrease in global frequency as discussed earlier (Fig. 1).  A few much coarser 232 
grid dynamical modeling studies (grid spacing of over 100 km) that project on change in TC 233 
intensity with climate warming are included in Supplemental Table 3, but these are not included 234 
in the summary Fig. 3.   235 

Table 4 shows that the projected TC rainfall rate for all TC basins combined increases with 236 
climate warming in all 16 of 16 available model estimates (summarized from eight studies in 237 
which quantitative projections of a rainfall rate metric were reported).  As shown in 238 
Supplemental Table 4, projections of this metric are positive even in most individual basin 239 
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assessments, with only a few exceptions for some individual basin cases.  The negative changes 240 
occasionally projected for individual basins have been interpreted as related to a model 241 
simulation having lower SST warming rates within that basin compared to the warming in other 242 
parts of the tropics (e.g., Knutson et al. 2015).  The median of the 16 quantitative estimates is 243 
14% for a 2oC global warming.   244 

 245 

F. Summary of projected TC track and occurrence map changes 246 

Here we present a narrative summary of projected TC  track and occurrence changes from a 247 
number of publications.  Owing to the difficulty in quantitatively combining results from 248 
different studies into a common distribution, here the changes are summarized in a narrative 249 
form.  These summaries are organized roughly into several broad categories representing broadly 250 
similar change features seen across multiple studies.     251 

 252 

A feature seen in a number of projection studies is a shift in TC activity in the northwest Pacific 253 
basin from the South China Sea region to the East China Sea region.  For example, this is 254 
projected under future climate change forcing experiments by selected subsets of CMIP3 and 255 
CMIP5 models (Wang et al. 2011; Wang and Wu 2015; Kossin et al. 2016).  There is, however, 256 
a considerable range of results across different projection studies for such a change, with results 257 
being sensitive to the particular set of climate models used for these projections.    Among other 258 
TC-climate studies projecting an eastward shift in TC tracks in the western North Pacific are the 259 
following:  Yokoi and Takayabu (2009) report an eastward shift in TC genesis locations as 260 
projected by CMIP5 models under the IPCC A1B scenario.  Murakami et al.  (2011) project an 261 
eastward shift in western North Pacific TC tracks using a 20-km mesh AGCM.  Both of the 262 
above studies infer that the projected eastward shift is related to a projected eastward shift in the 263 
monsoon trough due to the dynamical atmospheric response to an SST warming pattern that is 264 
greater in the eastern Pacific than in  the western Pacific (i.e., an El Niño-like change pattern). 265 
Yokoi et al. (2012) report that an eastward shift in TC tracks in the basin is projected by the 266 
CMIP5 models.  Using a regional model downscaling technique, Lok and Chan (2017) project a 267 
poleward shift of TC activity in the western North Pacific, leading to fewer landfalling TCs in 268 
South China, but higher projected intensities for the TCs making landfall there. 269 

 270 

Another common feature in several published TC track/occurrence projections is an increase in 271 
TC activity in the central Pacific and near Hawaii.  Murakami et al. (2013a) project a significant 272 
increase in TC tracks near Hawaii using 20-km-mesh high-resolution AGCM. Yoshida et al. 273 
(2017) also project a poleward expansion of TC activity in the NE Pacific including near Hawaii 274 
along with some poleward expansion in the far eastern North Atlantic; decreased occurrence is 275 
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projected elsewhere.   They project no significant regions of expansion and decreased occurrence 276 
in the NE Pacific. Li et al. (2010) analyzed the GFDL HiRAM2.1 and ECHAM5 T319 models 277 
(IPCC AR4, A1B scenario) and found that both models projected increased TC genesis 278 
frequency in the north central Pacific but decreased TC genesis frequency elsewhere in the North 279 
Pacific.  Zhang et al. (2017), analyzing projections for the North Pacific based on the Emanuel 280 
(2013) framework, project increased TC occurrence over most of the North Pacific, but 281 
especially in the central North Pacific.  Other studies projecting  increased TC frequency in the 282 
central North Pacific include Knutson et al. (2015),  Murakami et al. (2017a), and  Bhatia et al. 283 
(2018).   284 

A number of other features are seen in published TC track/occurrence projections.  Roberts et al. 285 
(2015) project a poleward expansion in the NE Pacific and in the eastern part of the NW Pacific 286 
basin, along with a slight increase in the N. Indian Ocean, and decreases elsewhere.  Kim et al 287 
(2014) find in a 2xCO2 experiment decreased occurrence in most regions, but with slight 288 
increases near Hawaii and in the eastern SW Pacific.  Manganello (2014) focused on the NW 289 
Pacific only, and project a poleward expansion of TC occurrence (A1B scenario time slice) using 290 
a 16 km-grid global model time slice experiment, but did not simulate such a change using a 125 291 
km grid version of the model.  Sugi et al. (2016) project essentially no significant expansion of 292 
overall tropical storm occurrence.   Wehner et al. (2015) project a poleward expansion of TC 293 
occurrence in their 2xCO2 & +2K uniform SST warming timeslice experiments using a ~25 km 294 
grid global model.  Park et al. (2017) project a decrease in TC occurrence over the North Atlantic 295 
(Gulf of Mexico) but an increase over the northwest Pacific (particularly near Korea and Japan).  296 
Yamada et al. (2017), using a 14 km grid global nonhydrostatic model, project decreased TC 297 
occurrence in the eastern North Pacific, but generally only small (nonsignificant) changes 298 
elsewhere in the tropics. Two TC projection studies showing an eastward shift in TC tracks in 299 
the North Atlantic include Murakami and Wang (2010) and Colbert et al. (2013). 300 

Regarding behavior of very intense TCs, four studies provide global maps of projected changes 301 
in geographical distribution of very intense (Category 4-5 or Category 5) TC occurrence that 302 
have some broadly similar characteristics over several basins (Murakami et al. 2012b, Fig. 12; 303 
Knutson et al. 2015, Fig. 9; Sugi et al. 2016, Fig.3; and Yoshida et al. 2017, Fig. 2f).  According 304 
to each of these studies, the occurrence frequency of Cat 4-5 TCs will increase in northern part of 305 
the tropical North Pacific TC basins but decrease in the southwestern part of the Northwest 306 
Pacific, in the South Pacific and in the South Indian Ocean near Australia.  On the other hand, 307 
Bhatia et al. (2018) project that the occurrence of Category 3-5 TCs will increase in most TC 308 
regions, although areas with the most pronounced statistical significance include the Atlantic, 309 
western North Pacific, central and eastern North Pacific, and the southwest Pacific, including 310 
near northeast Australia.  Also, Ogata et al. (2016) commented that the increase in Cat4-5 311 
occurrence frequency in the northern part of the western North Pacific  reported by Sugi et al. 312 
(2016) could be overestimated due to lack in air-sea interaction in their model simulations. 313 

 314 
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G.   Author Responses to Elicitation on Confidence Levels 315 

 (See Supplemental Table 5 in separate file) 316 

 317 
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