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Research Highlights from the Geophysical Fluid Dynamics Laboratory Community
  GFDL BULLETIN
Advancing the Modeling, Understanding, and Prediction of Weather and Climate

Prediction of Hydrological Extremes Using SPEAR

¹NOAA/GFDL, Princeton, NJ; ²Princeton University, AOS Program, Princeton, NJ; 3University Corporation for Atmospheric Research, Boulder, CO; 4SAIC, Reston, VA;
5Citadel Americas, LLC, Chicago, IL; 6Meterorological Research Institute, Tsukuba, Japan

The left panel shows that forecasts initialized in April have strong prediction skill for January-March atmospheric river (AR) activity 
on the West Coast of the US, and the right panel shows how skill varies with lead time for California. Both white dots and white triangles 
indicate SPEAR outperforms the persistence forecast.

��������������������
��������������������������������
��������
	��
�

���


���


���



	��� 
���� 
��� 
	��� ���� ���� ����
����

� ��
 ��	 ��� ��� ��� ��� ���

����
�������
���������������

����������

��� ��� ��� ���
��� ­��
��� ���
­�� ­��
��� ���
­�� ���
��� ���
��� ���
��� ���
��� 
��
��� ���

�� ���
��� ���
��� ­��
��� ���
­�� ­��
��� ���
­�� ���
��� ���

��
��
��
��
��
��
�

������
�������������

	��


See GFDL's full bibliography at: https://www.gfdl.noaa.gov/bibliography 
The bibliography contains professional papers by GFDL scientists and collaborators from 1965 to present day.  

You can search by text found in the document title or abstract, or browse by author, publication, or year.

��������������������
��������������������������������
��������
	��
�

���


���


���



	��� 
���� 
��� 
	��� ���� ���� ����
����

� ��
 ��	 ��� ��� ��� ��� ���

����
�������
���������������

����������

��� ��� ��� ���
��� ­��
��� ���
­�� ­��
��� ���
­�� ���
��� ���
��� ���
��� ���
��� 
��
��� ���

�� ���
��� ���
��� ­��
��� ���
­�� ­��
��� ���
­�� ���
��� ���

��
��
��
��
��
��
�

������
�������������

	��


DOI: 10.1029/2021GL094000

In Western North America, 30% of the annual precipitation is determined by atmospheric rivers (ARs) that occur during less than 15% of the 
winter season. ARs are beneficial to water supply but can also produce extreme precipitation hazards when making landfall. Consequently,  
ARs exert significant socioeconomic impacts on this region. 

This research uses GFDL’s new SPEAR seasonal-to-decadal forecast system to produce multi-seasonal AR frequency forecasts with predictive 
skill at least 9 months in advance. Most research has focused on the sub-seasonal prediction (5 weeks or less) of ARs and only limited efforts 
have been made for AR forecasts on multi-seasonal timescales, which are crucial for water resource management and disaster preparedness. 
Additional analysis explores the dominant predictability sources and challenges for multi-seasonal AR prediction. Regional dependence of atmos- 
pheric river prediction can be explained by its connection to the leading pattern of large-scale atmospheric variability over the North Pacific.
A prototype seasonal atmospheric river probabilistic forecast product derived from SPEAR output shows the potential of enhancing NOAA’s 
existing seasonal hydroclimate outlooks. The successful prediction of hydrological extremes brought on by atmospheric rivers provides 
timely benefits to sectors including agriculture, energy production and water resource management. 

OAR Goals: Make Forecasts Better

ARE MULTI-SEASONAL FORECASTS OF ATMOSPHERIC RIVERS POSSIBLE?
Geophysical Research Letters K-C. Tseng1,2, N. Johnson1, S. Kapnick1, T. Delworth1, F. Lu1,2, W. Cooke1, A. Wittenberg1,  
A. Rosati1,3, L. Zhang1,3, C. McHugh1,4,  X. Yang1, M. Harrison1, F. Zeng1, G. Zhang1,2,5, H. Murakami1,3,6, M. Bushuk1,3, L. Jia1,3

https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2021GL094000
https://gfdll.noaa.gov/bibliography


Bulletin of the American Meteorological Society B. Xiang1,2, L. Harris1, T. Delworth1, B. Wang3, G. Chen4, J-H. Chen1,2, S. Clark1,5,  
W. Cooke1,2, K. Gao1,2, J. Huff 1,2, L. Jia1,2, N. Johnson1, S. Kapnick1, F. Lu1,6, C. McHugh1,7, Y. Sun1,6, M. Tong1, X. Yang1, F. Zeng1, M. Zhao1, L. Zhou1,6, X. Zhou2,8

DOI: 10.1175/BAMS-D-21-0124.1

 Prediction on weather and seasonal timescales has become routine, but the “subseasonal” timescale of a few weeks has proven difficult.  
The Madden-Julian oscillation (MJO), a large complex of tropical thunderstorms, is the dominant subseasonal phenomenon over the tropics, 
and its prediction is critical for subseasonal prediction of tropical cyclones, atmospheric rivers, and other extreme events.
GFDL has developed a new subseasonal prediction system using the GFDL Seamless System for Prediction and Earth-system Research 
(SPEAR), a global atmosphere-ocean-land-sea ice coupled climate model. In 20 years of wintertime forecasts, this study found that the 
average prediction skill of the MJO was 30 days, placing it among the very best MJO prediction models in the world.
MJO events vary from event to event in their strength, life cycle, and propagation. The study showed that 4 distinct patterns of the MJO each 
have their own predictability. For the “fast-propagating” form, SPEAR is able to predict the MJO to 38 days. In contrast, the “standing” pattern is 
much more challenging, with predictability dropping to 23 days. SPEAR also accurately predicts the formation of new MJOs and the worldwide 
influence of each particular pattern on surface temperatures, crucial in using the MJO to predict extreme events. Forecasters can gain a better 
understanding of the MJO’s impacts by considering the MJO pattern, and potentially take advantage of certain patterns to issue extended range 
forecasts, in addition to the traditional indices.
The SPEAR seasonal prediction system is participating in the North American Multi-Model Ensemble. SPEAR, developed within the Flexible 
Modeling System, shares two key model components with the Unified Forecast System (UFS) model: the FV3 dynamical core and MOM6  
ocean model. Knowledge derived from SPEAR and its predictions can be used to assist in the development and application of the UFS 
subseasonal forecast system.
OAR Goals: Make Forecasts Better
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SPEAR's Skill with Subseasonal Prediction of MJO

¹NOAA/GFDL, Princeton, NJ; 2 University Corporation for Atmospheric Research, Boulder, CO; 3 International Pacific Research Center, University of Hawaii, HI; 
4 Earth System Modeling Center, Key Laboratory of Meteorological Disaster of Ministry of Education, Collaborative Innovation Center on Forecast and Evaluation of Meteorological     
  Disasters, Nanjing University of Information Science and Technology, Nanjing, China; 5 Vulcan Inc., Seattle, WA;  
6Princeton University, AOS Program, Princeton, NJ ; 7SAIC, Reston, VA; 8 Environmental Modeling Center, NOAA/NWS/NCEP

S2S PREDICTION IN GFDL SPEAR: MJO DIVERSITY AND TELECONNECTIONS

a) The correlation skill for four types of MJO as a function of forecast lead days. Dashed line (at 0.5) denotes useful forecast skill. b) Observational 
2-meter temperature (shading; oC) and 500 hPa geopotential height (contours; m²/s²) anomalies associated with the standing MJO averaged over the 
time period of 11-20 days after the peak convective phase over the equatorial Indian Ocean. The black stippling denotes the regions with significant 
2-meter temperature anomalies. c) Same as b) above, but for the fast-propagating MJO.
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SIMULATED GLOBAL COASTAL ECOSYSTEM RESPONSES  
TO A HALF-CENTURY INCREASE IN RIVER NITROGEN LOADS
Geophysical Research Letters
 X. Liu1,2, C. Stock2, J. Dunne2, M. Lee1,2, E. Shevliakova2, S. Malyshev 2, and P.C.D. Milly3

DOI 10.1029/2021GL094367
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Coastal oceans host diverse ecosystems and serve as important 
habitats for marine fish species. Over the past century, anthro- 
pogenic activities have resulted in substantial climatic and land 
use changes that stress coastal environments, often leading to 
eutrophication, harmful algal blooms, and deoxygenation. Rivers  
are a primary source of eutrophication, supplying an increasing  
amount of anthropogenic nitrogen to the coastal ocean over the 
past century.
This study investigated simulated coastal ecosystem responses 
to increasing river nitrogen loads for the period between 1959 
and 2010.  Simulations revealed a ubiquitous global response,  
yet the sensitivity of each coastal ecosystem to increasing river 
nitrogen loads varied considerably. Elevated river nitrogen loads 
resulted in a 5.5% increase in the global coastal nitrogen inventory 
and commensurate increases in productivity and organic material 
supplied to the benthos. The response in coastal ecosystems  
with long residence times and high levels of nitrogen limitation, 
however, could be 2-5 times the global mean response. The  
findings of this study have important policy implications for the 
development of eutrophication mitigation strategies.

The scale of coastal environments and the complex underlying 
processes challenge observation-based analyses in even the most 
well-monitored systems. Global syntheses are hindered by coarse 
resolutions of current-generation global models necessitated by 
computational limitations. The ocean physical model for this study 
was configured from an enhanced-resolution version of GFDL’s 
Modular Ocean Model (MOM6) and its accompanying Sea Ice  
Simulator (SIS2), integrated with GFDL’s Carbon, Ocean Biogeo-
chemistry and Lower Trophics (COBALT) marine biogeochemical 
model. COBALT simulates global-scale dynamics of carbon, nitrogen, 
phosphorus, iron, and oxygen, along with some phytoplankton 
zooplankton groups. The dynamically changing river freshwater and nitrogen fluxes are simulated by GFDL’s land-watershed model LM3-TAN, 
which incorporates global river routing and lakes into a terrestrial ecosystem to simulate nitrogen storage and cycling processes. 
OAR Goals: Drive Innovative Science

Simulated Coastal Ecosystem Responses 
to Increasing River Nitrogen Loads
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Area-normalized changes in a) coastal nitrogen inventory and  
b) coastal net primary production in the globally distributed 
Large Marine Ecosystems averaged between 1961 and 2010. 
These changes reflected coastal ecosystem responses to 
long-term changes in riverine nitrogen inputs, calculated by 
contrasting two retrospective MOM6-COBALTv2 simulations 
with dynamically changing and climatological river nitrogen 
inputs, respectively.

¹Princeton University, AOS Program, Princeton, NJ; 2NOAA/GFDL, Princeton, NJ; 3U.S. Geological Survey at NOAA GFDL, Princeton, NJ

SCIENTISTS IN THE SPOTLIGHT

V. “Ram” Ramaswamy, GFDL Director
V. "Ram" Ramaswamy was elected a 2021 Fellow of the American Physical Society for his “pioneering research on 
radiative transfer in the climate system, especially regarding the impacts of anthropogenic changes in carbon dioxide 
and ozone on stratospheric dynamiCs, and the effects of aerosols on tropospheric temperatures & the hydrological cycle.”

https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2021GL094367?af=R
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BRIDGING OBSERVATIONS, THEORY AND NUMERICAL SIMULATION  
OF THE OCEAN USING MACHINE LEARNING
Environmental Research Letters
DOI: 10.1088/1748-9326/ac0eb0
Machine learning (ML) is a computational advance that allows  
us to extract the underlying physical structures embedded in data,  
and connect them with theory to make predictions about the 
world. This review covers the current scientific insight offered 
by applying ML to ocean science and points to where there is 
imminent potential.  
Beyond vast amounts of complex data ubiquitous in many modern 
scientific fields, the ocean poses a combination of unique challenges 
that ML can help address. Available observational data is largely 
spatially sparse, limited to the surface, and with few time series 
spanning more than a handful of decades. Important timescales 
span seconds to millennia, with strong scale interactions and 
numerical modeling efforts complicated by details such as coastlines. 
The authors focus on the use of ML for in situ sampling and  
satellite observations and the extent to which ML applications 
can advance theoretical oceanographic exploration, as well as  
aid numerical simulations. ML has potential for building  
numerical models from theory, and for accelerating numerical 
models through the emulation of physics. In addition, ML can play 
a role in improving the predictions made by numerical models, by  
understanding and correcting systematic errors in model 
predictions. Additional applications covered in this review include 
model error and bias correction, and current and potential use 
within data assimilation. 
Progress in physical oceanography has been concurrent with the 
increasing sophistication of tools available for its study. These 
advances show that ML in the modern era will influence ocean 
sciences, as many other fields, by bringing empirical science and 
theoretical science closer together.

1Princeton University, AOS Program, Princeton, NJ; 2NOAA/GFDL, Princeton, NJ; 3University of Washington, School of Oceanography, Seattle, WA
4Laboratoire des Sciences du Climat et de l’Environnement (LSCE-IPSL), CEA Saclay, Gif Sur Yvette, France; 5LOCEAN-IPSL, Sorbonne Université, Paris, France
6British Antarctic Survey, NERC, UKRI, Cambridge, UK; 7European Centre for Medium Range Weather Forecasts, Reading, UK; 8Nansen Center (NERSC), Bergen, Norway

RECENTLY HONORED SCIENTISTS AT GFDLRECENTLY HONORED SCIENTISTS AT GFDL

Timeline sketch of oceanography (blue) and ML (orange). The timelines 
of oceanography and ML are moving towards each other, and interactions 
between the fields where ML tools are incorporated into oceanography has 
the potential to accelerate discovery in the future. Distinct “events” marked 
in grey. Each field has gone through stages (black), with progress that can 
be attributed to the available tools. With the advent of computing, the 
fields were moving closer together in the sense that ML methods generally 
are more directly applicable. Modern ML is seeing a very fast increase in 
innovation, with much potential for adoption by oceanographers.

OAR Goals: Drive Innovative Science

M. Sonnewald1,2,3, R. Lguensat 4,5, D.C. Jones6, P. D. Dueben7, J. Brajard 5,8, V. Balaji 1,2,4

Alistair Adcroft, Research Oceanographer
Alistair Adcroft earned the 2021 American Geophysical 
Union Ocean Sciences Award for his research developing 
numerical models of ocean circulation at GFDL and 
Princeton University. Presented biennially, the award 
recognizes outstanding leadership or service to the ocean 
sciences by a senior scientist.

Geophysical Fluid Dynamics Laboratory • www.gfdl.noaa.gov 
201 Forrestal Road • Princeton, NJ 08540-6649 Contact: Maria Setzer •   maria.setzer@noaa.gov

Oceanography and Machine Learning
Moving Towards Each Other

Thomas Delworth, Senior Scientist
Honoring his lifelong work, the American Geophysical Union 
presented Tom Delworth with the prestigious 2021 Bert Bolin 
Award and Lecture. His research is known for advancing the 
scientific frontiers involving the role of oceans in the global 
climate system, with emphasis on climate variability, change, 
and predictability, from seasonal to centennial time scales.
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